Monte Carlo analysis of conformational transitions in superhelical DNA
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Metropolis—Monte Carlo algorithms are developed to analyze the strand separation transition in
circular superhelical DNA molecules. Moves that randomize the locations of unpaired regions are
required in order to diminish correlations among the sampled states. This approach enables accurate
simulations to be performed in reasonable computational times. Sufficient conditions to guarantee
the formal correctness of the complete algorithm are proven to hold. The computation time required
scales at most quadratically with molecular length, and is approximately independent of linking
difference. Techniques are developed to estimate the sample size and other calculation parameters
needed to achieve a specified accuracy. When the results of Monte Carlo calculations that use
shuffling operations are compared with those from statistical mechanical calculations, excellent
agreement is found. The Monte Carlo methodology makes possible calculations of transition
behavior in cases where alternative approaches are intractable, such as in long molecules under
circumstances where several runs of open base pairs occur simultaneously. It also allows the
analysis of transitions in cases where the base pair separation energies vary in complex manners,
such as through near-neighbor interactions, or the presence of modified bases, abasic sites, or bound
molecules. ©1995 American Institute of Physics.

I. INTRODUCTION attributes, with separation energetically favored to occur at

. . . . . . A+T-rich sites under normal physiological conditions. But
In vivo DNA is constrained into topological domains, -

- ) . superhelicity globally couples together the secondary struc-

within which superhelical stresses are modulated by topoi- L .

) . o tures of every base pair in the molecule. Transition at any

somerase enzymes. Many biological activities of DNA are ; - . .

T one location alters the helicity there, which, by changing the

regulated by the level of superhelicity imposed. EXamples’distribution of superhelicity throughout the molecule, alters

include the initiation of replicatiol? and of transcriptiort;* P y 9 :

recombinatiorf, and the uptake of homologous single the level of stress experienced by every other base pair. The

strand$ Negative DNA superhelicity has long been known probability of transition at a particular site depends not just

to destabilize the helix, inducing strand separations at spé2 tS local sequence, but also on how transition there com-
7-9 Strand separation is an essential step inPetes with all other possible transitions elsewhere in the mol-

cific locations. ) ) T .
many superhelically modulated regulatory events. It is recule. This global coupling distinguishes superhelical strand

quired for initiation of transcription and of replication, and S€paration from the standard Ising model in linear molecules,
also may be implicated in recombination, transposition, andvhere the only coupling is between near neighbors.
other activities. The best characterized example involves The first approximate statistical mechanical analysis of
oriC, the uniqueE. colireplication origin® Experiments have this phenomenon was developed by Anshelevettal *°
shown that a specific location within this origin is susceptibleThere, a DNA molecule that actually was circular was re-
to superhelical strand separation. If its base sequence @@rded as being linear, with one inseparable base pair added
modified in a way that retains this susceptibility,vivo ori- at each end to decrease end effects. A partition function was
gin activity is preserved. Sequence changes that degrade tHiglculated for that linear molecule by a standard recursion
susceptibility or move the site of separation, even by les@lgorithm, and the results were modified by a renormaliza-
than 100 bps, destroipn vivo origin function. No other at- tion step intended to account for the effects of superhelicity.
tribute of this site or its base sequence affects activity. ~ This approach does not impose the true closed circular topo-
Because superhelical strand separation plays essentiggical constraint on the superhelical DNA. Moreover, strand
roles in many biological functions of DNA, it is important to Separated regions were regarded as being torsionally unde-
develop quantitatively precise methods to analyze it. Thdormable. Because the persistence length of DNA single
theoretical analysis of strand separation in superhelical DNAtrands is two orders of magnitude smaller than that of the
is complicated by the global nature of the constraint, and byB-form duplex!! large torsional deformations of separated
the heteropolymeric character of the transition. Which du+egions require small amounts of energy. This can greatly
plex sites are destabilized depends in part on local sequenedfect the distribution of superhelicity and the extent of tran-
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sition throughout the molecule. The utility of this method with complicated transition energetics, including near-
and the accuracy of its results are severely limited by thaneighbor effects and the presence of local inhomogeneities
approximations made, particularly the assumption of undesuch as abasic sites, methylated or otherwise modified bases,
formability. More recently, this approach has been improvedr bound molecules. The topological state of the DNA is
by the imposition of self-consistency conditions on the renormodeled correctly, and torsional deformations of the dena-
malization steg? tured regions are included. It can treat transitions at any tem-
A second approximate analysis focused on the extent gberature and in molecules of any size. There are no restric-
transition as a function of temperatureHomopolymeric en-  tions on the number of separated regions it can handle. The
ergetics were assumed, so every base pair required the sag@mputation time required for a simulation scales at most
separation energy, and the statistical mechanical partitiogquadratically with molecular length and in practice is nearly
function was replaced by the largest term in the sum whicHinear.
expresses it. Although that analysis gives a reasonable expla- Development of efficient sampling methods requires the
nation for the changes in the temperature dependence of transe of several types of fundamental moves, which are ap-
sition between linear and superhelical DNAs, it does not proplied in a pattern. These are shown to satisfy the ergodicity
vide a generally applicable formulation of the problemand detailed balance conditions required to sample states ac-
addressed here. cording to the equilibrium distribution. By the careful use of
The most accurate approximate statistical mechanicad class of moves called shuffling operations, the convergence
method developed to date to analyze superhelical stran@roperties of the algorithm can be optimized. The develop-
separation uses a different straté§y*°An energy threshold ment procedure used here extends the approach of
is specified, and all states of strand separation are foundastings’" who first applied Markov chain theory to the de-
whose free energies exceed that of the minimum energy stafégn of Monte Carlo simulation methods. A similar approach
by no more than this threshold amount. The cumulative inhas been presented by Kandlal* in the case of cluster
fluence of the high energy statéhose not satisfying the algorithms. We develop a more general approach for design-
threshold conditiohis estimated through a density of statesing Monte Carlo sampling algorithms.
calculation. From this data an approximate partition function
is calculated, and approximate ensemble averages are detﬁr-
mined. The accuracy of this approach is always high, and can’
be specified by appropriate placement of the energy thresh- Closed circularity fixes the linking numbék of a DNA
old. The correct topological condition is imposed on themolecule. Its linking difference is=Lk— Lk, whereLk, is
DNA, and the torsional deformability of separated regions isthe linking number of the relaxed state. When a molecule is
included. The results of calculations using this approachmegatively superhelicaly<O, the resulting stresses can de-
have been shown to agree exactly with experimental messtabilize the duplex, driving local strand separatibns.
surements of the extents and locations of superhelical strand Consider a molecule containiny base pairs, super-
separation in all molecules examined to d&t&Vhile this  coiled to a linking difference. A state of strand separation is
method is accurate and tractable for short sequefless determined by specifying the secondary structure of each
than 15 000 bps it has two important limitations. First its base pair, so there aré' 8uch states. Lan,=1 if base pair
numerical implementation is computationally tractable onlyi is separated anth;=0 otherwise. For closure we specify
when the states satisfying the energy threshold conditiomy;=m;. A state of strand separation is determined by
have small numbers of open regions, typically <4. In  specifying the values of each;, 1<i=<N. The number of
consequence, it cannot be applied accurately to long seuns of separatiofi.e., open regionsin that state is
guences in which numerous+Al-rich regions compete for N
transition. Also, the energetics of separation are assumed to = A mis(1—m)

