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Metropolis–Monte Carlo algorithms are developed to analyze the strand separation transition in
circular superhelical DNA molecules. Moves that randomize the locations of unpaired regions are
required in order to diminish correlations among the sampled states. This approach enables accurate
simulations to be performed in reasonable computational times. Sufficient conditions to guarantee
the formal correctness of the complete algorithm are proven to hold. The computation time required
scales at most quadratically with molecular length, and is approximately independent of linking
difference. Techniques are developed to estimate the sample size and other calculation parameters
needed to achieve a specified accuracy. When the results of Monte Carlo calculations that use
shuffling operations are compared with those from statistical mechanical calculations, excellent
agreement is found. The Monte Carlo methodology makes possible calculations of transition
behavior in cases where alternative approaches are intractable, such as in long molecules under
circumstances where several runs of open base pairs occur simultaneously. It also allows the
analysis of transitions in cases where the base pair separation energies vary in complex manners,
such as through near-neighbor interactions, or the presence of modified bases, abasic sites, or bound
molecules. ©1995 American Institute of Physics.
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I. INTRODUCTION

In vivo DNA is constrained into topological domains
within which superhelical stresses are modulated by top
somerase enzymes. Many biological activities of DNA a
regulated by the level of superhelicity imposed. Examp
include the initiation of replication1,2 and of transcription,3,4

recombination,5 and the uptake of homologous singl
strands.6 Negative DNA superhelicity has long been know
to destabilize the helix, inducing strand separations at s
cific locations.7–9 Strand separation is an essential step
many superhelically modulated regulatory events. It is
quired for initiation of transcription and of replication, an
also may be implicated in recombination, transposition, a
other activities. The best characterized example involv
oriC, the uniqueE. coli replication origin.1 Experiments have
shown that a specific location within this origin is susceptib
to superhelical strand separation. If its base sequenc
modified in a way that retains this susceptibility,in vivo ori-
gin activity is preserved. Sequence changes that degrade
susceptibility or move the site of separation, even by le
than 100 bps, destroyin vivo origin function. No other at-
tribute of this site or its base sequence affects activity.

Because superhelical strand separation plays esse
roles in many biological functions of DNA, it is important to
develop quantitatively precise methods to analyze it. T
theoretical analysis of strand separation in superhelical D
is complicated by the global nature of the constraint, and
the heteropolymeric character of the transition. Which d
plex sites are destabilized depends in part on local seque
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attributes, with separation energetically favored to occur
A1T-rich sites under normal physiological conditions. Bu
superhelicity globally couples together the secondary stru
tures of every base pair in the molecule. Transition at a
one location alters the helicity there, which, by changing t
distribution of superhelicity throughout the molecule, alte
the level of stress experienced by every other base pair. T
probability of transition at a particular site depends not ju
on its local sequence, but also on how transition there co
petes with all other possible transitions elsewhere in the m
ecule. This global coupling distinguishes superhelical stra
separation from the standard Ising model in linear molecul
where the only coupling is between near neighbors.

The first approximate statistical mechanical analysis
this phenomenon was developed by Anshelevichet al.10

There, a DNA molecule that actually was circular was r
garded as being linear, with one inseparable base pair ad
at each end to decrease end effects. A partition function w
calculated for that linear molecule by a standard recursi
algorithm, and the results were modified by a renormaliz
tion step intended to account for the effects of superhelici
This approach does not impose the true closed circular to
logical constraint on the superhelical DNA. Moreover, stran
separated regions were regarded as being torsionally un
formable. Because the persistence length of DNA sing
strands is two orders of magnitude smaller than that of t
B-form duplex,11 large torsional deformations of separate
regions require small amounts of energy. This can grea
affect the distribution of superhelicity and the extent of tra
86539)/8653/13/$6.00 © 1995 American Institute of Physics¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8654 Sun et al.: Conformational transitions in superhelical DNA
sition throughout the molecule. The utility of this metho
and the accuracy of its results are severely limited by t
approximations made, particularly the assumption of und
formability. More recently, this approach has been improv
by the imposition of self-consistency conditions on the reno
malization step.12

A second approximate analysis focused on the extent
transition as a function of temperature.13 Homopolymeric en-
ergetics were assumed, so every base pair required the s
separation energy, and the statistical mechanical partit
function was replaced by the largest term in the sum whi
expresses it. Although that analysis gives a reasonable ex
nation for the changes in the temperature dependence of t
sition between linear and superhelical DNAs, it does not pr
vide a generally applicable formulation of the problem
addressed here.

The most accurate approximate statistical mechani
method developed to date to analyze superhelical stra
separation uses a different strategy.14–16An energy threshold
is specified, and all states of strand separation are fou
whose free energies exceed that of the minimum energy s
by no more than this threshold amount. The cumulative i
fluence of the high energy states~those not satisfying the
threshold condition! is estimated through a density of state
calculation. From this data an approximate partition functio
is calculated, and approximate ensemble averages are d
mined. The accuracy of this approach is always high, and c
be specified by appropriate placement of the energy thre
old. The correct topological condition is imposed on th
DNA, and the torsional deformability of separated regions
included. The results of calculations using this approa
have been shown to agree exactly with experimental m
surements of the extents and locations of superhelical str
separation in all molecules examined to date.16 While this
method is accurate and tractable for short sequences~less
than 15 000 bps!, it has two important limitations. First its
numerical implementation is computationally tractable on
when the states satisfying the energy threshold condit
have small numbersr of open regions, typicallyr,4. In
consequence, it cannot be applied accurately to long
quences in which numerous A1T-rich regions compete for
transition. Also, the energetics of separation are assumed
be copolymeric, depending only on whether the base pair
AT or GC, and do not include near-neighbor effects. Th
limitation to copolymeric energetics precludes the analysis
effects on transition behavior of the presence of defects, su
as apurinic sites, pyrimidine dimers, or chemically modifie
bases. The methods developed in this paper are tested
accuracy against calculations made using this technique
these are known to be highly precise in the cases they
handle.15,16

This paper develops Monte Carlo simulation procedur
to analyze strand separation in superhelical DNAs of spe
fied sequence. Monte Carlo methods have been used to a
lyze the tertiary structure of superhelical DNA,17–20but they
have not been applied to secondary structural transitions
date. Although this approach samples the equilibrium dist
bution instead of calculating it, it has several advantag
over all existing alternative techniques. It can treat syste
J. Chem. Phys., Vol. 103, NDownloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subject
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with complicated transition energetics, including near
neighbor effects and the presence of local inhomogeneiti
such as abasic sites, methylated or otherwise modified bas
or bound molecules. The topological state of the DNA i
modeled correctly, and torsional deformations of the den
tured regions are included. It can treat transitions at any tem
perature and in molecules of any size. There are no restr
tions on the number of separated regions it can handle. T
computation time required for a simulation scales at mo
quadratically with molecular length and in practice is nearl
linear.

Development of efficient sampling methods requires th
use of several types of fundamental moves, which are a
plied in a pattern. These are shown to satisfy the ergodici
and detailed balance conditions required to sample states
cording to the equilibrium distribution. By the careful use o
a class of moves called shuffling operations, the convergen
properties of the algorithm can be optimized. The develop
ment procedure used here extends the approach
Hastings,21 who first applied Markov chain theory to the de-
sign of Monte Carlo simulation methods. A similar approac
has been presented by Kandelet al.22 in the case of cluster
algorithms. We develop a more general approach for desig
ing Monte Carlo sampling algorithms.

