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Understanding and predicting the thermodynamics of association reactions at the microscopic level requires
that it be possible to sample representative configurations of the reactants and solvent as a function of the
reaction pathways. Because of geometric effects, certain methodological improvements in molecular simulation
techniques are necessary before the reaction thermodynamics of complicated systems such as biopolymers
with interlocking shapes can be investigated. Here, we propose the use of the grand canonical ensemble in
molecular simulations when the traditional canonical ensemble based methods cannot appropriately account
for the confined space effects. The success of the grand canonical ensemble molecular simulations in studying
the association reaction profile is shown by testing it on simpler systems. Implications for future work and
various possible application areas of the grand canonical ensemble simulations are discussed.

I. Introduction

An important goal of chemical sciences is to understand the
relative stability of different arrangements of reactant molecules
in solution. For example, the optimal mode of association of
an enzyme and an inhibitor molecule (e.g., whether bridging
water molecules are involved) can only be determined theoreti-
cally by calculating the free energy of the system (potential of
mean force) as a function of the solute coordinates. Because
of this importance, the potential of mean force has been
examined for several classes of systems by various research
groups, and these studies have been extensively described in
several recent review articles (refs 1-4).
Even though knowing the potential of mean force (pmf) is

essential in understanding molecular associations, calculation
of pmf’s using molecular simulations with explicit solvent
models has been rather expensive, especially when the system
involves many degrees of freedom. Therefore, the past pmf
simulation studies were mostly limited to reactions between
small molecules involving only a few degrees of freedom. In
this respect, other computationally inexpensive theoretical
approaches, such as integral equations,5 or even continuum
models of solvent6,7 are good alternatives to the simulations.
Unfortunately, such techniques are only approximate, and in
some cases, their quantitative and/or qualitative predictions can
be questionable.8,9

In addition to being expensive, computational studies of
biochemical systems, such as ligand-receptor systems, are
subject to additional difficulties. In many cases, docking of
the ligand requires changes in the solvation configuration along
a binding channel of the receptor molecule, and the adequate
sampling of all the possible configurational changes and the
associated time scales increase the required simulation lengths
considerably. As was discussed in an earlier report,10 when
the studied system includes confined spaces, such as hydration
pockets of crystal hydrates, the conventional simulation methods
may not provide adequate sampling. In the earlier crystal
hydrate study, this inadequate sampling was overcome by using
grand canonical rather than canonical ensemble simulation

methods. A similar confined space problem is encountered in
many biochemical binding studies as well. For example, as
mentioned above, in ligand-receptor reactions, the hydrating
water molecules have to be emptied out of the binding channel
as the ligand starts to penetrate. The capping of the channel
by the ligand may form a confined space,i.e., a water pocket,
and this pocket gets smaller as the ligand moves down the
channel. As the volume of the water pocket gets reduced, a
certain number of water molecules have to move out of the
pocket. Using the usual canonical or microcanonical simulation
methods, it would be very hard to represent the equilibration
of these “squeezed-out waters”. Based on its earlier suc-
cesses10,11 in overcoming the confined space effects, in this
report we propose to use the grand canonical simulations to
solve some of the methodological difficulties encountered in
the theoretical biochemical binding studies. Although the
advantages of using the grand canonical ensemble in pmf
calculations would be most apparent in studying the reaction
between molecules having interlocking geometries to form
confined spaces during the reaction, in this report the application
of the proposed idea will be limited to simpler test cases which
have been investigated in detail earlier by various groups. The
results for the biochemical reaction between a ligand and an
enzyme, such as trypsin and benzamidine, for which the method
was originally proposed will be the subject of a future report.12

An outline of this report is as follows. Section II presents
the mathematical details of potential of mean force calculations,
the grand canonical ensemble and its implementation into the
Monte Carlo simulations, and the details of the computations.
The results are presented in section III. The last section, section
IV, summarizes our findings and discusses the potential
implications for future and ongoing work with special emphasis
on biochemical reactions.

II. Theory

A. Potential of Mean Force. The potential of mean force
(pmf) is the free energy of a system as a function of selected
solute coordinates. The pmfW is related to the distribution
probabilityF of states at a fixed reaction coordinate value and
is given as4† University of California at San Diego.