STRAND SEPARATION IN SUPERHELICAL DNA

be copolymeric, depending only on whether the base pair is i=
AT or GC, and do not include near-neighbor effects. Theyng the total number of separated base pairs is
limitation to copolymeric energetics precludes the analysis of N

effects on transition behavior of the presence of defects, such D

as apurinic sites, pyrimidine dimers, or chemically modified n—i:1 m -

bases. The methods developed in this paper are tested for

accuracy against calculations made using this technique, as 1 N€ Superhelical deformatioiis partitioned into three
these are known to be highly precise in the cases they caypes of conformational changes, each of which requires free

handlel516 energy. Separation of the specified base pairs requires free
This paper develops Monte Carlo simulation procedure?nergy
to analyze strand separation in superhelical DNAs of speci- N
fied sequence. Monte Carlo methods have been used to ana- Gsep=ar+21 m;b; . 2.1
=

lyze the tertiary structure of superhelical DNA?°but they

have not been applied to secondary structural transitions tblere a is the nucleation free energy needed to initiate an
date. Although this approach samples the equilibrium distri-open region, and is the number of open regions. Under
bution instead of calculating it, it has several advantagesormal physiological conditiong=10.5 kcal/moft®23 with
over all existing alternative techniques. It can treat systemsost of this free energy needed to disrupt the extra stacking
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interaction required to open the first base pair in a run. Alsojll. DEVELOPMENT OF MONTE CARLO METHODS

b; is the free energy needed to separate basd phiEi<N. ) )

A separation energly; is assigned to each base pair individu- !N this work we use the Metropolis Monte Carlo proce-
ally, and can depend on near-neighbor effects, the presence $re: In which a fundamental mov(also called a Monte
specific sites of lesions which partially disrupt the duplex, orCarlo tria) consists of the following two steps:

other factors. (I) Generate a candidate stgtérom the current state
Second, the two strands within a separated region can according to a specified probabilistic rule.

rotate around each other. tf separated base pairs are tor- (I Use the energy difference between the two states to

sionally deformed at a rate of rad/bp, the required free determine which to select as the new current state.

energy is

In step Il we use the Metropolis criterion: We accept sfate
with probability exp[G;—G;)/kT], if G;>G;, and with
probability 1 if Gj<G;. The procedure developed below
uses a sequence of fundamental mokesgperformed in a
‘specified patternf,,...,F,,).

In order for this procedure to sample states in a distribu-
that converges to the equilibrium distribution in the limit

Gior= 3CN72, (2.2)

whereC is the torsional stiffness associated to this deforma
tion. Alternatively, one may allow different values efat
each position in a separated region. In the sample calculehron

tions reported here, we assume every separated base p8‘|‘rlarge sample size, it must satisfy two conditions. The rules

experiences t.he same This is done because these caIcuIa—employed must be capable of reaching every dic-
tions are designed to test the accuracy of the presently de- ), and the generation of statéstep ) must bejungbiased

veloped Monte Carlo methods against statistical mechanica{ etailed balande These properties are best expressed using
techniques in which the variability of was not considered. matrices

Finally, the residual superhelicity remaining to stress the The étate generation stéstep ) of a fundamental move
duplex is 6, , the balance ob not accommodated by either F determines a square matiix of dimensionWx W, where

sFrand se.paratioln or interstrand twisting in the separated '8V is the number of states of the system. The possible current
gions. T.h'.s requires a freg energy that has been shown to bs(?ates of the system correspond to the rows of the matrix, and
quadratic in the deformation: the candidate states to the columns. The element iritthe

row andjth column of this matrix ig;; , the probability that

one will generate stat¢ as candidate state given that the
current state i$. The fundamental movE satisfies detailed
balance ifp; =p;; for all i,j so thatM is symmetric:* Be-
cause some candidate state must be generated, the entries in
bach row sum to unity. This is the probability normalization

Gres= %K Hrza (2.3

whereK is an experimentally measured constfift2*I1f
and 6, are allowed to equilibrate in a state havimgeparated
base pairs ir runs, then the free energy associated to tha

45
state is condition.
) ) N Now, consider a simulation in which fundamental moves
27°CK n are performed in a patterrF(,...,F,). For this simulation
Gnnar =2 2cvkn | 91 105 +ar+;l mib; to satisfy detailed balance, each fundamental move must sat-

(2.4  isfy detailed balance so that the state generation matrices
M;, i=1,...m, must all be symmetric. Ergodicity will be
The sample calculations reported below test the accuracyatisfied if every entry in the product generating matrix
of the Monte Carlo procedures developed here by comparin=M;M,---M,, is positive. This means that the simulation
their results with those from the previously developed statisis capable of reaching any final state from every initial state
tical mechanical technique whose accuracy is known to be&vith positive probability in one repeat of the pattern. Be-
high 2>6 For this reason we use the same expression for theause ergodicity can be guaranteed by a somewhat weaker
free energy associated to a state that was used in that earlieondition, we call the positivity oR strong ergodicity.
work. Specifically, the separation energy is assigned either of Suppose a simulation consists of a pattern of fundamen-
two valuesb,r or b, depending on the identity of the base tal moves of two typesF,,...,F,, Si,...,S,), all of which
pair involved, andr is assumed to be constant and to equili- satisfy detailed balance. If the subpattef, (...,F,,) satis-
brate with 6, . We reiterate, however, that the Monte Carlo fies strong ergodicity, then the whole pattern will be
procedures developed here can accommodate a wide range(sfrongly ergodic. This follows from the fact that if &W>xXW
more complex situations which the older procedure cannomatrix A has every entry positive and anoth#ix W matrix
handle. B has only non-negative entries with at least one positive
All calculations reported here use the free energy paramentry in each row and column, then the proda& will have
eter values appropriate to the experimental conditions o&ll positive entries. Moves of th& type are called basic
Kowalski et al,®®in which T=310 °K and[Na']=0.01 M.  operations and moves & type are called shuffling opera-
These ard ,;=0.258 kcal/molpg=1.305 kcal/molC=3.6  tions.
kcal/rad, and K=2350RT/N The results found by the ap- Suppose a Monte Carlo algorithm has been constructed
proximate statistical mechanical method using these valuesonsisting of a pattern of fundamental moves satisfying
have been shown to agree precisely with experini&nt, strong ergodicity and detailed balance. Although this will
within the limits of experimental accuracy. guarantee that the algorithm samples the states in a way that
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converges to the equilibrium distribution in the limit of large
sample size, if successively sampled states are strongly cor- @
related the rate of convergence will be very slow, often ren- —~
dering the technique useless in practice. One recourse in such 3 0-5 ﬂ
circumstances is to design supplementary shuffling opera-

tions that weaken these correlations, thereby producing rapid 0
convergence and efficient simulation procedures. This ap-
proach is required to produce tractable algorithms to analyze
superhelical strand separation, as shown below. In principle
it can be applied to any Monte Carlo procedure in which
convergence rates are slow due to the persistence of correla-  0.04

tion among successively sampled states. 0 1 2 3 4 5
Sequence Location (kb)