II. STRAND SEPARATION IN SUPERHELICAL DNA

Closed circularity fixes the linking numberLk of a DNA
molecule. Its linking difference isu5Lk2Lk0 , whereLk0 is
the linking number of the relaxed state. When a molecule
negatively superhelical,u,0, the resulting stresses can de
stabilize the duplex, driving local strand separations.7–9

Consider a molecule containingN base pairs, super-
coiled to a linking differenceu. A state of strand separation is
determined by specifying the secondary structure of eac
base pair, so there are 2N such states. Letmi51 if base pair
i is separated andmi50 otherwise. For closure we specify
mN115m1 . A state of strand separation is determined b
specifying the values of eachmi , 1< i<N. The numberr of
runs of separation~i.e., open regions! in that state is

r5(
i51

N

mi11~12mi !

and the total number of separated base pairs is

n5(
i51

N

mi .

The superhelical deformationu is partitioned into three
types of conformational changes, each of which requires fre
energy. Separation of the specified base pairs requires fr
energy

Gsep5ar1(
i51

N

mibi . ~2.1!

Here a is the nucleation free energy needed to initiate a
open region, andr is the number of open regions. Under
normal physiological conditions,a>10.5 kcal/mol,16,23with
most of this free energy needed to disrupt the extra stackin
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8655Sun et al.: Conformational transitions in superhelical DNA
interaction required to open the first base pair in a run. A
bi is the free energy needed to separate base pairi , 1< i<N.
A separation energybi is assigned to each base pair individ
ally, and can depend on near-neighbor effects, the presen
specific sites of lesions which partially disrupt the duplex,
other factors.

Second, the two strands within a separated region
rotate around each other. Ifn separated base pairs are to
sionally deformed at a rate oft rad/bp, the required free
energy is

Gtor5
1
2Cnt2, ~2.2!

whereC is the torsional stiffness associated to this deform
tion. Alternatively, one may allow different values oft at
each position in a separated region. In the sample calc
tions reported here, we assume every separated base
experiences the samet. This is done because these calcu
tions are designed to test the accuracy of the presently
veloped Monte Carlo methods against statistical mechan
techniques in which the variability oft was not considered

Finally, the residual superhelicity remaining to stress
duplex isur , the balance ofu not accommodated by eithe
strand separation or interstrand twisting in the separated
gions. This requires a free energy that has been shown t
quadratic in the deformation:

Gres5
1
2Ku r

2, ~2.3!

whereK is an experimentally measured constant.16,23,24If t
andur are allowed to equilibrate in a state havingn separated
base pairs inr runs, then the free energy associated to t
state is15

G~n,nAT ,r !5
2p2CK

4p2C1Kn S u1
n

10.5D
2

1ar1(
i51

N

mibi .

~2.4!

The sample calculations reported below test the accu
of the Monte Carlo procedures developed here by compa
their results with those from the previously developed sta
tical mechanical technique whose accuracy is known to
high.15,16For this reason we use the same expression for
free energy associated to a state that was used in that e
work. Specifically, the separation energy is assigned eithe
two values,bAT or bGC, depending on the identity of the bas
pair involved, andt is assumed to be constant and to equ
brate withur . We reiterate, however, that the Monte Car
procedures developed here can accommodate a wide ran
more complex situations which the older procedure can
handle.

All calculations reported here use the free energy par
eter values appropriate to the experimental conditions
Kowalski et al.,9,16 in which T5310 °K and@Na1#50.01 M.
These arebAT50.258 kcal/mol,bGC51.305 kcal/mol,C53.6
kcal/rad2, andK52350RT/N. The results found by the ap
proximate statistical mechanical method using these va
have been shown to agree precisely with experimen16

within the limits of experimental accuracy.
J. Chem. Phys., Vol. 103,Downloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subjec
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III. DEVELOPMENT OF MONTE CARLO METHODS

In this work we use the Metropolis Monte Carlo proce-
dure, in which a fundamental move~also called a Monte
Carlo trial! consists of the following two steps:

~I! Generate a candidate statej from the current statei
according to a specified probabilistic rule.

~II ! Use the energy difference between the two states t
determine which to select as the new current state.

In step II we use the Metropolis criterion: We accept statej
with probability exp[(Gi2Gj )/kT], if Gj.Gi , and with
probability 1 if Gj<Gi . The procedure developed below
uses a sequence of fundamental movesFi performed in a
specified pattern (F1 ,...,Fm).

In order for this procedure to sample states in a distribu
tion that converges to the equilibrium distribution in the limit
of large sample size, it must satisfy two conditions. The rules
employed must be capable of reaching every state~ergodic-
ity!, and the generation of states~step I! must be unbiased
~detailed balance!. These properties are best expressed usin
matrices.

The state generation step~step I! of a fundamental move
F determines a square matrixM of dimensionW3W, where
W is the number of states of the system. The possible curren
states of the system correspond to the rows of the matrix, an
the candidate states to the columns. The element in thei th
row and j th column of this matrix ispi j , the probability that
one will generate statej as candidate state given that the
current state isi . The fundamental moveF satisfies detailed
balance ifpi j5pji for all i , j so thatM is symmetric.21 Be-
cause some candidate state must be generated, the entries
each row sum to unity. This is the probability normalization
condition.

Now, consider a simulation in which fundamental moves
are performed in a pattern (F1 ,...,Fm). For this simulation
to satisfy detailed balance, each fundamental move must sa
isfy detailed balance so that the state generation matrice
Mi , i51,...,m, must all be symmetric. Ergodicity will be
satisfied if every entry in the product generating matrix
R5M1M2 •••Mm is positive. This means that the simulation
is capable of reaching any final state from every initial state
with positive probability in one repeat of the pattern. Be-
cause ergodicity can be guaranteed by a somewhat weak
condition, we call the positivity ofR strong ergodicity.

Suppose a simulation consists of a pattern of fundamen
tal moves of two types~F1 ,...,Fm , S1 ,...,Sn!, all of which
satisfy detailed balance. If the subpattern (F1 ,...,Fm) satis-
fies strong ergodicity, then the whole pattern will be
~strongly! ergodic. This follows from the fact that if aW3W
matrixA has every entry positive and anotherW3W matrix
B has only non-negative entries with at least one positive
entry in each row and column, then the productAB will have
all positive entries. Moves of theF type are called basic
operations and moves ofS type are called shuffling opera-
tions.

Suppose a Monte Carlo algorithm has been constructe
consisting of a pattern of fundamental moves satisfying
strong ergodicity and detailed balance. Although this will
guarantee that the algorithm samples the states in a way th
No. 19, 15 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8656 Sun et al.: Conformational transitions in superhelical DNA
converges to the equilibrium distribution in the limit of larg
sample size, if successively sampled states are strongly
related the rate of convergence will be very slow, often r
dering the technique useless in practice. One recourse in
circumstances is to design supplementary shuffling op
tions that weaken these correlations, thereby producing r
convergence and efficient simulation procedures. This
proach is required to produce tractable algorithms to ana
superhelical strand separation, as shown below. In princ
it can be applied to any Monte Carlo procedure in wh
convergence rates are slow due to the persistence of cor
tion among successively sampled states.

