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Using the concepts of scaled particle theory, an analytical theory is developed to investigate the
limiting behavior of solvation free energies at the particle creation limit. The new theory directly
incorporates the weakly attractive, dispersion interaction terms into the analytical calculations. For
neutral molecular systems, the effects of longer ranged electrostatic interactions are also
incorporated, albeit in an ad hoc way, and the validity of the utilized assumptions are then
demonstrated with numerical examples. It is shown that it is possible to blend the numerical and
analytical methods to increase the reliability of quantitative results, and, at the same time, to achieve
savings on computational expenditure for certain types of calculations. Different methods of
performing the thermodynamic integration in solvation free energy calculations are also compared.
Studied examples clearly show the importance of proper treatment of the divergence at the particle
creation limit in obtaining quantitatively reliable results for the solvation free energies.

I. INTRODUCTION

Understanding the behavior of many chemical systems
requires the determination of the chemical equilibria in solu-
tion which can be calculated if the free energy differences
between the involved chemical states are known. For this
reason, chemical equilibrium studies have mainly concen-
trated on the calculation of free energy differences.'”® Ex-
amples of systems investigated include the free energy dif-
ference between the two conformations of the same solute, or
the free energy change associated with a transmutation, or
the free energy of oxidation or activation. Free energy of
solvation in which an ideal gas particle is transformed into a
fully interacting particle in solution also belongs to this cat-
egory. Calculation of the solvation free energies is particu-
larly important, because, for relatively weak attractive sys-
tems, it is related to the thermodynamics of hydrophobic
solvation, an essential but not so well understood subject in
biological sciences.’

There have been numerous attempts to theoretically cal-
culate solvation free energies using both numerical and ana-
lytical methods. For example, analytical scaled particle
theory (SPT)!%-12 has often been used in studying the hydro-
phobic solvation.'%"!" In the original implementation of the
SPT, the solute and the solvent molecules were represented
as hard-sphere particles. In later applications, a perturbation
treatment was used to allow for realistic repulsive interac-
tions between the solute and the solvent pzu’ticles,15 but the
weakly attractive dispersive interactions were not incorpo-
rated. Another often used analytical approach which is more
empirical in character compared to the SPT is based on sol-
vent accessible surface areas.'®~2° Also, some approximation
schemes have been introduced for including the effects of the
weakly attractive solute—solvent interactions to the solvation
free energies.!!?!

Solvation free energies can, in principle, be calculated
for any system using numerical molecular simulations. But,
it is now well established that the molecular simulation ap-
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proaches are subject to numerical uncertainties which arise
from the possible undersampling of the phase space. This is
especially true for the class of solvation free energy calcula-
tions done in a way that a null point solute particle is allowed
to gradually grow until it reaches the desired size and the
shape of the studied solute. In this gradual growth approach
to numerical calculation of the solvation free energies, the
most serious of the encountered problems arises at the limit
of creating a cavity from an uninteracting point particle. This
is the limit when the size of the gradually created solute is

» considerably smaller than a cavity which can accommodate

the full sized solute. Availability of an analytical method at
this small cavity limit would make it possible to combine the
analytical and numerical methods. Use of a combined ap-
proach would increase the reliability and the quantitative ac-
curacy of the calculated solvation free energies.

The issue of eliminating the encountered problems at the
very small solute limit from the numerical calculations is the
subject of this report. Using the concepts of SPT, we first
develop an analytical formula for the limiting value of the
solvation free energy of a weakly attractive solute molecule.
In the second part, we combine the new analytical approach
with numerical simulation methods to study the solvation
properties of some model solutes. The robustness and the
reliability of this combined approach is demonstrated by sev-
eral examples.