0
0
(b)

p(x)

A. The standard Metropolis—Monte Carlo algorithm

- - oo FIG. 1. Adimeric molecule is analyzed that is composed of two copies of a
Consider a circular DNA molecule containirg base region of the pBR322 molecule, as described in the text. This molecule is

pairs and supercoiled to a linking differenée A standard g percoiled to a linking difference=—24 tumns. Parta) gives the separa-
Monte Carlo algorithm consists &f fundamental moves ex- tion probability profile calculated using the approximate statistical mechani-
ecuted in the patterrf( ,...,Fy). HereF; is the operation in cal procedure of BenhartRefs. 15 and 16 whose accuracy in evaluating
which ndidate st t, i § nerated Ib flioping b ipair equilibrium properties exceeds 99.9% in this case. One run of separation
. ch aca ate state 1s generated by flipping a_se pa occurs, which is equally likely to be at either of the two strongly destabi-
either from closed to open or from open to closed, with prob+ized regions at positions 1900 to 2000 and 4400 to 4500, respectively. Part
ability 0<p<1. We determine whether this candidate state igb) shows the results of calculation using the MCA Monte Carlo algorithm
accepted by making a standard Metropolis decision Pedith an initial state that is opened at positions 400—500. In this procedure
. hi d b . di ) | the open region is trapped at the second susceptible site, and states in which
formmg_t is procedure, once per base pair proceeding alonge other region opens are not sampled.
the entire length of the molecule, constitutes a standard
Monte Carlo cycl§MCC). Because the states of any collec- _ . . .
tion of base pairs can be changed in this process, the prolfy of accepting a candidate state that differs at one site from
ability of passing from any initial state to any final state in th§70U”?nt state but has a larger number of runs is less than
one MCC is positive, so the procedure is strongly ergodic10 *. This means it is very unlikely that the secondary struc-
Each move clearly satisfies detailed balance, because in tfiére of a base pair will be changed if that base pair is interior
state generation step Bf , the conformation of base paiis ~ t0 @ region, be it open or closed. The only single base
flipped with the same probabilitp, regardless of its initial ~changes that have a significant chance of acceptance occur at
configuration. To generate a sample distribution using thigunctions between open and closed regions. Moving between
approach, one sample state is chosen aftiCCs, wherex low energy states having the same number of open runs will
is an adjustable parameter. The algorithm implementing thi§€ extremely improbable if the open regions in the two states
procedure is called MCA. are far from each other along the sequence. For the only
This procedure generates strongly correlated succedeasible way to do th's_ is by migration of an open region
sively sampled states, even whers very large, as a sample through single base pair openings and. closmgs. Many such
calculation demonstrates. The molecule analyzed consists §f0ves would be required, and if €&-rich regions inter-
a dimeric repeat of the sequence between positions 1301 ai¥§ne. these moves will be individually improbable. Global
3800 of the pBR322 DNA molecule. It contains two dia- €0UPling constrains the number of open base pairs, which
metrically placed copies of the strongly destabilized sitefurther increases _the difficulty of this movem_ent._ln conse-
present at thgg-lactamase gene’ 3erminal regior. At link- quence, sugcesswely sampled states remain highly corre-
ing difference §=—24 turns(well within the physiological lated, even if very many Monte Carlo c_ycles are executed
range, the statistical mechanical analysis finds the probabilPetween samplings. In the example of Figb)] the separa-
ity of exactly one run of separation to be 0.993, with thetion is effectively trapped at one susceptible site and is un-
separation equally likely to occur at either of the two desta—abl? to move to the other. These results sh0\_/v that the distri-
bilized regions. Figure (&) plots the equilibrium probability bution found by standard Monte Carlo algorithm converges

of separation of each base pair in this molecule, also callelf the equilibrium distribution far too slowly to be useful in
the transition profile, calculated using the statistical mechaniPractice, despite satisfying ergodicity and detailed balance.

cal procedure. Figure(th) shows the profile calculated using
the MCA algorithm. Here the initial state is an open loop
comprising the base pairs between positions 400 and 500. Although in principle increasing. decreases correla-
Successive sample points are chosen afteB00 MCCs, tions, in practice such large valuesiofvould be required by
and the sample size Id=20 000. We see that in the MCA the standard Monte Carlo algorithm MCA as to make this
calculation one site dominates over the other, despite thedipproach unfeasible for our problem. To develop a practical
being identical. Which site is dominant depends on the initialalgorithm, shuffling operations must be constructed that
state of the system. decorrelate successive sampled states. Because a standard
The reason for this behavior is as follows. Because thdVICC satisfies strong ergodicity and detailed balance, the
initiation energya is large(a=10.5 kcal/mo), the probabil- performance of shuffling operations after a standard MCC

B. Monte Carlo methods with shuffling operations
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this can be done without merging with the neighbor open
regions. This includes the possibility that the segmient
L2 L3 keeps its original place. One can move eithemor L5 in the
same way within their respective intervals. There are
(I,+1,—1) ways to movelL,, and (;+1,—1) ways to
movel 3, so the total number of possible moves of this type
is 2(I,+1,+13)—3=2(N—n)—3. This number depends
only on the total numben of open base pairs in the three
L1 a runs.

To perform the shift, one first calculates the probabilities
FIG. 2. The shift operation SH33 randomly picks one of the three loopsP1,P2,P3, Of shifting open regions 1, 2, or 3, respectively,
shown, say,L1, and then randomly moves it within the closed region as

bounded byL2 on the left andL3 on the right. The lengths of all open
regions are unchanged in this operation. Pi=(;+153—1)/(2(N—n)—3),

n d

Po=(11+1,—1)/(2(N—n)—3), 3.1
will yield a formally correct algorithm provided the shuffling _
operations satisfy detailed balance, as described above. Pa=(latla=D/(2(N=n)=3).

