Helix-helix distance and angle definitions

 c_1, c_2 : centers of helices 1 and 2, resp.

The dotted line connecting n_1 and n_2 is the shortest connecting helices 1 and 2. The angles $e_1 - n_1 - n_2$ and $e_2 - n_1 - n_2$ n_2 - n_1 are both 90°.

$$cc_dist = \|\overrightarrow{c_1} - \overrightarrow{c_2}\|$$

$$dist = \|\overrightarrow{n_1} - \overrightarrow{n_2}\|$$

$$dee1 = \|\overrightarrow{e_1} - \overrightarrow{e_2}\|$$

$$dee2 = \|h_1 - \overrightarrow{e_2}\|$$

angle=ang(h'_2 -e₁-h₁) $dhang=tors(e_1-n_1-n_2-e_2)$ $dhang_cc=tors(e_1-c_1-c_2-e_2)$

Helix-helix rotation definitions

 $C\beta_{ir_rep}$ is the β carbon of the residue that defines the HX-HX rotation, p is the site nearest to the $C\beta_{ir_rep}$ on HX₁ axis, p' is 1Å away from p on the HX₁ axis and the c'₂-p' line is parallel to the line connecting c₂ with the point nearest to in on HX₁.

 HX_1 rotation wrt HX_2 is the torsion angle defined by centers $C\beta_{ir_{rep}} - p - p' - c'_2$.