A. The standard Metropolis–Monte Carlo algorithm

Consider a circular DNA molecule containingN base
pairs and supercoiled to a linking differenceu. A standard
Monte Carlo algorithm consists ofN fundamental moves ex
ecuted in the pattern (F1 ,...,FN). HereFi is the operation in
which a candidate state is generated by flipping base pai ,
either from closed to open or from open to closed, with pro
ability 0,p,1. We determine whether this candidate state
accepted by making a standard Metropolis decision. P
forming this procedure, once per base pair proceeding a
the entire length of the molecule, constitutes a stand
Monte Carlo cycle~MCC!. Because the states of any colle
tion of base pairs can be changed in this process, the p
ability of passing from any initial state to any final state
one MCC is positive, so the procedure is strongly ergod
Each move clearly satisfies detailed balance, because in
state generation step ofFi , the conformation of base pairi is
flipped with the same probabilityp, regardless of its initial
configuration. To generate a sample distribution using
approach, one sample state is chosen afterl MCCs, wherel
is an adjustable parameter. The algorithm implementing
procedure is called MCA.

This procedure generates strongly correlated suc
sively sampled states, even whenl is very large, as a sampl
calculation demonstrates. The molecule analyzed consis
a dimeric repeat of the sequence between positions 1301
3800 of the pBR322 DNA molecule. It contains two di
metrically placed copies of the strongly destabilized s
present at theb-lactamase gene 38 terminal region.9 At link-
ing differenceu5224 turns~well within the physiological
range!, the statistical mechanical analysis finds the proba
ity of exactly one run of separation to be 0.993, with t
separation equally likely to occur at either of the two des
bilized regions. Figure 1~a! plots the equilibrium probability
of separation of each base pair in this molecule, also ca
the transition profile, calculated using the statistical mecha
cal procedure. Figure 1~b! shows the profile calculated usin
the MCA algorithm. Here the initial state is an open lo
comprising the base pairs between positions 400 and
Successive sample points are chosen afterl5300 MCCs,
and the sample size isU520 000. We see that in the MCA
calculation one site dominates over the other, despite t
being identical. Which site is dominant depends on the ini
state of the system.

The reason for this behavior is as follows. Because
initiation energya is large~a>10.5 kcal/mol!, the probabil-
J. Chem. Phys., Vol. 103,Downloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subjec
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ity of accepting a candidate state that differs at one site fro
the current state but has a larger number of runs is less t
1027. This means it is very unlikely that the secondary stru
ture of a base pair will be changed if that base pair is inter
to a region, be it open or closed. The only single ba
changes that have a significant chance of acceptance occ
junctions between open and closed regions. Moving betwe
low energy states having the same number of open runs w
be extremely improbable if the open regions in the two sta
are far from each other along the sequence. For the o
feasible way to do this is by migration of an open regio
through single base pair openings and closings. Many su
moves would be required, and if G1C-rich regions inter-
vene, these moves will be individually improbable. Glob
coupling constrains the number of open base pairs, wh
further increases the difficulty of this movement. In cons
quence, successively sampled states remain highly co
lated, even if very many Monte Carlo cycles are execut
between samplings. In the example of Fig. 1~b!, the separa-
tion is effectively trapped at one susceptible site and is u
able to move to the other. These results show that the dis
bution found by standard Monte Carlo algorithm converg
to the equilibrium distribution far too slowly to be useful in
practice, despite satisfying ergodicity and detailed balanc

B. Monte Carlo methods with shuffling operations

Although in principle increasingl decreases correla-
tions, in practice such large values ofl would be required by
the standard Monte Carlo algorithm MCA as to make th
approach unfeasible for our problem. To develop a practi
algorithm, shuffling operations must be constructed th
decorrelate successive sampled states. Because a stan
MCC satisfies strong ergodicity and detailed balance, t
performance of shuffling operations after a standard MC

FIG. 1. A dimeric molecule is analyzed that is composed of two copies o
region of the pBR322 molecule, as described in the text. This molecule
supercoiled to a linking differenceu5224 turns. Part~a! gives the separa-
tion probability profile calculated using the approximate statistical mecha
cal procedure of Benham~Refs. 15 and 16!, whose accuracy in evaluating
equilibrium properties exceeds 99.9% in this case. One run of separa
occurs, which is equally likely to be at either of the two strongly destab
lized regions at positions 1900 to 2000 and 4400 to 4500, respectively. P
~b! shows the results of calculation using the MCA Monte Carlo algorith
with an initial state that is opened at positions 400–500. In this proced
the open region is trapped at the second susceptible site, and states in w
the other region opens are not sampled.
No. 19, 15 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8657Sun et al.: Conformational transitions in superhelical DNA
will yield a formally correct algorithm provided the shuffling
operations satisfy detailed balance, as described above.

Four types of elementary moves have been design
and four shuffling operations are constructed from the
These elementary moves decrease correlations among s
by randomizing the positions and numbers of open regio
without changing the total number of separated base pa
The state generation steps of each type of elementary m
are as follows. Rotation moves rotate all open loops a ra
dom amount around the circular molecule. This places t
open regions at new positions, but keeps their lengths a
separation distances fixed. Shift moves alter the relative p
sitions of open regions, without changing their numbers
lengths. Squeeze moves redistribute the open base p
among the open regions without altering either the total nu
ber of open base pairs or the number of open regions.
nally, exchange moves increase or decrease the numbe
open regions by either amalgamating open regions or sub
viding a region. None of these elementary moves alter t
total number of open base pairs. After a new state has b
generated, a Metropolis decision is made regarding wh
state to accept. We describe the state generation step in e
type of elementary move, and demonstrate that these sat
detailed balance.

In the rotation move the positions of all open loops a
rotated in unison a random amount around the molecu
keeping their lengths and the distances between them fix
Since the number of possible rotations equals the total nu
ber of base pairs, setting the probability of each rotation
beP51/N assures detailed balance. This move, called R
TATION, can be applied to any state. Alternatively, its us
can be restricted, for example to cases whenr51 or r.7.

Shift moves are applied only when there is more tha
one open region. Briefly, an open region is selected at ra
dom, and moved within the set of closed positions that ab
it on either side. To describe this technique more precise
consider the elementary move SH33, which is applied
states having three runs of separation, illustrated in Fig.
Denoting the length of open regioni by Li , the total number
of open base pairs isn5L11L21L3 . The closed regions
between adjacent open loops have lengthsI i , i51, 2, 3. The
order of open loops and closed intervals is shown in t
figure. One can only move open loopL1 within the closed
regionsI 1 and I 3 that about it. There are (I 31I 121) ways

FIG. 2. The shift operation SH33 randomly picks one of the three loo
shown, say,L1, and then randomly moves it within the closed regio
bounded byL2 on the left andL3 on the right. The lengths of all open
regions are unchanged in this operation.
J. Chem. Phys., Vol. 103, NDownloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subject
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this can be done without merging with the neighbor ope
regions. This includes the possibility that the segmentL1
keeps its original place. One can move eitherL2 or L3 in the
same way within their respective intervals. There ar
(I 21I 121) ways to moveL2, and (I 31I 221) ways to
moveL3, so the total number of possible moves of this typ
is 2(I 11I 21I 3)2352(N2n)23. This number depends
only on the total numbern of open base pairs in the three
runs.