Four types of elementary moves have been designed,o select which open loop is moved, one generates a random
and four shuffling operations are constructed from themnumberrand in (0,1). If rand<P,, thenL, is chosen. If
These elementary moves decrease correlations among stais<rand<P;+ P,, thenL, is selected, and otherwids, is
by randomizing the positions and numbers of open regionshosen. Suppode; has been selected. To decide whiegas
without changing the total number of separated base pairéo be moved, a second random numb&nd2 is generated.
The state generation steps of each type of elementary moviehe position wherelL; is placed is determined by
are as follows. Rotation moves rotate all open loops a raniNT (rand2<(13+1,—1)), where INTXX) is the integer part of
dom amount around the circular molecule. This places th@ numberx. One places the first open base pailLgfin the
open regions at new positions, but keeps their lengths anplosition that is INTrand2<(1;+1,—1))+1 base pairs away
separation distances fixed. Shift moves alter the relative pdrom the end of its neighbor open region in the counterclock-
sitions of open regions, without changing their numbers owise direction(L in this casg¢ Clearly this state generation
lengths. Squeeze moves redistribute the open base pastgep is symmetric: If one can generate statéom stateA
among the open regions without altering either the total numby a shift operation, one can also generate stateom state
ber of open base pairs or the number of open regions. FB by the same operation. Moreover, the probability of gen-
nally, exchange moves increase or decrease the number efating any accessible three-run state from any current three
open regions by either amalgamating open regions or subdiun state by this procedure is(2(N—n)—3), so detailed
viding a region. None of these elementary moves alter thdalance is satisfied. The other elementary shift moves are
total number of open base pairs. After a new state has beaonstructed similarly. In the algorithms developed here, the
generated, a Metropolis decision is made regarding whiclshuffling operation SHIFT uses ROTATION to shuffle states
state to accept. We describe the state generation step in eacaving either one run or greater than seven runs, and
type of elementary move, and demonstrate that these satis§H22,...,SH77 to treat the other cases.
detailed balance. Elementary squeeze moves are applied to states having

In the rotation move the positions of all open loops aremore than one run of separation. Their purpose is to change
rotated in unison a random amount around the moleculehe distribution of open base pairs among the open runs with-
keeping their lengths and the distances between them fixedut changing either the total number of open base pairs or the
Since the number of possible rotations equals the total nunmumber of open runs. We randomly select an open run and
ber of base pairs, setting the probability of each rotation tesubdivide it into two parts. One part is kept fixed, and the
be P=1/N assures detailed balance. This move, called ROether is moved across the unique closed run that abuts it, and
TATION, can be applied to any state. Alternatively, its useattached to the open region on the other side. This shrinks
can be restricted, for example to cases whetl orr>7. one open run, and simultaneously expands its neighbor by an

Shift moves are applied only when there is more tharequal amount, so the total number of open base pairs and the
one open region. Briefly, an open region is selected at ranlengths of all closed regions remain constant. It can be
dom, and moved within the set of closed positions that abushown that, from a given run state withn open base pairs,
it on either side. To describe this techniqgue more preciselypne can generate(i’2—r) possible states by this procedure,
consider the elementary move SH33, which is applied tandependent of the details of the initial state. Moreover, the
states having three runs of separation, illustrated in Fig. 2state generation step of the squeeze move is symmetric: If
Denoting the length of open regiarby L;, the total number one can generate stéefrom stateA by a squeeze operation,
of open base pairs is=L;+L,+Ls. The closed regions then one can generate statefrom stateB by the same
between adjacent open loops have length$=1, 2, 3. The  operation. Equiprobable squeezing moves are constructed,
order of open loops and closed intervals is shown in thaising an approach analogous to that described above for the
figure. One can only move open lodp within the closed design of the shift moves. Being equiprobable, these clearly
regionsl,; andl; that about it. There arel {+1,—1) ways satisfy detailed balance. The shuffling operation SQUEEZE
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newly  created open run at the position
INT (rand3*(1;—1))+1 base pairs into closed regiop. All
exchanges from any two-run state to each available three-run
——> state are equiprobable with probability A4 2)(N—n—2).
L1 a To satisfy detailed balance, each three-run state must
12 have the same probability of exchanging back to any avail-
able two-run state. This operation is performed by EX32. Six

G, 3. Th N Ex23 randomiv select _ dtwo-run states can arise by shuffling from any given three-
.o, € exchange move randomly selects an open region an . H .
direction. Here a portion df 1 is moved into closed regidrl. The selected flin state. These are the mergesLofwith either I‘J or Ly,

loop L1 is randomly cut at an interior point, and the part proximaltds ~ Wherei, j, k are all different. The merge df; with L; is

moved into thel 1 region. This produces the three run state shown on theperformed by moving the location &f; until it abutsL; so

right. EX32 performs the reverse operation, merging one of the three loopghe two become contiguous. One first generates a random

into one of its neighbors. number rand in (0,1). If rand<6/(n—2)(N—n—-2), one
chooses either of the six possible merged two-run states with

equal probability. The probability of shuffling from the given

used in the algorithms developed below applies E|ementa%ree-run state to any accessible two-run state s-41%)(N

squeeze moves when the number of open runs SatiSfie—Sn—2) so detailed balance for exchange moves is satisfied
2<r=7, and uses ROTATION when there is either exactly . rand>6/(n—2)(N—n—2). then shuffing to two-run

one or more than seven separated runs. states is not performed. In this situation, EX32 shuffles
Elementary exchange moves alter the number of sepa-. , : . . . ) ;
\Hlthln three-run states using shift operations. Since this op-

rated regions without changing the total number of separated . .

; : . e . eJann is performed only when three-run to two-run shuffles

base pairs. This must be done in a way that satisfies detaile : . .

. are forbidden, the probability of shifting between any two

balance. As examples, we describe exchange between two . R .
. . ..._accessible three-run states in this case is

run and three run states using Fig. 3. Suppose we start with a

two-run state, the runs having lengthg and L,, respec- 1-6/(N-n—2)(n—2)

tively. The two-run to three-run move EX23 proceeds as fol- 2(N—n)—3

lows. Randomly select an open region and divide it into two

subregions. Keep one of these immobile, and move the other In our algorithm we construct two categories of ex-

to a new position within its unique neighboring closed re-change shuffling operations, called INTERCHANGEL and

gion. The resulting state has three open regions. The numb&TERCHANGE2. INTERCHANGEL is composed of the

of possible ways to divide ruh; and place one part within elementary moves EX12, EX21, EX34, EX43, EX56, EX65

the neighbor closed regioh is N(L;,l;)=(L;—1)(I;—1).  with ROTATION to treat states with run number higher than

The length of the portion to be moved can vary from 1 tosix. Similarly, INTERCHANGE2 is comprised of EX23,

Li—1. and there ar¢;—1 ways to place that portion within EX32, EX45, EX54, EX67, EX76, together with ROTA-

the closed region of length;. Summation shows the total TION to treat states having run humber equal one or greater

number of ways of going from any two-run state with than seven. The reason for designing two exchange shuffling

separated base pairs to any allowed three-run staten is (Operations instead of one is to avoid complications in veri-

—2)(N—n—2), which again depends only an To shuffle  fying detailed balancgin each of the INTERCHANGE op-

from the present two-run state to any available three-rurgrations,i-run states can exchange with at most one other

state in a way that makes each three-run state equally likelfype, so the analysis presented above demonstrates detailed

to be chosen, we proceed as follows. First we calculate thbalance. It would be much more difficult to construct a prov-

1

probabilitiesP, , : ably correct algorithm ifi-run states could exchange with
H both (i —1)-run states andi +1)-run states in a single shuf-
P, = (Li-1)d;-1) 3.2 fling operation]
i (n=2)(N-n-2)° ' In this implementation we confine shift, exchange, and

Squeeze steps to states having7 only because states hav-
ing larger run numbers occur very infrequently in the DNAs
(0,1). If rand<P,_,. one cutsL; and moves the fragment we analyze under Ko_vvalski’s experimental conditidrisor
into thel , region. I%Ié <rand<P. . +P. . one cuts. example, our calculations reported below ShOYV that p_hage