‡ Mount Sinai School of Medicine.
X Abstract published inAdVance ACS Abstracts,December 15, 1995. âW(R) ) -ln F(R) + C (1)

1426 J. Phys. Chem.1996,100,1426-1433

0022-3654/96/20100-1426$12.00/0 © 1996 American Chemical Society

+ +

+ +



whereâ ) 1/kT andC is a constant. Note that in the above
equation the reaction coordinate is represented byR, which may
be multidimensional. In the simplest case, the reaction coor-
dinate corresponds to the distance between the two labeled
particles of the system. If these particles do not have any
internal structure,i.e., if they are spherical single interaction
site particles, eq 1 reduces to a one-dimensional equation, and
for this case, the pmf is related to the pair distribution function,
g(r), between the labeled particles1,5

It has been well established that calculating the probability
distribution function,F(R) in eq 1, using a direct Boltzmann
sampling in a computer simulation is not practical.1-4 There-
fore, to obtain adequate statistical sampling, the potential of
mean force calculations is generally done utilizing non-
Boltzmann or biased (umbrella) sampling. Even though the use
of a biasing potential alters the HamiltonianH used in the
simulations, it can be shown that13 the effects of the biasing
can be eliminated from the calculated quantities. If the biasing
potential isUb(R), then the pmf is given as4

whereFb(R) and〈‚‚‚〉b respectively are the probability distribu-
tion and the ensemble average of the enclosed quantity
calculated using the biased Hamiltonian,H + Ub(R).
Common implementations of non-Boltzmann sampling have

been either by employing a “guessed” bias potential or by
employing a restraining harmonic type potential. As is obvious
from eq 3, a uniform sampling of the distribution of states,i.e.,
Fb ) constant, would be obtained if an optimal choice for the
biasing potential,Ub(R) ) -W(R), could be made. In most
cases, the studied pmf does not have a simple form, and it is
almost impossible to correctly guess a biasing potential. To
avoid such problems and to obtain the optimal sampling, Mezei
developed the adaptive umbrella sampling scheme.14,15 Adap-
tive umbrella sampling works such that the optimal umbrella
sampling potential is self-consistently determined and refined
during the molecular simulation, and the simulation is run until
an acceptable convergence is obtained. In other words, the
biasing potential is updated and adapted at regular intervals
during the simulation. The adaptive umbrella sampling idea
has already been tested on various systems,16-18 and it was used
in this study.
B. Grand Canonical Ensemble Simulations. Although

most of the derivations found in the literature utilize the
canonical ensemble, as noted,19 many aspects of the theory of
potential of mean force can be most readily developed within
the grand canonical ensemble. Rather than repeating the
derivations, we refer the reader to ref 5 for details and present
only the final expressions for a single-component system. In
the (µ, V, T) grand ensemble, the ensemble average of a quantity
O, 〈 O 〉, is given as

whereZN ) Z(N,V,T) and〈 O 〉N respectively are the configu-
ration integral and the ensemble average ofO for the corre-
spondingcanonicalensemble havingN particles. In eq 4a, the
grand ensemble partition function,¥, is given as

where, withΛ denoting the thermal de Broglie wavelength,z
) eâµ/Λ3 is the fugacity (activity) function. As eq 4 show, in
essence, a grand canonical simulation is equivalent to a set of
appropriately weighted canonical ensemble simulations. Due
to this similarity, the grand canonical ensemble simulation
methods were mainly developed by generalizing the existing
canonical simulation methods. Further details of grand en-
semble simulations may be found in refs 20 and 21.
In this study, we will follow Adams’ approach21 to grand

canonical ensemble simulations. Recasting the fugacity in terms
of the chemical potential of an ideal gas of particles of the same
mass, and the same average number of moleculesNh , volume,
and temperature, the grand ensemble partition function may be
expressed as

where the “B” parameter is defined as

andµe is the excess chemical potential [overâ-1 ln(nλ3), the
chemical potential of an ideal gas with number densityn )
Nh /V]. Noting the similarity with the canonical ensemble
simulations, Adams developed a grand canonical Monte Carlo
(GCMC) simulation scheme in which the move attempts used
in canonical ensemble simulations to generate a Markov chain
to sample the phase space are replaced with two types of
moves: (i) regular moves as in the canonical ensemble, (ii)
insertion/deletion moves to allow for fluctuations in the number
of molecules. There is no rigorous rule for combining these
two move attempts, and in this study, we use a 1:1 ratio;i.e.,
every regular move is followed by an insertion/deletion attempt.
As eq 6a shows, theB parameter and the chemical potential

differ by a constant, and therefore, a constantµ ensemble is
equivalent to using a constantB parameter in GCMC simula-
tions. In implementing the GCMC, theB parameter is adjusted
at the beginning until the targeted average number of molecules
is approximately achieved. After fine tuning, theB parameter
is kept constant during the data acquisation, and the average
number of molecules is calculated in the same simulation as
well. Then the chemical potential can be calculated at the end
by using the relation between the excess chemical potential,
theB parameter, and the average number of molecules, eq 6b.
C. Reaction Coordinate Range Splitting. It has been well

established that calculating the probability distribution function,
F(R) in eq 1, for the whole range of the reaction coordinate in
a single molecular calculation is not practical in most cases.1,4