To perform the shift, one first calculates the probabilitie
P1 ,P2 ,P3 , of shifting open regions 1, 2, or 3, respectively
as

P15~ I 11I 321!/~2~N2n!23!,

P25~ I 11I 221!/~2~N2n!23!, ~3.1!

P35~ I 31I 221!/~2~N2n!23!.

To select which open loop is moved, one generates a rand
number rand in ~0,1!. If rand,P1, then L1 is chosen. If
P1<rand,P11P2 , thenL2 is selected, and otherwiseL3 is
chosen. SupposeL1 has been selected. To decide whereL1 is
to be moved, a second random numberrand2 is generated.
The position where L1 is placed is determined by
INT~rand2* (I 31I 121)!, where INT~x! is the integer part of
a numberx. One places the first open base pair ofL1 in the
position that is INT~rand2* (I 31I 121)!11 base pairs away
from the end of its neighbor open region in the countercloc
wise direction~L3 in this case!. Clearly this state generation
step is symmetric: If one can generate stateB from stateA
by a shift operation, one can also generate stateA from state
B by the same operation. Moreover, the probability of gen
erating any accessible three-run state from any current th
run state by this procedure is 1/~2~N2n!23!, so detailed
balance is satisfied. The other elementary shift moves a
constructed similarly. In the algorithms developed here, th
shuffling operation SHIFT uses ROTATION to shuffle state
having either one run or greater than seven runs, a
SH22,...,SH77 to treat the other cases.

Elementary squeeze moves are applied to states hav
more than one run of separation. Their purpose is to chan
the distribution of open base pairs among the open runs wi
out changing either the total number of open base pairs or
number of open runs. We randomly select an open run a
subdivide it into two parts. One part is kept fixed, and th
other is moved across the unique closed run that abuts it, a
attached to the open region on the other side. This shrin
one open run, and simultaneously expands its neighbor by
equal amount, so the total number of open base pairs and
lengths of all closed regions remain constant. It can b
shown that, from a givenr run state withn open base pairs,
one can generate 2~n2r ! possible states by this procedure
independent of the details of the initial state. Moreover, th
state generation step of the squeeze move is symmetric
one can generate stateB from stateA by a squeeze operation,
then one can generate stateA from stateB by the same
operation. Equiprobable squeezing moves are construct
using an approach analogous to that described above for
design of the shift moves. Being equiprobable, these clea
satisfy detailed balance. The shuffling operation SQUEEZ

s
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8658 Sun et al.: Conformational transitions in superhelical DNA
used in the algorithms developed below applies element
squeeze moves when the number of open runs satis
2<r<7, and uses ROTATION when there is either exact
one or more than seven separated runs.

Elementary exchange moves alter the number of se
rated regions without changing the total number of separa
base pairs. This must be done in a way that satisfies deta
balance. As examples, we describe exchange between
run and three run states using Fig. 3. Suppose we start wi
two-run state, the runs having lengthsL1 and L2, respec-
tively. The two-run to three-run move EX23 proceeds as fo
lows. Randomly select an open region and divide it into tw
subregions. Keep one of these immobile, and move the ot
to a new position within its unique neighboring closed re
gion. The resulting state has three open regions. The num
of possible ways to divide runLi and place one part within
the neighbor closed regionI j is N(Li ,I j )5(Li21)(I j21).
The length of the portion to be moved can vary from 1 t
Li21. and there areI j21 ways to place that portion within
the closed region of lengthI j . Summation shows the total
number of ways of going from any two-run state withn
separated base pairs to any allowed three-run state isn
22)(N2n22), which again depends only onn. To shuffle
from the present two-run state to any available three-r
state in a way that makes each three-run state equally lik
to be chosen, we proceed as follows. First we calculate
probabilitiesPLi I j

:

PLi I j
5

~Li21!~ I j21!

~n22!~N2n22!
. ~3.2!

To select which open region to cut and where to move t
resulting open loop, one generates a random numberrand in
~0,1!. If rand,PL1I1

one cutsL1 and moves the fragment
into theI 1 region. IfPL1I1

<rand,PL1I1
1PL1I2

one cutsL1
and moves the fragment into theI 2 region. If PL1I1

1PL1I2
<rand,PL1I1

1PL1I2
1PL2I1

one cutsL2 and moves the
segment into theI 1 region. Otherwise, one cutsL2 and
moves the fragment into theI 2 region. Suppose we have
decided to cut regionLi , and move the fragment into closed
region I j . Next, we must determine the cut location and th
position to which the fragment is moved. We generate a s
ond random numberrand2 in ~0,1!, and place the cut site
after the base pair at position INT~rand2* (Li21)!11 in Li .
Then we generate a third random numberrand3, and start the

FIG. 3. The exchange move EX23 randomly selects an open region an
direction. Here a portion ofL1 is moved into closed regionI1. The selected
loop L1 is randomly cut at an interior point, and the part proximal toI1 is
moved into theI1 region. This produces the three run state shown on t
right. EX32 performs the reverse operation, merging one of the three lo
into one of its neighbors.
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newly created open run at the position
INT~rand3* (I j21)!11 base pairs into closed regionI j . All
exchanges from any two-run state to each available three-
state are equiprobable with probability 1/(n22)(N2n22).

To satisfy detailed balance, each three-run state mu
have the same probability of exchanging back to any ava
able two-run state. This operation is performed by EX32. S
two-run states can arise by shuffling from any given thre
run state. These are the merges ofLi with eitherL j or Lk ,
where i , j , k are all different. The merge ofLi with L j is
performed by moving the location ofLi until it abutsL j so
the two become contiguous. One first generates a rand
number rand in ~0,1!. If rand<6/(n22)(N2n22), one
chooses either of the six possible merged two-run states w
equal probability. The probability of shuffling from the given
three-run state to any accessible two-run state is 1/(n22)(N
2n22), so detailed balance for exchange moves is satisfie
If rand.6/(n22)(N2n22), then shuffling to two-run
states is not performed. In this situation, EX32 shuffle
within three-run states using shift operations. Since this o
eration is performed only when three-run to two-run shuffle
are forbidden, the probability of shifting between any tw
accessible three-run states in this case is

126/~N2n22!~n22!

2~N2n!23
.

In our algorithm we construct two categories of ex
change shuffling operations, called INTERCHANGE1 an
INTERCHANGE2. INTERCHANGE1 is composed of the
elementary moves EX12, EX21, EX34, EX43, EX56, EX6
with ROTATION to treat states with run number higher tha
six. Similarly, INTERCHANGE2 is comprised of EX23,
EX32, EX45, EX54, EX67, EX76, together with ROTA-
TION to treat states having run number equal one or grea
than seven. The reason for designing two exchange shuffl
operations instead of one is to avoid complications in ver
fying detailed balance.@In each of the INTERCHANGE op-
erations,i -run states can exchange with at most one oth
type, so the analysis presented above demonstrates deta
balance. It would be much more difficult to construct a prov
ably correct algorithm ifi -run states could exchange with
both ~i21!-run states and~i11!-run states in a single shuf-
fling operation.#

In this implementation we confine shift, exchange, an
squeeze steps to states havingr<7 only because states hav-
ing larger run numbers occur very infrequently in the DNA
we analyze under Kowalski’s experimental conditions.9 For
example, our calculations reported below show that phagel
DNA ~48 502 bp! supercoiled to a superhelix densitys
520.055 ~u52254 turns! has only a 1% chance of occur-
ring in states having eight or more runs of separation.
needed, the elementary moves that also apply to states h
ing larger run numbers can easily be constructed using t
principles described here.