1 Lihy ™ Laly B T halo 1 DNA (48502 bp supercoiled to a superhelix density
and moves the fragment into the region. If P | +PL,,  —_0.055(g=—254 turng has only a 1% chance of occur-
<rand<P_, +P_  +P_, one cutsL, and moves the ring in states having eight or more runs of separation. If
segment into thel; region. Otherwise, one cuts, and needed, the elementary moves that also apply to states hav-
moves the fragment into thk, region. Suppose we have ing larger run numbers can easily be constructed using the
decided to cut regioh; , and move the fragment into closed principles described here.
regionl;. Next, we must determine the cut location and the A shuffling Monte Carlo algorithm has been constructed
position to which the fragment is moved. We generate a sedhat executes the following pattern. One standard Monte
ond random numberand2 in (0,1), and place the cut site Carlo cycle MCC is followed by shuffling operations
after the base pair at position INBNdZ*(L;—1))+1inL;. (S5,5,5:5,5,S;)*, whereS; and S, are INTERCHANGEL1
Then we generate a third random numtzerd3 and start the and INTERCHANGEZ2, respectivel\§, is the SQUEEZE

To select which open region to cut and where to move th
resulting open loop, one generates a random numaretin
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operation ancb; is the SHIFT operation. Sample calculations |
showed that; could be eliminated from the pattern because
its inclusion did not improve the convergence properties of
the simulation. The number of shuffling operations per-\&, 0.5
formed after one MCC isv=6u or v=4u depending on ﬂ ﬂ
whether or notS; is used in the simulation. This pattern is
called a modified Monte Carlo cycl®MCC). The detailed 0 L 5 3 4 5
balance and strong ergodicity conditions sufficient for equi- Sequence Location (kb)
librium sampling have been shown to hold. The simulation
algorithm EXAMD is constructed by performir?g MMCCs FIG. 4. The EXAMD method is used to calculate the transition profile of the
before picking the next sample state. dimeric molecule treated in Fig. 1. The probability of separation of each
The values chosen far and \q, the tunable parameters base pair in the molecule, calculated in this way, deviates from its equilib-
of this simulation, have important effects on convergencdV™ value by no more tharr0.008. The results do not depend on initial
. . . . . .. conditions. The simulation time used here is about half that used by MCA to
and simulation time. Design of an optimally efficient shuf- ;¢ jate the results shown in FiglL
fling algorithm requires suitable choices of these parameters.
Both values should be large enough so that the number of
open base pairs and the numbers and locations of open rgroduction of shuffling operations. The convergence rate is
gions can freely vary in the course of selecting the nexfgreatly increased because correlations among sampled states
sampled state. This means the total number of shuffling trialare rapidly degraded by shuffling, resulting in a highly effi-
performed to sample one stalgy, must be large enough so cient algorithm. These improvements are illustrated by
that the most infrequently selected shuffling move occurs. Isample calculation on the dimeric test molecule using the
practice, exchange moves have the smallest probabilities &XAMD algorithm with A\;=50, »=1600 and 20 000 sample
realization[equal to 6/6—2)(N—n—2) in EX32, for ex-  points. Figure 4 shows that EXAMD accurately depicts the
ampld. In order to weaken correlations between successiv@ansition behavior in this test case. The absolute deviation
sampled states, these types of exchanges must be realizedtween these results and the equilibrium distribution is less
occasionally. This requires a large number of shuffles pethan 0.008 at every position. The simulation time for this
sample point. If we select 0.aN<\A v<nN, wheren isthe  analysis using EXAMD was 8 h, approximately half that
average number of open base pairs, thenwill be compa-  required by MCA.
rable to —2)(N—n—2), so exchanges between states
having different run numbers would be attempted sever
times. One can easily find an upper bound estimatenfor
using Eg. (2.4. When the superhelix densityg=6/Lk, To improve the overall efficiency of the simulation pro-
ranges from—0.04 to—0.055 under the Kowalskienviron- ~ cedure one must reduce the computation tirfl¢) of the
mental conditions, one can show the£0.032N. If we se- unit MCC. One approach modifies the standard MCC by
lect v and\ each to be large, with produat,y~nN, then treating base pairs in blocks rather than individually. This
the time needed to generate the next sampled state grows approach is easiest to implement when the transition energies
most quadratically with molecular weight. This shows thatare copolymeric. Although it also can be used in cases hav-
the EXAMD algorithm can treat long sequences efficiently. ing more complicated energetics, such as near-neighbor ef-
The computation timet,,, required by either MCA fects, it becomes more cumbersome to implement and the
(MCC without shuffles or EXAMD (MCC, with shuffle3  time it saves becomes smaller.

ab A modification of the algorithm

can be expressed as: In a standard MCC, a change in the state of a base pair
interior to a regionopen or closepwill increase the number
tiota [t(N) +t(¥) I\sU. (3.3 of open runs, hence has a very small chance of being ac-

cepted. In consequence, the only trials with a significant
chance of success in a standard MCC are performed at
boundaries of open loops. Consider a closed region whose
interior containsn,y AT base pairs anahgc GC base pairs.

HereU is the sample sizg(N) is the time needed for one
complete standard MCC, which is proportional Ky and
t(v) is the time needed to perform shuffling operations,
which is _proportlonql tOVZ In MCA, _t(v)—v—O and)\s—).\, The probability that all of these base pairs remain closed
so the simulation time is proportional t§N)AU. In this .

. _after one MCC is
case\ must be extremely large to weaken strong correlations
among the sampled states. Sample calculations on the Pcp,=[1—p exp(—AG(AT)/RT)]"Ar
dimeric molecule whose results are reported in Fifh) 1
above show virtually permanent correlations, extending over X[1-p exp(—AG(GC)/RT)Jee. @4
20 000 sampled points, even wher300. The introduction Herep is the probability used in the state generation step of
of the shuffling trials in EXAMD reduces. to a much the standard MCC, andG(AT) [resp.AG(GC)] is the total
smaller value\. In practice, one shuffle requires approxi- free energy cost of opening one Afesp. GG pair in this
mately the same time as the trial of one base pair in an MCQsegion. This cost is very large, about 10—-12 kcal/mol, be-
so the shuffling time(v) of the EXAMD algorithm is much  cause a new run is initialized, $,,,=1. Accordingly, we
smaller than the timé(N) needed to perform one MCC. may modify the standard MCC in the following way. Trials
Thus, a dramatic increase in efficiency results from the inperformed at sites interior to or at the boundaries of open
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loops will be done in the standard sequential order. Interiorsvhere c>=Var(X;). In our problem the sampled states may
of closed regions are treated by calculatifg,, from the  not be exactly i.i.d. but approach this condition\if(or \) is

base composition of the region, then generating a randoraufficiently large that successive points are effectively uncor-
numberrand in (0,1). If rand<P,,, no change is made in related. If our sampled states are regarded as i.i.d., then sev-
the region involved. Standard trials are commenced at theral useful estimates can be obtained from this inequality.
end of this region and continued until the next modified trial Let B¢(i) be the random variable whose value is 1 if
can be performed. Ilfand=P;,, then at least one base pair base pairs is open in staté, and 0 otherwise. If the equilib-

in this interior region will be opened. In this case, the prob-rium probability of separation of the base pairs P, then

ability that the first open pair is an AT is inequality (3.7) gives
nar exf — AG(AT)/RT] SEBJ) g P3(1-PB)
= _— = =
PAT = ext — AG(AT)/RT] - noe exf] — AG(GO)/RT]" U Ps|T¢(STue 38