Therefore, to obtain adequate statistical sampling, the potential
of mean force calculations are generally done as a series of
molecular simulations with each sampling a constrained range
of the reaction coordinate. This partitioning into smaller
subsections is usually achieved by using a constraint potential
which functions in exactly the same way as the umbrella
sampling discussed above. Although the effects of the constraint
potential can be subtracted out at the end, the simulations
corresponding to different restrained reaction coordinate ranges
have to be matched at the overlap regions. This matching of
the split reaction coordinate range pmf’s introduces additional

g(r) ) e-âW(r) withW(r) f 0 asr f ∞ (2)

âW(R) ) -ln Fb(R) - âUb(R) + ln 〈eâUb(R)〉b + C (3)
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inaccuracies into the calculations. Therefore, it is advantageous
to find a biasing potential which would enable the adequate
sampling of the entire reaction coordinate range in a single
simulation, and such calculations are preferred whenever
possible. But, unfortunately, such cases are very rare, and
splitting of the reaction coordinate is unavoidable in most
instances.
If the reaction coordinate range is partitioned into smaller

restrained ranges, then it has to be ensured that the series of
molecular simulations correspond to the same thermodynamic
state. For the constant temperature, constant volume or constant
pressure, and constantN ensembles, the same thermodynamic
state can be obtained rather easily for the series of simulations
with restricted reaction coordinate ranges. In the grand canoni-
cal ensemble, the equality of thermodynamic states requires that
the chemical composition composition (i.e, the molar ratios)
and the chemical potentials of each species in each simulation
should be the same.22 In the GCMC pmf calculations of this
report the solute degrees of freedom are fixed to certain values;
thus, only the number of solvent molecules is allowed to
fluctuate, and there is only one species of solvent (water). In
principle, to correctly mimic the macroscopic experimental
conditions, the chemical potential of the water used in each
simulation should be the same, and this chemical potential
should be equal to the one corresponding to a system in which
the solute molecule moves are not restricted. In the constant
(µ,V,T) GCMC pmf calculations, the number of solute molecules
is not allowed to fluctuate, and the employed boundary
conditions introduce periodicity by replicating the finite unit
cell. Therefore, the equivalency of the chemical composition
condition (one solute moleculeVs Nh waters within the constant
volume unit cell) can only be satisfied if the average number
of water molecules are kept equal in each simulation. As eqs
6 show, these requirements would be satisfied if theB parameter
is kept equal (equivalency of the chemical potentials), and the
average number of water molecules is the same (equivalency
of the composition) in each window simulation corresponding
to different restraints on the solute molecule moves. Note that
the latter constraint is due to the replication of the constant
volume cell and may be relaxed without significant inconsis-
tency. Also notice that since the artifacts due to the replication
will be reduced, this constraint will be better satisfied as the
unit cell size is made larger.
It was found, by trail and error, that in GCMC pmf

simulations the calculated average number of water molecules
for each constrained reaction coordinate range may differ
somewhat. These differences in the average number of solvent
molecules are small and are mostly due to the unavoidable
statistical fluctuations in the number of molecules, but depending
on the studied system, the magnitude of such fluctuations may
be considerable. Similarly, the characteristic particle number
relaxation times may be long,23 thus requiring lengthy molecular
simulations and close monitoring of the convergence charac-
teristics of the runs. Because of this average number density
mismatch problem, particular care is needed in partitioning the
reaction coordinate into smaller ranges in grand canonical
ensemble simulations. Our results, however, showed that for
the cases studied in this report the differences in the calculated
average number of molecules are rather small (less than 1%),
and either the effects of such small thermodynamic state
mismatches on the calculated potential of mean forces are
negligible or they can be approximately corrected in various
ways. One such scheme will be discussed below.
D. Matching of the Thermodynamic States in the Con-

stant (µ, V, T) Ensemble. For simplicity, let us assume that

there is only one type of solvent (water), and the reaction
coordinate range is split into two sections. Since it is desired
that the chemical potential and the average number of waters
are to be the same in both runs, theB parameter has to be equal
in both simulations. Let us say that the obtained average
numbers of water molecules wereN1 andN2 for the first and
the second regions, respectively, and thatN1 ≈ N2. Thus, the
(excess) chemical potentials for the two runs are slightly
different (eqs 6). The chemical potential is a function of the
composition (density) at constant volume, so the calculated
average number of molecules have to be equalized to obtain
the same thermodynamic state between the runs.
As long asN1 andN2 are not too different, the following

approximation based on the cluster expansion should be a very
good one for the potential of mean force calculation between
two solute atoms. According to the cluster (or the density)
expansion of the potential of mean force (pmf) at infinite
dilution, using the hypernetted chain closure approximation the
pmf (W) between the solution atomsi and j can be expressed
as5,24

whereU is the “direct” pairwise interaction potential between
the solute particles,F is the solvent number density, and the
sum goes over all the sites of the solvent molecules.cik andhik
are the direct and pair correlation functions between the solute
and solvent sites respectively, and * stands for a convolution
integral. Equations 7 can be expanded to first order in terms
of the solvent density variations to obtain