A shuffling Monte Carlo algorithm has been constructe
that executes the following pattern. One standard Mon
Carlo cycle MCC is followed by shuffling operations
(S1S2S3S4S2S3)

m, whereS1 andS4 are INTERCHANGE1
and INTERCHANGE2, respectively,S2 is the SQUEEZE
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8659Sun et al.: Conformational transitions in superhelical DNA
operation andS3 is the SHIFT operation. Sample calculation
showed thatS3 could be eliminated from the pattern becaus
its inclusion did not improve the convergence properties
the simulation. The number of shuffling operations pe
formed after one MCC isn56m or n54m depending on
whether or notS3 is used in the simulation. This pattern is
called a modified Monte Carlo cycle~MMCC!. The detailed
balance and strong ergodicity conditions sufficient for equ
librium sampling have been shown to hold. The simulatio
algorithm EXAMD is constructed by performinglsMMCCs
before picking the next sample state.

The values chosen forn andls , the tunable parameters
of this simulation, have important effects on convergen
and simulation time. Design of an optimally efficient shu
fling algorithm requires suitable choices of these paramete
Both values should be large enough so that the number
open base pairs and the numbers and locations of open
gions can freely vary in the course of selecting the ne
sampled state. This means the total number of shuffling tri
performed to sample one state,lsn, must be large enough so
that the most infrequently selected shuffling move occurs.
practice, exchange moves have the smallest probabilities
realization@equal to 6/(n22)(N2n22) in EX32, for ex-
ample#. In order to weaken correlations between success
sampled states, these types of exchanges must be rea
occasionally. This requires a large number of shuffles p
sample point. If we select 0.01n̄N<lsn<n̄N, wheren̄ is the
average number of open base pairs, thenlsn will be compa-
rable to (n22)(N2n22), so exchanges between state
having different run numbers would be attempted seve
times. One can easily find an upper bound estimate forn̄
using Eq. ~2.4!. When the superhelix densitys5u/Lk0
ranges from20.04 to20.055 under the Kowalski9 environ-
mental conditions, one can show thatn̄<0.032N. If we se-
lect n andls each to be large, with productlsn'n̄N, then
the time needed to generate the next sampled state grow
most quadratically with molecular weight. This shows th
the EXAMD algorithm can treat long sequences efficiently

The computation timet total required by either MCA
~MCC without shuffles! or EXAMD ~MCC, with shuffles!
can be expressed as:

t total}@ t~N!1t~n!#lsU. ~3.3!

HereU is the sample size,t(N) is the time needed for one
complete standard MCC, which is proportional toN, and
t(n) is the time needed to performn shuffling operations,
which is proportional ton. In MCA, t(n)5n50 andls5l,
so the simulation time is proportional tot(N)lU. In this
casel must be extremely large to weaken strong correlatio
among the sampled states. Sample calculations on
dimeric molecule whose results are reported in Fig. 1~b!
above show virtually permanent correlations, extending ov
20 000 sampled points, even whenl5300. The introduction
of the shuffling trials in EXAMD reducesl to a much
smaller valuels . In practice, one shuffle requires approx
mately the same time as the trial of one base pair in an MC
so the shuffling timet(n) of the EXAMD algorithm is much
smaller than the timet(N) needed to perform one MCC.
Thus, a dramatic increase in efficiency results from the i
J. Chem. Phys., Vol. 103, NDownloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subject
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troduction of shuffling operations. The convergence rate i
greatly increased because correlations among sampled sta
are rapidly degraded by shuffling, resulting in a highly effi-
cient algorithm. These improvements are illustrated by
sample calculation on the dimeric test molecule using th
EXAMD algorithm withls550,n51600 and 20 000 sample
points. Figure 4 shows that EXAMD accurately depicts the
transition behavior in this test case. The absolute deviatio
between these results and the equilibrium distribution is les
than 0.008 at every position. The simulation time for this
analysis using EXAMD was 8 h, approximately half that
required by MCA.

C. A modification of the algorithm

To improve the overall efficiency of the simulation pro-
cedure one must reduce the computation timet(N) of the
unit MCC. One approach modifies the standard MCC by
treating base pairs in blocks rather than individually. This
approach is easiest to implement when the transition energi
are copolymeric. Although it also can be used in cases ha
ing more complicated energetics, such as near-neighbor e
fects, it becomes more cumbersome to implement and th
time it saves becomes smaller.

In a standard MCC, a change in the state of a base pa
interior to a region~open or closed! will increase the number
of open runs, hence has a very small chance of being a
cepted. In consequence, the only trials with a significan
chance of success in a standard MCC are performed
boundaries of open loops. Consider a closed region whos
interior containsnAT AT base pairs andnGC GC base pairs.
The probability that all of these base pairs remain close
after one MCC is

Pcbp5@12p exp~2DG~AT!/RT!#nAT

3@12p exp~2DG~GC!/RT!#nGC. ~3.4!

Herep is the probability used in the state generation step o
the standard MCC, andDG~AT! @resp.DG~GC!# is the total
free energy cost of opening one AT~resp. GC! pair in this
region. This cost is very large, about 10–12 kcal/mol, be
cause a new run is initialized, soPcbp>1. Accordingly, we
may modify the standard MCC in the following way. Trials
performed at sites interior to or at the boundaries of ope

FIG. 4. The EXAMD method is used to calculate the transition profile of the
dimeric molecule treated in Fig. 1. The probability of separation of each
base pair in the molecule, calculated in this way, deviates from its equilib
rium value by no more than60.008. The results do not depend on initial
conditions. The simulation time used here is about half that used by MCA t
calculate the results shown in Fig. 1~b!.
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8660 Sun et al.: Conformational transitions in superhelical DNA
loops will be done in the standard sequential order. Interio
of closed regions are treated by calculatingPcbp from the
base composition of the region, then generating a rand
numberrand in ~0,1!. If rand,Pcbp , no change is made in
the region involved. Standard trials are commenced at
end of this region and continued until the next modified tri
can be performed. Ifrand>Pcbp , then at least one base pai
in this interior region will be opened. In this case, the pro
ability that the first open pair is an AT is

pAT5
nAT exp@2DG~AT!/RT#

nAT exp@2DG~AT!/RT#1nGC exp@2DG~GC!/RT#
.

~3.5!

We choose a second random numberrand2 in ~0,1!. If
rand2,pAT then we will open an AT pair in this region.
Otherwise we open a GC pair. If the opening base pair is A
then we choose one of thenAT AT pairs with equal probabil-
ity, and similarly for opening a GC pair. After performing
this opening, we use the standard trials to treat the base p
next to this position in order until the next interior of a
closed region is encountered. One circuit of the molecu
performed in this way is called an approximate Monte Car
cycle ~AMCC!. This approach cannot be shown to satis
detailed balance, so any algorithm constructed in this w
must be regarded as approximate. However, the practical
ferences between this approach and a formally exact one
slight because the probability of opening a base pair inter
to a closed region is very low.