] Here Var@,) = PE2(1— P5)<1/4. Settinge=0.02 and using
We choose a second random numband2 in (0,1). If  the maximum possible variance V&) =1/4, this inequality
rand2<p,r then we will open an AT pair in this region. siates that a simulation having =20 000 i.i.d. sampled
Otherwise we open a GC pair. If the opening base pair is ATgtates will have at most a 3.13% chance that its error in
then we choose one of thgy AT pairs with equal probabil-  estimatingP? for any particular base pair exceeds 0.02.
ity, and similarly for opening a GC pair. After performing Letr be the random variable corresponding to the num-
this opening, we use the standard trials to treat the base paifgr of open runs, so(i) =k, if in statei the number of open
next to this position in order until the next interior of a yyng jsk. Now the Kolmogorov inequality states
closed region is encountered. One circuit of the molecule U ,
performed in this way is called an approximate Monte Carlo Ei—lr(l)_F‘ _ | (T max= TV min) /4
cycle (AMCC). This approach cannot be shown to satisfy U —€= Ue® ’
detailed balance, so any algorithm constructed in this wa here T is the average number of open runs. Here
must be regarded as approximate. However, the practical di Tt 24=Var(r), andr, . andr,. are the maxir.num
ferences between this approach and a formally exact one al('emzle min ' max min S

ahd minimum numbers of open runs appearing in the

slight because _the _probab|l|ty of opening a base pair Irlterlogampled states. In practical simulations we find that
to a closed region is very low.

; . F max—T min) /4<4. If 20 000 states are sampled, then the en-
ttThe aflgorlthmAl\,;‘l\gngfD“has (tj)ecta)n ccr)]n?ftlructed u3|rt1.g thesemble average number of runs will be estimated correctly
pattern of one , foflowed Dy Shulling operations w10 o5 approximately 92% of the time under the i.i.d.
(515,535,S,S3)*. The succession of standard and mOd'f'edassumption
trials in the AMCC traverses the molecule quickly. In prac- The sar.ne method can be used to estimate the accuracy
tice less than 2% of the base pairs are open in a state undg{

normal physiological conditions, so successive trials of indi calculations of the average number of separated base
) physiolog ' ) . airs. One finds an effective maximum number of separated
vidual base pairs are needed at a small fraction of sites. This

. . . : . ase pair,,, where the probability of states having more

results in a substantial savings of computer time without sac- . . . g
i A : than this number of open base pairs is essentially 0. Simi-
rificing significant accuracy, as the sample calculations re; . . —
orted below show larly, one finds the minimum number,,,. Let n be the
P ' average number of open base pairs anthe the random
variable corresponding to the number of open base pairs, i.e.,
n(i) =Kk, if in statei the number of open base pairskisThen

we have:

(3.9

D. Estimates of sample size and other parameters

An estimate of the minimum sample sikk needed to sU 5
achieve a given level of accuracy in a Monte Carlo simula- P[ i=1M 26] < (Nmax— Nmin) /4 (3.10
tion can be made using the Chebysheand Kolmogoro?® U Ue’
inequalities. The variations of accuracy with sample size thafhe choicese=1 and Nmax—Nimin <80, are reasonable for a

are achieved in practice will be described in the Sec. V. yea] simulation. This formula shows that wher=20 000 an
If X1,X;,... are random variables, then the Chebyshey; 4. simulation will estimate the expected number of open

—Nn

inequality states that base pairs correctly ta-1 bp 92% of the time.
Xq+ -+ Xy Xq+ -+ Xy These evaluations assume the largest possible variance,
‘ 0 - 0 26] hence provide worst case estimates of the deviations under
the i.i.d. assumption. They indicate that a sample size of
Var((X,+---+Xy)/U) U,=20 000 is reasonable for present purposes. It is not so
= €2 . (3.6 large as to require very long simulation times, and it suffices

. , ) .. for reasonable accuracy.
If X1,X,,... are assumed independent and identically distrib-

uted(denoted by i.i.d, this becomes Kolmogorov's inequal-

ity: IV. RESULTS
2 We have developed three Monte Carlo algorithms for
Xyt -+ Xy c . . o A .
BT E— E(X)|=ep < U (3.7 analyzing strand separation transitions in circular superheli-
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FIG. 5. The transition probablity profile calculated for pBR322 DNA by the
approximate statistical mechanical procedure is shown. The calculation as- .|
sumes linking differenced=—30 turns, afNa*]=0.01 M andT=37°C.

Two regions of high separation tendency are observed both theoretically and
experimentally. 0.01

3 35 4
cal DNAs. The standard Monte Carlo algorithm MCA per- LOGT0(Sample Size)
forms Monte Carlo cycles without shuffling. EXAMD aug- , . . _
mets the standard MCC with shuffing operations. APPMDEIS: & T sbsote maiu devatin betueen e st echanica
uses approximate cycles AMCC that have been modified byence,b=max_,_\/d(i)|, is plotted against sample size. The solid line
block estimates for opening of closed regions, together withyives the maximum deviation of the APPMD algorithm, and the dotted line
shuffling operations. The MCA technique has been showmgives that of the EXAMD algorithm. The sample sizes aré, mx 10°,
above to suffer extreme convergence problems that precludlsé< 10°, 1¢', and 210"

its practical utility. In this section we present the results of

sample calculations performed using the EXAMD andour algorithms, we subtract the probabilipg,,(i) of sepa-
APPMD algorithms. These results are compared for accuracation of base pair, calculated using the statistical mechani-

with those from approximate statistical mechanical calculacal method, from its valug,,(i) found by each of the

tions whose precision is known to be very high? Monte Carlo procedures. This determines the deviation
d(i)=pmc(i) — psm(i) of the Monte Carlo results from the

A. Tests of accuracy, convergence rate, and analytical probability profile at each position Figure 6

computational speed compares  the  absolute maximum  deviations

. . ) ) =max <j<n|d(i)| of the probability profiles obtained by

The first collection of sample calculations were deS|gne. he EXAMD and APPMD procedures from that obtained by
to evaluate the accuracy, convergence propertles anq relat'\é‘l?atistical mechanics. The results are reported as functions of
speeds of the EXAMP ar!d APPMD algorithms. For this pur- sample size. These results show that the two procedures have
pose strand separation in the pBR322 DNA sequence wagp,j,. stability and accuracy for sample si2¢5-2000. Val-
analyzed at I|nk_|ng d|ff_erenc€=—30 ums. _We performed ues of other parameters calculated in these simulations are
sample calculations using each of the algorithms with samplghown in Table I. In all cases the results for EXAMD and
sizesU =1000, 2000, 5000, 10 000, and 20 000 states. In th%\PPMD are comparable in accuracy.
EXA.MD procedure,. we selected the sample states after PEr tis interesting to compare these simulation results with
forming As=50 modified Monte Carlo cycle®IMCC), with ¢ Kolmogorov estimates found in last section. Inequality

»=1600 shlljffling fopiezrationsdpeiformed after eZChr']V'?C- IN3.8) shows that the fluctuation in the separation probability
APPMD, values ofy=240 anth,=150 were used. The free SB of the base pair at positios will be smaller than 0.02

energy parameters appropriate for Kowalski’s experimenta\ﬁith probability

conditions were used*® To facilitate precise comparison

with the statistical mechanical results, the separation energy PS(1-P2)
8 1

assumes only two valueb,;r and bge, depending on the
identity of the base pair involved.