Equation 8 shows that the solvent density dependence of the
pmf may arise either from the explicit linear density dependence
or from the implicit density dependence of the solute-solvent
direct and pair distribution functions. Assuming that changes
in the solute-solvent pair correlation functions with variations
in the solvent density,i.e., the [Fδtij/δF]F0 term in eq 8, would
not depend on the solvent density, at least for a restricted range
of solvent densities, the solvent-mediated contribution to the
pmf,Wsolv,ij, can be considered to be a linear functional of the
solvent density. Thus, the solvent-mediated contributions to
the pmf of the second simulation can be scaled by a factor of
N1/N2 to achieve the equivalency of the simulation runs. This
would assure that both simulations correspond to the same
thermodynamic state.
A second and simpler approximation (or lack of correction)

would be to perform a series of simulations for restricted
reaction coordinate ranges and then to assume that small solvent
number density variations will not have much effect on the
calculated pmf. Since the potential of mean force is defined
up to a constant, the pmf’s of the various segments have to be
shifted upward or downward to obtain a continuous and best
matching pmf. For this reason, the scaling of the solvent
contributions by a constant multiplication factorN1/N2 would
only change the magnitude of the features in the pmf.
Therefore, unless there are sharp features, the scaling of the
segment pmf’s within a couple of percent would not have an
important effect on the overall results. As a numerical example,
let us consider a chemically typical case and assume that there
is a barrier of 3 kcal/mol between contact ion pair and solvent-

âWij ) âUij + ∑
k

Fcik*hkj ≡ âUij + âWsolv,ij (7a)

âWsolv,ij ) F∑
k

cik*hkj ≡ Ftij(r) (7b)

âδWij(F0) ) âδWsolv,ij ) (tij + F0[δtij/δF])F0
δF (8)
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separated ion pair configurations and also assume that the barrier
is solely due to the solvent-mediated contribution. In this case,
a 5% mismatch between the average number densities of the
segment simulations would have an effect of approximately 0.15
kcal/mol. For comparison, statistical sampling errors on the
order of 1 kcal/mol are not untypical in the potential of mean
force calculations. Therefore, for the above example case, the
error due to the thermodynamic state mismatch of the partitioned
reaction coordinate range is much smaller than the statistical
errors and can be neglected.
Notice that the overall shape of the pmf will be available at

the end of the simulations. Thus, knowing the features of the
pmf would point out whether the corrections due to the
thermodynamic state mismatches would be important or not.
What this means is that once the simulations are performed,
the ratio of the average number of molecules and the specific
features in the pmf would enable one to make a good error
estimate and, if necessary, corrections may be applied accord-
ingly. As will be shown in the next section, for two LJ particles
and for the Na-Cl ion pair in aqueous solution, the particle
number mismatch and the resulting error due to the partitioning
of the reaction coordinate range are very small, and therefore,
the results are left uncorrected.

III. Results

A. Two Lennard-Jones Particles. To test the use of grand
canonical ensemble in studying the potential of mean force, the
method is initially applied to simpler systems. First, the
potential of mean force (pmf) between two identical Lennard-
Jones (LJ) particles in aqueous solution is calculated. LJ
particles are modeled with a diameterσ ) 3.91 Å and an
interaction parameter ofε ) 0.16 kcal/mol. These parameters
are also representative of the united atom model for methyl
groups and were taken from the OPLS force field.25 Water was
characterized by the TIP4P model.26 Solute-solvent interaction
parameters were calculated by using the geometric mean mixing
rule for bothσ and ε; σLJ,O ) 3.5115 Å andεLJ,O ) 0.1575
kcal/mol.
The simulation cell had dimensions of 35.15× 22× 22 Å3,

and the LJ particles were placed symmetrically around the origin
along thex-axis (longest axis). Periodic boundary conditions
were applied, and the temperature was 298 K. Solute-water
interactions were treated with the minimum image boundary
condition, and the water-water interactions were truncated with
a spherical cutoff at 7.75 Å. Solute and solvent molecule move
steps were chosen such that the average acceptance rate was
approximately 50%. To accelerate the sampling rate, force
biasing27 as well as a distance-dependent preferential sampling28

was employed. Since appropriate sampling of the solute-
solvent interactions is important in pmf calculations, the
calculations employed a scheme in which the selection prob-
ability of the solute moves was 8 times higher than that of a
solvent molecule. It has been shown by Kincaid and Scheraga29