The algorithm APPMD has been constructed using t
pattern of one AMCC, followed by shuffling operation
(S1S2S3S4S2S3)

m. The succession of standard and modifie
trials in the AMCC traverses the molecule quickly. In prac
tice less than 2% of the base pairs are open in a state un
normal physiological conditions, so successive trials of ind
vidual base pairs are needed at a small fraction of sites. T
results in a substantial savings of computer time without sa
rificing significant accuracy, as the sample calculations r
ported below show.

D. Estimates of sample size and other parameters

An estimate of the minimum sample sizeU0 needed to
achieve a given level of accuracy in a Monte Carlo simul
tion can be made using the Chebyshev25 and Kolmogorov26

inequalities. The variations of accuracy with sample size th
are achieved in practice will be described in the Sec. IV.

If X1 ,X2 ,... are random variables, then the Chebysh
inequality states that

PH UX11•••1XU

U
2ESX11•••1XU

U D U>eJ
<
Var~~X11•••1XU! /U !

e2
. ~3.6!

If X1 ,X2 ,... are assumed independent and identically distr
uted~denoted by i.i.d.!, this becomes Kolmogorov’s inequal-
ity:

PH UX11•••1XU

U
2E~X1!U>eJ <

c2

Ue2
, ~3.7!
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wherec25Var~X1!. In our problem the sampled states may
not be exactly i.i.d. but approach this condition ifls ~or l! is
sufficiently large that successive points are effectively uncor
related. If our sampled states are regarded as i.i.d., then se
eral useful estimates can be obtained from this inequality.

Let Bs( i ) be the random variable whose value is 1 if
base pairs is open in statei , and 0 otherwise. If the equilib-
rium probability of separation of the base pairs is Ps

B, then
inequality ~3.7! gives

PH U( i51
u Bs~ i !

U
2Ps

BU>eJ <
Ps
B~12Ps

B!

Ue2
. ~3.8!

Here Var(Bs)5Ps
B(12Ps

B)<1/4. Settinge50.02 and using
the maximum possible variance Var(Bs)51/4, this inequality
states that a simulation havingU520 000 i.i.d. sampled
states will have at most a 3.13% chance that its error i
estimatingPs

B for any particular base pair exceeds 0.02.
Let r be the random variable corresponding to the num

ber of open runs, sor ( i )5k, if in statei the number of open
runs isk. Now the Kolmogorov inequality states

PH U( i51
U r ~ i !

U
2 r̄U>eJ <

~rmax2rmin!
2/4

Ue2
, ~3.9!

where r̄ is the average number of open runs. Here
~rmax2rmin!

2/4>Var(r ), andrmax and rmin are the maximum
and minimum numbers of open runs appearing in th
sampled states. In practical simulations we find tha
~rmax2rmin!

2/4<4. If 20 000 states are sampled, then the en
semble average number of runs will be estimated correct
within 60.05 approximately 92% of the time under the i.i.d.
assumption.

The same method can be used to estimate the accura
of calculations of the average number of separated ba
pairs. One finds an effective maximum number of separate
base pairsnmax where the probability of states having more
than this number of open base pairs is essentially 0. Sim
larly, one finds the minimum numbernmin . Let n̄ be the
average number of open base pairs andn be the random
variable corresponding to the number of open base pairs, i.e
n( i )5k, if in statei the number of open base pairs isk. Then
we have:

PH U( i51
U ni
U

2n̄U>eJ <
~nmax2nmin!

2/4

Ue2
. ~3.10!

The choicese51 andnmax2nmin,80, are reasonable for a
real simulation. This formula shows that whenU520 000 an
i.i.d. simulation will estimate the expected number of open
base pairs correctly to61 bp 92% of the time.

These evaluations assume the largest possible varianc
hence provide worst case estimates of the deviations und
the i.i.d. assumption. They indicate that a sample size o
U0520 000 is reasonable for present purposes. It is not s
large as to require very long simulation times, and it suffice
for reasonable accuracy.

IV. RESULTS

We have developed three Monte Carlo algorithms fo
analyzing strand separation transitions in circular superhel
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8661Sun et al.: Conformational transitions in superhelical DNA
cal DNAs. The standard Monte Carlo algorithm MCA pe
forms Monte Carlo cycles without shuffling. EXAMD aug
ments the standard MCC with shuffling operations. APPM
uses approximate cycles AMCC that have been modified
block estimates for opening of closed regions, together w
shuffling operations. The MCA technique has been sho
above to suffer extreme convergence problems that precl
its practical utility. In this section we present the results
sample calculations performed using the EXAMD an
APPMD algorithms. These results are compared for accur
with those from approximate statistical mechanical calcu
tions whose precision is known to be very high.15,16

A. Tests of accuracy, convergence rate, and
computational speed

The first collection of sample calculations were design
to evaluate the accuracy, convergence properties and rela
speeds of the EXAMD and APPMD algorithms. For this pu
pose strand separation in the pBR322 DNA sequence
analyzed at linking differenceu5230 turns. We performed
sample calculations using each of the algorithms with sam
sizesU51000, 2000, 5000, 10 000, and 20 000 states. In
EXAMD procedure, we selected the sample states after p
forming ls550 modified Monte Carlo cycles~MMCC!, with
n51600 shuffling operations performed after each MCC.
APPMD, values ofn5240 andls5150 were used. The free
energy parameters appropriate for Kowalski’s experimen
conditions were used.9,16 To facilitate precise comparison
with the statistical mechanical results, the separation ene
assumes only two values,bAT and bGC, depending on the
identity of the base pair involved.

Figure 5 shows the probability profile calculated by th
statistical mechanical technique of Benham15,16 under these
circumstances. That calculation is at least 99.9% accurat
all calculated ensemble averages. Two regions of
pBR322 sequence are shown to be destabilized by str
RegionR1 lies between positions 3100 and 3350, while r
gionR2 occurs between positions 4100 and 4300. These
sults agree closely with those from experiments.9,16

The probability profiles computed by the Monte Car
simulation methods both show transition to be confined
the same two regionsR1 andR2. To analyze the accuracy o

FIG. 5. The transition probablity profile calculated for pBR322 DNA by th
approximate statistical mechanical procedure is shown. The calculation
sumes linking differenceu5230 turns, at@Na1#50.01 M andT537°C.
Two regions of high separation tendency are observed both theoretically
experimentally.
J. Chem. Phys., Vol. 103, NDownloaded¬14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subjec
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our algorithms, we subtract the probabilitypSM( i ) of sepa-
ration of base pairi , calculated using the statistical mechani-
cal method, from its valuepMC( i ) found by each of the
Monte Carlo procedures. This determines the deviatio
d( i )5pMC( i )2pSM( i ) of the Monte Carlo results from the
analytical probability profile at each positioni . Figure 6
compares the absolute maximum deviations
D5max1< i<Nud( i )u of the probability profiles obtained by
the EXAMD and APPMD procedures from that obtained by
statistical mechanics. The results are reported as functions
sample size. These results show that the two procedures ha
similar stability and accuracy for sample sizesU.2000. Val-
ues of other parameters calculated in these simulations a
shown in Table I. In all cases the results for EXAMD and
APPMD are comparable in accuracy.

It is interesting to compare these simulation results with
the Kolmogorov estimates found in last section. Inequality
~3.8! shows that the fluctuation in the separation probability
Ps
B of the base pair at positions will be smaller than 0.02

with probability

pf~s!>12
Ps
B~12Ps

B!