Y P assuming i.i.d. samples amt=20 000 sampled states. If the
random variable8 and B, are independent whesandq

Figure 5 shows the probability profile calculated by the
statistical mechanical technique of BenHanf under these . . T .

fAre different sites, then the probabilig that every site on
he pBR322 DNA molecule deviates from its exact value by

pi(s)=1- (4.1)

circumstances. That calculation is at least 99.9% accurate
all calculated ensemble averages. Two regions of thj )
pBR322 sequence are shown to be destabilized by stre §SS than 0.02 is
RegionR1 lies between positions 3100 and 3350, while re- 4363 P3(1—-PB)
gion R2 occurs between positions 4100 and 4300. These re- P= I1 (1— %)
sults agree closely with those from experimehiS. s=1
The probability profiles computed by the Monte Carlo SincePE is known from statistical mechanical calculations,
simulation methods both show transition to be confined tave find P=0.0392 in this case. If we exclude those sites
the same two regionrR1 andR2. To analyze the accuracy of where the probability of separation is smaller than 0.03, then

4.2
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TABLE |. Statistical quantities vs sample sizes. The first column lists the These results show that the EXAMD and APPMD algo-
sample size valuel for which the simulations are done. Every row is the rithms, both with shuﬁling trials, give results that converge
ensemble average value obtained corresponding tdJtlredicated in the more rapidly and sample the equilibrium distribution much

first column. g .

more effectively than does the standard algorithm MCA,
EXAMD Open base Open AT  Open GC which lacks shuffling. However, APPMD executes signifi-
6=-30 pairs pairs pairs (G) cantly faster than does EXAMD. Simulations on a DEC
U=1000 99.206 75 239 23.967 120375 30_00/800 computer for sample siz¢=20 000 points re-
U=2000 99.310 75.329 23.981 120.353 quwed 9 h for EXAMD, but only 2.5 h for APPMD. This
U=5000 99.389 75.574 23.815 120.507  speedup was achieved without a significant loss of accuracy.
U=10 000 99.025 75.150 23.863 120.358
U=20 000 99.069 75.252 23.817 120.413 B. Scaling with molecular Iength
APPMD Open base  Open AT - Open GC Consider two molecules of different lengths supercoiled
6=-30 pairs pairs pairs (G) . .

to the same superhelix density. On average, the longer mol-
U=1000 98.444 74.275 24.169 120.082  ecule usually will have more open base pairs and more open
Efgggg gg-g?g ;g-‘l‘jg gg-g‘z‘g i;g-‘s‘gg runs, other factors being equal. To see why this occurs, note
U—10 000 98934 75 207 3727 120 434 that the _dlfference in separation energy bereen AT_and GC
U=20 000 98.994 75.273 23.721 120452 base pairs under the assumed conditions is approximately 1
Statmech mthi 99.037 75.084 23.953 120.4185 kcal/mol, while the energy required to open a run of separa-

tion is 10 kcal/mol. Now, consider states havimgeparated
base pairs. Suppose the energetically most faveoredn
state contain®,(r) AT base pairs. Ar+1-run state con-
taining n separated base pairs must have RArichness at
we find P=0.0422. This shows that a simulation with i.i.d. least 11 base pairs greater thag(r) to be more energeti-
sampling and sample siz&)=20000 will have a 96% cally favored, because the cost of initiating one more run
chance of finding at least one base pair whose deviation frormust be offset by the savings due to the increasedl A
the exact result is larger than 0.02. In our sample calculationgchness. This can happen only when the expected number of
the maximum deviations found by EXAMD and APPMD open base pairs is large. For example, if the AT-richest one
were both less than 0.01 whéh=20 000. This suggests that run state witlm=60 open base pairs hag;(1)=50, then no
the convergence of both algorithms is comparable to thamultiple-run state with the same can be energetically fa-
which would occur if successively sampled points were i.i.d.vored, even if entirely comprised of AT base pairs. States
hence entirely uncorrelated. having small numbers of runs of separatiom., r<2) are

To test this claim we performed the APPMD simulation favored when the expected number of separated base pairs is
four times using different initial states. Three of these simu-small (roughly <100 bp. For short molecule&N<5000 bp
lations used the sample sizE=20 000 and the fourth used this occurs throughout the range of physiological linking dif-
U =32 000. No deviations beyond 0.02 were found in any offerences. For long molecules, however, the expected number
these simulations. From the worst case Kolmogorov estimatef runs of separation grows with linking difference.
we find that 86% of i.i.d. simulations having =32 000 The complexity of the approximate statistical mechani-
would exhibit deviations exceeding 0.02. The chances otal technique of Benhahincreases rapidly with run num-
four independent simulations all having maximum deviationber. In practice, calculations where states with four or more
less than 0.02 is 1.0510 °. Recall that the accuracy esti- runs occur are not feasible using this method. The only al-
mated expression$3.9) and(3.10] made from the Kolmog- ternative approach presently available is Monte Carlo simu-
orov inequality used an overestimate of the variance, henciation.
may underestimate the convergence rates correspondingly. To assess how the performance of the Monte Carlo al-
We analyzed EXAMD in a similar way, performing six simu- gorithm scales with molecular length, we analyzed the phage
lations using different starting conditions. In all cases thex DNA molecule containing 48 502 base pairs. Simulations
sample sizéJ =20 000 was chosen. Two of these simulationswere performed for various linking numbers using the
had maximum deviations smaller than 0.02. The aboveAPPMD algorithm withr=1600 and\;=160. Each simula-
analysis suggests that the probability of such an occurrendgon foundU =22 500 sampled states. Other physical param-
under the i.i.d. assumption is about 0.020. These results ireters were the same as in the analysis of pBR322 described
dicate that the Monte Carlo sampling procedures that includabove.
shuffling operations converge at rates that are comparable to, Table Il shows the distribution of states witfopen runs
and possibly even better than, those that would occur unddor phagex DNA at several linking difference®. When
strictly independent sampling. Without shuffling, the 6=-254, corresponding to the physiological superhelical
sampled states will be confined near local energy minima fodensityo=—0.055, six-run states are the most populated.
long times, so successively sampled states will remaipBR322 DNA at this superhelical density the probability of
strongly positively correlated indefinitely. But shuffling trials states with more than one run is less than Q.28.accurate
facilitate moves from one local minimum to another, makinganalysis of this transition is not possible using the approxi-
them comparable in ease to what would occur under indemate statistical mechanical method, due to the large number
pendent sampling. of runs.

aStatistical mechanics approa¢Ref. 15. Initial run: 2200-2541. Seed
=-5.
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TABLE Il. Open run fractions. The first column lists all linking difference values for which the simulations are
done. Every row is the results obtained corresponding to the linking difference indicated in the first column.