that, when the solute-solvent interactions are the major
contributor to the investigated quantity, sampling the solute
moves more frequently and the preferential sampling of the
energetically important waters improves the statistics and the
convergence considerably. An adequate acceptance rate, ap-
proximately 6.8× 10-4, for the insertion/deletion attempts in
the grand canonical ensemble simulations was ensured by the
use of the cavity bias technique.30 Note that the obtained rate
corresponds to one successful insertion (deletion) attempt in
every∼1500 insertion (deletion) tries. Since the successful
insertion/deletion attempts cause large local perturbations in the
system, rates much higher than this would not leave enough

time for the system to appropriately relax. Therefore, the
achieved insertion/deletion rate is large enough, and further
increasing this rate would not be recommended.
In addition to grand canonical ensemble simulations, canoni-

cal (constant NVT) ensemble simulations were also performed
for comparison. Overall, four sets of simulations were run: The
first one used the canonical ensemble, and the reaction
coordinate range was divided into two regions: 3.0-5.4 Å
(window 1) and 5.0-8.2 Å (window 2). There were 565 waters
and the LJ particle pair inside the unit cell. After equilibration,
the simulations for each window were run until good conver-
gence of the pmf was achieved. Due to the cutoof effects,
convergence of the simulations at large reaction coordinates is
slower and requires longer runs. In this case, convergence of
pmf was obtained after running for 20 million (2× 107) and
28 million steps for the first and the second windows,
respectively.31 The matching of the pmf’s for the two windows,
i.e., finding the constant in eq 3, was done by matching the
window pmf’s at the overlapping reaction coordinate points.14,17

The second simulation also used the canonical ensemble, but
this time the reaction coordinate range was increased to 3.0 to
11.0 Å, and the whole range was covered in a single simulation.
This was done to test whether the partitioning of the reaction
coordinate would be avoidable or not. The runlength of the
simulation was 52 million, and the results (Figure 1) proved
that it would be possible to use the entire reaction coordinate
range in a single simulation, at least for hydrophobic solutes.
To test whether the idea of using the grand canonical

ensemble in pmf calculations would be successful or not, the
third and the fourth simulations utilized the grand canonical
ensemble and repeated the first and the second canonical
ensemble calculations. TheB parameter was chosen to be-3.9,
which sets the chemical potential of the waters such that the
GCMC simulation unit cell consisted of approximately 565
water molecules on average and the LJ particle pair. Of course,
since the grand canonical ensemble was used, the number of
waters at a given configuration would fluctuate. In the third
simulation, the partitioning of the reaction coordinate was the
same as the first canonical ensemble simulation. The GCMC

Figure 1. Potential of mean force as a function of the distance between
the two identical Lennard-Jones particles. Comparison of different
Monte Carlo simulation runs: solid line, canonical ensemble and the
reaction coordinate is partitioned into smaller subsections; long-dashed
line, canonical ensemble and the whole reaction coordinate is sampled
in a simple simulation; short-dashed line, grand canonical ensemble
using the whole reaction coordinate; dotted line, grand canonical
ensemble using partitioned reaction coordinate range. Reaction
coordinate partition ranges and other details are given in the text. Pmf
and the distance are in kcal/mol and in angstroms, respectively.
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runlengths were 20 million and 45 million steps (one step)
one regular move plus one insertion/deletion attempt) for the
first and the second windows, respectively, and the window
pmf’s were put together by matching the pmf’s at the overlap-
ping reaction coordinates. The fourth simulation covered the
whole reaction coordinate range and was run for 93 million
steps.
Figure 1 shows the good agreement between the canonical

and grand canonical ensemble results. Observed deviations
among the four simulations are of order 0.25 kcal/mol and such
deviations are well within the statistical error bars.31 Good
agreement between the canonical and grand canonical simula-
tions shows that the grand canonical ensemble would be as
suitable to study the potential of mean force between particles
as the more conventional canonical ensemble. Similarly, the
results for the partitioned reaction range simulations and for
the simulations using the entire reaction coordinate range agree
quite well, too. This finding implies that it might be possible
to avoid the partitioning of the reaction range in certain types
of pmf studies. As mentioned in section II.C, matching of the
adjoining segment pmf’s introduces additional possible errors
into the pmf calculations. Therefore, the use of the entire
reaction range in a single simulation would be advantageous in
reducing the errors and should be preferred whenever it is
feasible.
Since it is the simplest example of the hydrophobic interac-

tions, the solvation and the association thermodynamics of LJ
particles have been studied by several groups.32,33 Smith and
Haymet33 give an extensive listing of the earlier studies and,
by performing very lengthy simulations, detail and discuss the
issues important in hydrophobic interaction studies. Although
the potential parameters utilized are slightly different, our
findings are in good agreement with Smith and Haymet’s results.
To briefly summarize, after taking into account the 0.18 Å
difference inσLJ of the two studies, calculated positions of the
contact pair minimum, roughly 4.0 Å in oursVs 3.8 Å in ref
33, match very well. Similarly, the solvent-separated minimum
is at approximately twice theσLJ,O distance, 7.0 Å, and the free
energy barrier separating these two minima is approximately 1
kcal/mol. Note, however, that the difference in the water models
between the two studies and the different treatment of solvent-
solvent Coulombic interactions, as well as the different solute-
solvent interaction potentials, does not allow for an absolute
quantitative comparison. It should also be noted that, due to
shorter simulations, the errors in our results are probably larger
than those of ref 33.
An additional advantage of the grand ensemble simulation