8
, ~4.1!

assuming i.i.d. samples andU520 000 sampled states. If the
random variablesBs andBq are independent whens andq
are different sites, then the probabilityP that every site on
the pBR322 DNA molecule deviates from its exact value by
less than 0.02 is

P5 )
s51

4363 S 12
Ps
B~12Ps

B!

8 D . ~4.2!

SincePs
B is known from statistical mechanical calculations,

we find P50.0392 in this case. If we exclude those sites
where the probability of separation is smaller than 0.03, the

e
as-

and

FIG. 6. The absolute maximum deviation between the statistical mechanic
and Monte Carlo separation probability in the entire pBR322 DNA se-
quence,D5max1<i<Nud(i)u, is plotted against sample size. The solid line
gives the maximum deviation of the APPMD algorithm, and the dotted line
gives that of the EXAMD algorithm. The sample sizes are 103, 23103,
53103, 104, and 23104.
o. 19, 15 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8662 Sun et al.: Conformational transitions in superhelical DNA
we find P50.0422. This shows that a simulation with i.i.
sampling and sample sizeU520 000 will have a 96%
chance of finding at least one base pair whose deviation f
the exact result is larger than 0.02. In our sample calculat
the maximum deviations found by EXAMD and APPM
were both less than 0.01 whenU520 000. This suggests tha
the convergence of both algorithms is comparable to
which would occur if successively sampled points were i.i
hence entirely uncorrelated.

To test this claim we performed the APPMD simulatio
four times using different initial states. Three of these sim
lations used the sample sizeU520 000 and the fourth use
U532 000. No deviations beyond 0.02 were found in any
these simulations. From the worst case Kolmogorov estim
we find that 86% of i.i.d. simulations havingU532 000
would exhibit deviations exceeding 0.02. The chances
four independent simulations all having maximum deviat
less than 0.02 is 1.0531025. Recall that the accuracy est
mates@expressions~3.9! and~3.10!# made from the Kolmog-
orov inequality used an overestimate of the variance, he
may underestimate the convergence rates correspondi
We analyzed EXAMD in a similar way, performing six simu
lations using different starting conditions. In all cases
sample sizeU520 000 was chosen. Two of these simulatio
had maximum deviations smaller than 0.02. The ab
analysis suggests that the probability of such an occurre
under the i.i.d. assumption is about 0.020. These results
dicate that the Monte Carlo sampling procedures that incl
shuffling operations converge at rates that are comparabl
and possibly even better than, those that would occur un
strictly independent sampling. Without shuffling, th
sampled states will be confined near local energy minima
long times, so successively sampled states will rem
strongly positively correlated indefinitely. But shuffling tria
facilitate moves from one local minimum to another, maki
them comparable in ease to what would occur under in
pendent sampling.

TABLE I. Statistical quantities vs sample sizes. The first column lists
sample size valuesU for which the simulations are done. Every row is th
ensemble average value obtained corresponding to theU indicated in the
first column.

EXAMD
u5230

Open base
pairs

Open AT
pairs

Open GC
pairs ^G&

U51000 99.206 75.239 23.967 120.375
U52000 99.310 75.329 23.981 120.353
U55000 99.389 75.574 23.815 120.507
U510 000 99.025 75.150 23.863 120.358
U520 000 99.069 75.252 23.817 120.413

APPMD
u5230

Open base
pairs

Open AT
pairs

Open GC
pairs ^G&

U51000 98.444 74.275 24.169 120.082
U52000 99.292 75.446 23.846 120.439
U55000 98.975 75.147 23.828 120.398
U510 000 98.934 75.207 23.727 120.434
U520 000 98.994 75.273 23.721 120.452
Statmech mthda 99.037 75.084 23.953 120.4185

aStatistical mechanics approach~Ref. 15!. Initial run: 2200–2541. Seed
525.
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These results show that the EXAMD and APPMD algo
rithms, both with shuffling trials, give results that converg
more rapidly and sample the equilibrium distribution muc
more effectively than does the standard algorithm MC
which lacks shuffling. However, APPMD executes signifi
cantly faster than does EXAMD. Simulations on a DE
3000/800 computer for sample sizeU520 000 points re-
quired 9 h for EXAMD, but only 2.5 h for APPMD. This
speedup was achieved without a significant loss of accura

B. Scaling with molecular length

Consider two molecules of different lengths supercoile
to the same superhelix density. On average, the longer m
ecule usually will have more open base pairs and more op
runs, other factors being equal. To see why this occurs, n
that the difference in separation energy between AT and G
base pairs under the assumed conditions is approximate
kcal/mol, while the energy required to open a run of sepa
tion is 10 kcal/mol. Now, consider states havingn separated
base pairs. Suppose the energetically most favoredr -run
state containsnAT~r ! AT base pairs. Anr11-run state con-
taining n separated base pairs must have A1T richness at
least 11 base pairs greater thannAT(r ) to be more energeti-
cally favored, because the cost of initiating one more r
must be offset by the savings due to the increased A1T
richness. This can happen only when the expected numbe
open base pairs is large. For example, if the AT-richest o
run state withn560 open base pairs hasnAT~1!550, then no
multiple-run state with the samen can be energetically fa-
vored, even if entirely comprised of AT base pairs. Stat
having small numbers of runs of separation~i.e., r<2! are
favored when the expected number of separated base pai
small ~roughly<100 bp!. For short molecules~N<5000 bp!
this occurs throughout the range of physiological linking di
ferences. For long molecules, however, the expected num
of runs of separation grows with linking difference.

The complexity of the approximate statistical mechan
cal technique of Benham15 increases rapidly with run num-
ber. In practice, calculations where states with four or mo
runs occur are not feasible using this method. The only
ternative approach presently available is Monte Carlo sim
lation.

To assess how the performance of the Monte Carlo
gorithm scales with molecular length, we analyzed the pha
l DNA molecule containing 48 502 base pairs. Simulatio
were performed for various linking numbers using th
APPMD algorithm withn51600 andls5160. Each simula-
tion foundU522 500 sampled states. Other physical para
eters were the same as in the analysis of pBR322 descri
above.

Table II shows the distribution of states withr open runs
for phagel DNA at several linking differencesu. When
u52254, corresponding to the physiological superhelic
densitys520.055, six-run states are the most populated.~In
pBR322 DNA at this superhelical density the probability o
states with more than one run is less than 0.25.! An accurate
analysis of this transition is not possible using the appro
mate statistical mechanical method, due to the large num
of runs.

e
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TABLE II. Open run fractions. The first column lists all linking difference values for which the simulations ar
done. Every row is the results obtained corresponding to the linking difference indicated in the first colum

u 1-run 2-run 3-run 4-run 5-run 6-run 7-run 8-run

2177 0.295 0.653 0.051 0.001
2187 0.053 0.705 0.229 0.013
2197 0.001 0.444 0.472 0.080 0.003
2207 0.151 0.591 0.237 0.020 0.001
2217 0.022 0.380 0.492 0.100 0.006
2227 0.001 0.128 0.564 0.273 0.033 0.002
2237 0.020 0.355 0.491 0.125 0.008
2247 0.007 0.104 0.521 0.321 0.046 0.001
2254 0.007 0.041 0.370 0.465 0.102 0.015
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Table III shows several average values calculated
phagel DNA at various linking differencesu using the
APPMD algorithm. These include the average numbers
open base pairs, open AT pairs, open GC pairs, and the
erage free energŷG&. All these quantities increase approx
mately linearly withuuu .