4 1-run 2-run 3-run 4-run 5-run 6-run 7-run 8-run
-177 0.295 0.653 0.051 0.001
—187 0.053 0.705 0.229 0.013
-197 0.001 0.444 0.472 0.080 0.003
—-207 0.151 0.591 0.237 0.020 0.001
-217 0.022 0.380 0.492 0.100 0.006
—-227 0.001 0.128 0.564 0.273 0.033 0.002
-237 0.020 0.355 0.491 0.125 0.008
—247 0.007 0.104 0.521 0.321 0.046 0.001
—254 0.007 0.041 0.370 0.465 0.102 0.015

Table Il shows several average values calculated fo=6400, while in APPMD we fixedhs=160 andv=1600.
phageN DNA at various linking differencesd using the These choices made the total numhkgr of shuffling opera-
APPMD algorithm. These include the average numbers ofions performed before picking each sampled state the same
open base pairs, open AT pairs, open GC pairs, and the a¥er both algorithms. In each case we computed the maximum
erage free energyG). All these quantities increase approxi- deviation D=max -;~\|d(i)| from the probability profile
mately linearly with|6| . calculated by the statistical mechanical algorithm. The maxi-

The CPU time required by the DEC 3000/800 computermum deviation for EXAMD isDg=<0.026, and for APPMD
to perform one simulation on phageDNA using APPMD it is D,<0.018. The deviation between EXAMD and
ranged from 19.5 to 24 h, with about a half hour increase foAPPMD never exceeds 0.015. Our results show that the ac-
each change of-10 in linking difference. Analogous calcu- curacies attained by EXAMD and APPMD are comparable
lations on pBR322N=4363 bp at the same superhelical for all calculated quantities. The values(&) calculated by
density required approximately 2.5 h. Thus, in practice thehese procedures agree within 0.2%, while the expected
execution time of the APPMD algorithm scales approxi-numbers of separated base pairs agree to better than 2%.
mately linearly with molecular length. Thus, the imprecision caused by the formal failure of the

To test the accuracy of the APPMD algorithm for long APPMD algorithm to satisfy detailed balance is not signifi-
molecules, we compared its computed probability profile forcant. However, APPMD executes much faster. Whgn
phage\ with that calculated by the approximate statistical=—177, the simulation times were 19.5 h for APPMD and
mechanical method at a small superhelix density where tha&2 h for EXAMD.
method retains its accuracy. We choage—177 turns, at To test the stability of the APPMD algorithm, we made
which the probability of states with=4 runs is 0.001. The two simulations from different initial states at linking differ-
maximum deviationD between the profiles calculated by encef=—247. The result shows that the two values(Gf
these two methods i$<0.018, comparable to that for calculated agree to within 0.04%, and the maximum devia-
pBR322 DNA with similar sample size. Thus, the number oftion between the two probability profiles is 0.024. The fact
sampled states required to achieve a given level of accuradhat both APPMD and EXAMD rapidly converge to the equi-
in a Monte Carlo simulation with shuffling operations is ef- librium distribution, as shown by the calculations on pBR322
fectively independent of molecular length. DNA, also demonstrates their numerical stability.

We compared the two Monte Carlo algorithms APPMD
and EXAMD by performing simulations on phageDNA at
linking difference=—177. In EXAMD we set\;=40 and V. DISCUSSION

The Metropolis—Monte Carlo procedures developed here
provide a new method for calculating equilibrium properties
TABLE Ill. Statistical quantities vs linking differences. The first column Of the strand separation transition in superhelical DNA. A
lists all linking difference values for which the simulations are done. Everyformally exact method is developed that contains specialized
row is the 'en_semble' average values obtained corresponding to the "nkinghufﬂing operations to increase convergence speed. This
difference indicated in the first column. method is shown to satisfy the ergodicity and detailed bal-
ance conditions required for formally correct sampling of the
equilibrium. Its convergence properties are shown to be com-

[ Open base pairs  Open AT pairs  Open GC pairs(G)

-177 129.24 106.14 23.10 470.36 . S . X
_187 191.97 154.18 3779 o075 Parable to thpse achlevgd with |.'|.d. samplmg.'An alternative
197 258.86 204.98 53.88 571.38 approach using composite stefsingle base pair tests com-
-207 327.65 257.36 70.29 622.39 bined with block region testsalso was developed, which
—217 398.34 311.39 86.95 673.90 executes significantly faster. Although this APPMD algo-
_gg ggg'gz iiggg igggi ;sg% rithm does not satisfy detailed balance, the accuracy of its
247 610.94 473.08 137.86 gosag 'esults is comparable to that achieved by the formaI_Iy exact
_o254 660.64 510.67 149.97 864.60 EXAMD procedure. However, we note that APPMD is only

efficient when copolymeric transition energetics are used.
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L0 significant probability. Such sites may be biologically impor-
tant, as they may constitute targets for the activities of other
09 molecules. This destabilization energy cannot be accurately
0.8 calculated using the Monte Carlo method because states in
07 which such sites are separated have a low probability of be-
ing sampled.
- 0.6 The results of a Monte Carlo analysis of strand separa-
Bos tion in phagex DNA (48 502 bp are shown in Fig. 7. That
&O . calculation illustrates the ability of this method to treat long
) DNA sequences. This opens the possibility of analyzing en-
0.3 tire sequences the size of eucaryotic topological domains, a
0.2 feat that is not feasible using the approximate method.
A complete theoretical analysis of superhelical DNA
o M structure must include deformations of tertiary structure as
0.04 4 . - - well as the alterations of secondary structure treated here.
227 27.7 32.7 37.7 42.7 Monte Carlo statistical sampling methods already have been

Sequence Location: (kb) proposed to treat superhelical tertiary structtfré2-?®A cen-

. B e of o ol ning it tral reason for developing Monte Carlo methods to treat sec-
FIG. 7. The transition profile of phage DNA calculated at linking differ- pndary structure transitions is because this is the other re-
ence §=—187 turns is shown. The part of the sequence that is not plotted™ ', .
showed no destabilization in this calculation. quired step towarq handllng the complete problem. Once
Monte Carlo sampling techniques have been developed sepa-
rately for the secondary and the tertiary structural aspects of

The results of these Monte Carlo procedures agree close perhelical DNA conformation, one can amalgamate them

with those from statistical mechanical calculations, whosd to a u_mﬂed techmqu.e 0 aljalyge superhelical DNA struc-
accuracy can be made as high as desired by setting a thredHre in its full generality. This will be the focus of future
old appropriately® The accuracy of these simulation proce- Work.
dures is shown to be approximately as good as what could be
expected if the i.i.d. condition held. ACKNOWLEDGMENTS
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