is that the chemical potential of the waters can be obtained in
the pmf calculations. Ben-Naim and Marcus24 define the
process of solvation as the process of transferring a molecule
for a fixed position in an ideal gas into a fixed position in the
liquid at constant temperature and pressure. If this is done in
such a way that the number densities in the liquid and gas phases
are equal, the obtained quantity would be the Gibbs free energy
change of transferring the labeled molecule from the gas phase
into the liquid.34 Therefore, if the intramolecular partition
function of the transferred molecule is the same in both phases,
what is defined as the Gibbs free energy of solvation by Ben-
Naim and Marcus is equivalent to the excess chemical potential
µe in eqs 6. However, since a constant volume rather than a
constant pressure ensemble is used in this study, a correction
term is required to convert from the Helmholtz free energy into
the Gibbs free energy to account for the difference between the
simulation pressure,p, and the standard state pressure of 1 atm.
For this, the thermodynamic formula

may be utilized. Assuming a small compressibility,i.e., an
almost constant density as a function of the pressure, establishes
the correction term asV∆p/N. Substituting the value of theB
parameter and the obtained average number of waters into eq
6b, and using eq 9 to correct for the ensemble differences, we
calculated the chemical potential of the TIP4P model as-6.14
kcal/mol. This value is in good agreement with the Jorgensen
et al.35 result of-6.1 kcal/mol and with experiments,34 -6.324
kcal/mol. Even though what is calculated in this study is the
chemical potential of the TIP4P model water in the presence
of a pair of perturbing LJ particles, the large size of the unit
cell and the weak strength of the perturbing LJ particles should
not have a sizable impact on the chemical potential of the waters.
In fact, for a truly infinitely dilute solution with no finite size
effects, the calculated water chemical potential should approach
that of bulk water. Since the unit cell used in this study is fairly
big, the simulated system mimics the inifinite dilution solution
with reasonable accuracy. For a consistency check, the chemical
potential of bulk TIP4P water was also calculated in a separate
simulation. Calculated chemical potentials of bulk water and
of water in LJ-LJ solution were different by only 1%,
supporting the above-stated expectation.

Figure 2 reports and compares the distributions of the number
of water molecules in the third and the fourth simulations. For
clarity, the results of the third simulation (windows 1 and 2)
are shifted upward. As can be seen, the distributions of number
of waters during the simulations using the entire reaction
coordinate range (fourth simulation) or using a partitioned
reaction coordinate range (the first and the second windows of
the third simulation) are very similar. Although it is somewhat
noisy, the overall shape of the distribution function closely
resembles that of a Gaussian distribution with a dispersion of
6-7 molecules.

As mentioned in section II.D, an additional concern in the
grand canonical ensemble simulations with parttioned reaction
coordinate range is the matching of the thermodynamic states

Figure 2. Distributions of the number of water molecules in the grand
canonical MC pmf simulations between two identical Lennard-Jones
particles, the third and the fourth runs of the text. [a] GCMC simulation
utilizing the entire reaction range in a single simulation, the fourth run.
Also shown are the corresponding results of GCMC simulation with
split reaction coordinate range, the third run: [b] first window (3.0-
5.4 Å) and [c] second window (5.0-8.2 Å). [b] and [c] are shifted by
0.03 and 0.06, respectively.

(∂p∂µ)t,V ) F (9)
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of the various simulations. For the LJ-LJ pmf case, the
thermodynamic states are quite equivalent. The calculated
average number of waters in the first and the second windows
of the third simulation were 567.6 and 566.5, respectively. These
are off from the targeted average number of waters 565 by less
than three molecules.36 Since the differences are quite small,
less than 0.5%, and since the calculated pmf does not have any
sharp features, as discussed in section II.D, the grand canonical
ensemble results can be approximately corrected for an ap-
propriate comparison with the canonical ensemble calculations.
Since the direct interaction potential between the LJ particles
is short-ranged, the features in pmf at large distances are largely
due to the solvent-mediated contributions. Reading from Figure
1, we see that the magnitude of the features in the pmf such as
the barrier between the contact and solvent-separated minima
are of the order 1 kcal/mol. Thus, a 0.5% correction would
contribute about 0.005 kcal/mol, and an error of such magnitude
can be safely ignored in the pmf calculations. The fourth
simulation, the grand canonical ensemble simulation sampling
the entire reaction coordinate range of 3-11 Å, actually
consisted of two separate simulations starting with different
initial configurations and with runlengths of 45 million and 48
million steps. The average number of waters obtained for each
run respectively were 566.5 and 567.9, giving an overall average
of 567.2 waters. This is off from the aimed number of waters
only by 2.2 molecules, corresponding to a 0.4% correction of
solvent-mediated contribution to the pmf. Similarly, the average
number of water molecules mismatch between the two separate
runs of the fourth simulation is only 1.4 molecules, which is
equivalent to a correction factor of 0.25%. Such corrections
should be very insignificant, and therefore no correction was
applied to the reported results.
B. Sodium Chloride. The apparent success of the grand