The CPU time required by the DEC 3000/800 compu
to perform one simulation on phagel DNA using APPMD
ranged from 19.5 to 24 h, with about a half hour increase
each change of210 in linking difference. Analogous calcu
lations on pBR322~N54363 bp! at the same superhelica
density required approximately 2.5 h. Thus, in practice t
execution time of the APPMD algorithm scales approx
mately linearly with molecular length.

To test the accuracy of the APPMD algorithm for lon
molecules, we compared its computed probability profile
phagel with that calculated by the approximate statistic
mechanical method at a small superhelix density where t
method retains its accuracy. We chooseu52177 turns, at
which the probability of states withr>4 runs is 0.001. The
maximum deviationD between the profiles calculated b
these two methods isD,0.018, comparable to that fo
pBR322 DNA with similar sample size. Thus, the number
sampled states required to achieve a given level of accur
in a Monte Carlo simulation with shuffling operations is e
fectively independent of molecular length.

We compared the two Monte Carlo algorithms APPM
and EXAMD by performing simulations on phagel DNA at
linking differenceu52177. In EXAMD we setls540 and

TABLE III. Statistical quantities vs linking differences. The first colum
lists all linking difference values for which the simulations are done. Eve
row is the ensemble average values obtained corresponding to the lin
difference indicated in the first column.

u Open base pairs Open AT pairs Open GC pairs ^G&

2177 129.24 106.14 23.10 470.36
2187 191.97 154.18 37.79 520.75
2197 258.86 204.98 53.88 571.38
2207 327.65 257.36 70.29 622.39
2217 398.34 311.39 86.95 673.90
2227 468.87 365.04 103.83 725.27
2237 539.91 419.06 120.84 776.75
2247 610.94 473.08 137.86 828.46
2254 660.64 510.67 149.97 864.60
J. Chem. Phys., Vol. 103, N14¬Feb¬2003¬to¬146.203.4.34.¬Redistribution¬subject
or

of
av-

r

or

e
i-

r
l
at

f
cy
-

n56400, while in APPMD we fixedls5160 andn51600.
These choices made the total numberlsn of shuffling opera-
tions performed before picking each sampled state the sa
for both algorithms. In each case we computed the maximu
deviation D5max1< i<Nud( i )u from the probability profile
calculated by the statistical mechanical algorithm. The max
mum deviation for EXAMD isDE<0.026, and for APPMD
it is DA<0.018. The deviation between EXAMD and
APPMD never exceeds 0.015. Our results show that the a
curacies attained by EXAMD and APPMD are comparab
for all calculated quantities. The values of^G& calculated by
these procedures agree within 0.2%, while the expect
numbers of separated base pairs agree to better than
Thus, the imprecision caused by the formal failure of th
APPMD algorithm to satisfy detailed balance is not signifi
cant. However, APPMD executes much faster. Whenu
52177, the simulation times were 19.5 h for APPMD an
52 h for EXAMD.

To test the stability of the APPMD algorithm, we made
two simulations from different initial states at linking differ-
enceu52247. The result shows that the two values of^G&
calculated agree to within 0.04%, and the maximum devi
tion between the two probability profiles is 0.024. The fac
that both APPMD and EXAMD rapidly converge to the equi
librium distribution, as shown by the calculations on pBR32
DNA, also demonstrates their numerical stability.

V. DISCUSSION

The Metropolis–Monte Carlo procedures developed he
provide a new method for calculating equilibrium propertie
of the strand separation transition in superhelical DNA.
formally exact method is developed that contains specializ
shuffling operations to increase convergence speed. T
method is shown to satisfy the ergodicity and detailed ba
ance conditions required for formally correct sampling of th
equilibrium. Its convergence properties are shown to be co
parable to those achieved with i.i.d. sampling. An alternativ
approach using composite steps~single base pair tests com-
bined with block region tests! also was developed, which
executes significantly faster. Although this APPMD algo
rithm does not satisfy detailed balance, the accuracy of
results is comparable to that achieved by the formally exa
EXAMD procedure. However, we note that APPMD is only
efficient when copolymeric transition energetics are use

y
ing
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



s
e

a
iz
e
p
e
o
i

i

e
i
u
n

fo
s
ie
e

n
s

i
c

h
fo

r
y
in
-

-

-
a

e.
n

-
-

a-
f

i

t

8664 Sun et al.: Conformational transitions in superhelical DNA
The results of these Monte Carlo procedures agree clos
with those from statistical mechanical calculations, who
accuracy can be made as high as desired by setting a thr
old appropriately.15 The accuracy of these simulation proce
dures is shown to be approximately as good as what could
expected if the i.i.d. condition held.

The Monte Carlo approach developed here does not h
the limitations of alternative methods. The sample s
needed to achieve a prescribed accuracy can be estimat
advance, and calculations having that accuracy can be
formed for long DNAs at any reasonable linking differenc
The execution time grows at most quadratically with m
lecular length, and in practice behaves approximately l
early. Execution time increases slowly with imposed linkin
difference, regardless of the number of runs of separat
involved.

Although copolymeric transition energetics were us
here to facilitate comparison with the results from the stat
tical mechanical method, the exact Monte Carlo proced
permits calculations with transition energetics having a
complexity. Thus, one can include near-neighbor effects a
structural modifications such as base methylation, lesion
mation, ligand binding, or other alterations that affect tran
tion energetics. Also, calculations of the transition propert
of molecules at high temperatures can be perform. Th
effects cannot be included in the approximate statistical m
chanical procedure as currently structured. Calculations a
lyzing transitions in these situations will be presented el
where.

The present Monte Carlo method does have one sign
cant drawback when compared to the approximate statist
mechanical procedure. Using the latter technique one
calculate the incremental free energy needed to separate
base pair in the sequence,27 thereby finding sites that are
partly destabilized by imposed stress. These are sites w
superhelicity significantly reduces the energy required
separation, although not enough to induce their opening w

FIG. 7. The transition profile of phagel DNA calculated at linking differ-
enceu52187 turns is shown. The part of the sequence that is not plot
showed no destabilization in this calculation.
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significant probability. Such sites may be biologically impor-
tant, as they may constitute targets for the activities of othe
molecules. This destabilization energy cannot be accuratel
calculated using the Monte Carlo method because states
which such sites are separated have a low probability of be
ing sampled.

The results of a Monte Carlo analysis of strand separa
tion in phagel DNA ~48 502 bp! are shown in Fig. 7. That
calculation illustrates the ability of this method to treat long
DNA sequences. This opens the possibility of analyzing en
tire sequences the size of eucaryotic topological domains,
feat that is not feasible using the approximate method.

A complete theoretical analysis of superhelical DNA
structure must include deformations of tertiary structure as
well as the alterations of secondary structure treated her
Monte Carlo statistical sampling methods already have bee
proposed to treat superhelical tertiary structure.17–20,28A cen-
tral reason for developing Monte Carlo methods to treat sec
ondary structure transitions is because this is the other re
quired step toward handling the complete problem. Once
Monte Carlo sampling techniques have been developed sep
rately for the secondary and the tertiary structural aspects o
superhelical DNA conformation, one can amalgamate them
into a unified technique to analyze superhelical DNA struc-
ture in its full generality. This will be the focus of future
work.
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