canonical ensemble simulation for studying the pmf of two LJ
particles prompted us to further test the method by studying
another simple system. The association of Na+ and Cl- in water
was chosen as our second test case. Notice that, unlike LJ
particles, this case involves fully charged ions and cutoff effects
are expected to be much more important. Actually, in their
recent work, Friedman and Mezei18 found that the way the
interaction potentials are handled can have significant effects
on the calculated pmf. They investigated the cutoff effects in
detail by performing a wide range of simulations. At large
distances, the calculated Na-Cl pmf looks very different than
what is expected on physical grounds.18 To further their
investigation, the interaction potential parameters were kept the
same here, namely Jorgensen’s TIPS2 water model37 for water-
water interactions and his potentials for the ions;38 σNa ) 1.897
Å, εNa ) 1.607 kcal/mol,σCl ) 4.417 Å, andεCl ) 0.118 kcal/
mol were used. The geometric mean mixing rule for bothσ
andε was employed. The simulation conditions were the same
as in the LJ-LJ pmf case except that solute-water interactions
were treated with the minimum image boundary condition, and
the minimum images were determined with respect to the center
of mass of the Na+-Cl- ion pair. The water-water interactions
were truncated with a spherical cutoff at 11 Å. Further details
of the simulation setup may be found in ref 18.
The reaction coordinate (distance between the ions) was

divided into five regions: from 2.0 to 2.6 Å (window 1), from
2.5 to 3.5 Å (window 2), from 3.2 to 5.5 Å (window 3), from
4.6 to 6.3 Å (window 4), and from 5.9 to 8.0 Å (window 5).
With the choiceB ) -2.7 for the chemical potential, the unit
cell consisted of 565 water molecules on average and the ion
pair. After equilibration, adaptive umbrella sampling GCMC
simulations for each window were run until sufficient conver-

gence is achieved. Runlengths of the segment simulations and
the calculated average number of waters were 566.1 (25 million
steps), 564.1 (36 million steps), 566.3 (48 million steps), 565.3
(50 million steps), and 566.1 (58 million steps) for windows 1
to 5, respectively. Note that these average number of waters
are very close to each other (with a maximum deviation of
0.4%), and therefore, as in the LJ-LJ pmf case, the thermo-
dynamic state mismatch corrections were unnecessary and were
simply omitted. Using theB parameter value, the average
number of molecules, and the small pressure correction using
eq 8, the chemical potential of the TIPS2 model water (when
the ion pair is present) was-5.44 kcal/mol. This is 0.7 kcal/
mol larger than that of the chemical potential of TIP4P model
water.
The distributions of the number of water molecules in each

window simulation are reported in Figure 3. The distribution
functions of different window simulations agree with each other
reasonably well. Another observation is that the distributions
of the number of water molecules in the Na-Cl pmf (Figure 3)
and in the LJ-LJ pmf calculations (Figure 2) are very similar.39

The partitioning of the reaction coordinate range or changing
the solutes would only affect the solvent molecules in the
vicinity of the solute; thus, only a small percentage of solvent

Figure 3. Distributions of the number of water molecules in the grand
canonical MC pmf simulations between sodium and chloride ions.
Comparison of different window simulations: [a] first window (2.0-
2.6 Å), [b] second window (2.5-3.5 Å), [c] third window (3.2-5.5
Å), [d] fourth window (4.6-6.3 Å), and [e] fifth window (5.9-8.0 Å).
[b], [c], [d], and [e] are shifted by 0.03, 0.06, 0.09, and 0.12,
respectively.

Figure 4. Potential of mean force as a function of the distance between
sodium and chloride ions. Pmf and the distance are in kcal/mol and
in angstroms, respectively.
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molecules would be affected. Therefore, the artifacts due to
reaction coordinate partitioning or due to the periodicity
stemming from the boundary conditions would be less and less
important as the system unit cell size gets larger. Since the
unit cell used in this study is fairly big, the simulated system
mimics the infinite dilution solution with enough accuracy.
Therefore, the observed agreement between the different window
runs of Na-Cl and of LJ-LJ pmf calculations is not that
surprising and actually is to be expected.
Comparing the presented grand canonical ensemble simula-

tion results, Figure 4, with earlier canonical ensemble studies,
we find that the agreement for the contact pair minimum
distance, 2.7 Å, and the agreement for the barrier height, about
3.7 kcal/mol, is fairly good.40 However, as in ref 18, our results
at large ion separation distances seem to disagree with the other
studies. Although its position, 5.4 Å, agrees well with other
studies,40-42 the solvent-separated minimum is not pronounced
in our results and appears only as an inflection point. Also,
the decrease in the pmf at larger distances is most probably
physically incorrect. Since even small changes in the interaction
potential parameters,41 the employed water model,42 different
treatment of the boundary conditions,43 and the different cutoff
schemes and values18 can have significant effects on the
calculated pmf, quantitative disagreement between different pmf
studies is not unusual. A very good example of this is the
differing results in different studies for the relative stability of
the contact pair and the solvent-separated pair Na-Cl ion
complexes in aqueous solution.40 The relative stability found
in different studies varies considerably, and the main cause of
the differences among the studies is the variation of the
calculated pmf’s around the solvent-separated minimum dis-
tances. This is due to the fact that the calculated pmf around
the solvent-separated minimum and at larger distances seems
to be particularly sensitive to the above listed effects.18,43 Not
surprisingly, this is the region that we find disagreement with
the other studies. Since the agreement around the contact
minimum is fairly good, and since our aim in this work is not
to calculate the most accurate pmf between Na and Cl or
between two LJ particles, but to illustrate that the grand
canonical simulation ensemble idea is reasonable, we do not
attribute too much significance to the disagreement between our
results and the other studies concerning the solvent-separated
minimum. Extending our simulation run lengths did not change
the results, which further shows that observed disagreements
are most likely due to the cutoff effects rather than improper
sampling in the simulations. In this regard, approaches to make
the simulated system effectively infinite in size such as Ewald
summation,44 particle-particle particle-mesh technique,45 and
fast multipole algorithm,46 or approaches to incorporate the
surrounding solvent as a dielectric continuum using the Pois-
son-Boltzmann equation47 or the generalized reaction field
formalism48 should prove useful. Further discussion of the
advantages and disadvantages of different boundary conditions
may be found in ref 18.

IV. Summary and Discussion

Grand canonical Monte Carlo simulations are used to
calculate the potential of mean force between two Lennard-
Jones particles and to calculate the potential of mean force
between a sodium cation and chloride anion, all in water.
Different simulations were performed to show the equivalency
and compare the efficiency of different simulation approaches.
Comparison of the pmf results between two LJ particles when
the reaction range is split into smaller subsections, and when
the whole range is used in a single simulation, shows that it

might be possible to avoid the partitioning of the reaction
coordinate range in certain types of simulations. When possible,
the use of the whole reaction range is advantageous in the sense
that the errors due to the matching of the potential of mean
force segments are eliminated. One implication of this finding
is that results obtained from the simulation using the entire
reaction coordinate range can be used as a benchmark to
compare different ways of matching the results of the partitioned
reaction coordinate simulations. For example, it is still an open
question14,17whether matching the segment potential of mean
forces or matching the segment sampling probabilities is the
better way of putting the results together. The availability of
the results without matching errors for the whole range would
establish good benchmark references for comparing different
approaches. However, it should be kept in mind that proper
sampling of the phase space in simulations covering the entire
reaction coordinate range may need extremely lengthy runs, and
such simulation should be utilized with utmost caution.
As discussed in sections II.C and II.D, when the reaction

coordinate is partitioned into smaller parts, it has to be ensured
that the simulations for each subregion correspond to the same
thermodynamic state. The results for the studied cases showed
that thermodynamic state mismatches are unimportant at least
for the systems examined in this report. Even though it was
not utilized in this report, an approximation scheme to achieve
thermodynamic state equivalency between different simulation
runs was introduced. This correction scheme, section II.D, is
based on the cluster expansion of the potential of mean force
and should be a very good approximation when the observed
density differences between the simulations are small. As
commented, the correction can be applied at the end and, since
the features of the calculated potential of mean force will be
known by then, an accurate error assessment due to the
approximate correction can be done even before the corrections
are applied.
The availability of such correction schemes and the observed

good agreement between canonical ensemble and grand canoni-
cal ensemble simulations are very encouraging and show that
grand canonical ensemble simulations are well suited for pmf
calculations. The main advantages of grand canonical ensemble
simulations will be much more apparent when certain geo-
metrical shape effects make the corresponding canonical
ensemble simulation methods unsuitable. As stated in the
Introduction, it would be difficult to study certain biomolecular
association reactions using conventional canonical ensemble
methods, and therefore, grand canonical ensemble methods
should prove to be particularly useful in biochemical association
studies. In ongoing work, we are investigating the association
of an example enzyme-ligand system; these results will be
communicated in a future report.
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