The layout of this report is as follows. In Sec. II, we first
present the theory of creating a Lennard-Jones particle in a
molecular solvent, and the theory is then generalized to mo-
lecular solutes. Section III presents the details of the numeri-
cal calculations employed in this study. Section IV develops
and compares the different schemes for combining the ana-
lytical and the numerical simulation methods in calculating
the solvation free energies. It is followed by the results pre-
sented in Secs. V and VL. Section V deals with the limiting
behavior of solvation of various solutes. Numerical and ana-
lytical approaches are contrasted, and the convergence char-
acteristics of molecular simulations and the applicability of
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the new analytical theory are discussed. Section VI investi-
gates the appropriateness of the use of Gaussian quadratures
in the thermodynamic integration (TI) method of calculating
the solvation free energies. Section VII summarizes the im-
portant aspects and results of this work, and establishes the
connection to our previous work, Ref. 7.

il. THEORY

A. Single site solute

1. Free energy of cavity formation: Perturbation
treatment

The main aim of this report is to calculate an analytical
formula for the solvation free energies at the limit when the
created solute is very small. At this limit, the interaction
between the solute and the solvent particles in the Hamil-
tonian can be presented as a perturbing potential energy
term.'® Separating the Hamiltonian in this way, the Helm-
holtz free energy of creating a cavity in solution, AA, can be
expressed in terms of the following rigorous expression:*>

BAA=—In{exp(—BV))o- (1)

Here B=1/kT is the inverse of the temperature expressed in
energy units, and (:-+), corresponds to a canonical ensemble
average consisting of pure solvent at constant volume, num-
ber density, and temperature. V is the solute—solvent interac-
tion potential energy (throughout this report, V and v, re-
spectively, correspond to solute—solvent interaction potential
and to volume, with subscripts specifying certain contribu-
tions). In a wide range of studies, an interaction site model
(ISM) representation?® is used to accommodate the appropri-
ate solute—solvent and solvent—solvent intermolecular inter-
actions. Within ISM representation, and for a Lennard-Jones-
type interaction, the solute—solvent interaction potential is
expressed as

12 \6
V(N = Ev,,m x"24,,[("") —(‘—’-i) ] @

r

where the sum j goes over all distinct sites of all the solvent
molecules. Similarly, the sum i is over the distinct sites of
the solute molecule. A\ is the so-called coupling parameter
and as it is changed from O to 1, the null solute particle gets
transformed into a fully interacting solute. Therefore the size
(or the radius) of the solute particle is governed by the value
of the coupling parameter. The exponent k is an arbitrary
positive exponent included for convenience in studying the
asymptotic behavior of the free energy change curve as the
solute particle is created.

For a single site spherical solute, the required ensemble
average appearing in Eq. (1) may be expressed as

(e Py =2, fdg’r,f dfY; e PV, o(r;,Q0y), (3)

where dQ.=dQ/Q (Q=[dQ;=87" is the normalization
constant over the Euler angle integrals). If the solute is lo-
cated at the origin, p; o (r;,€);) in Eq. (3) is the normalized
probability distribution function for having the ith solvent
molecule with its center of mass at r; with an orientation {);

6127

in terms of its Euler angles. Since X;p; (r;,{);) is normal-
ized (number of solvent molecules is conserved), the above
equation may also be written as

<e—pv>0=1+2 fd3rij dQufe P = 11p, o(r:, Q).
' @

Let us suppose that the cavity created by the solute par-
ticle is small enough that the solute can only interact with a
single site of one of the solvent molecules at a time. Then,
since it is the probability distribution function with respect to
pure solvent state, we have'® p, o(r;,Q,)=po(r,Q)=p/N,.
Here p is the number density of solvent molecules, and N, is
the number of solvent molecules. If the longest ranged pair
interaction decays faster than r~>, for ISMs, integrating Eq.
(4) by parts results in a more convenient form:**

(e"BV)0=1+§fd3rr — e P, (5)

The above integral has the form of a second virial coefficient
and can be done analytically for some forms of the interac-
tion potential.

Using this approach, Postma et al. have derived the nec-
essary expressions for a repulsive r~'*-type potential be-
tween the solute and the solvent molecules (soft sphere
solute).!> To see the effect of the inclusion of the longer
ranged weak attractive interaction, we generalize their deri-
vation to a 6-12-type potential which is a more general form
of Lennard-Jones-type potential (the following derivation is
quite general, and the C¢ parameters can have negative val-
ues as well). Let us rewrite the solute—solvent interaction
potential energy, Eq. (2), between a single site solute and a
multisite solvent molecule as

C!
BV= Zx"n ’j” Mo =52, ©)
J J

where summation over j goes over the distinct solvent sites,
and C;,, = 4B¢;a} (for the rest of this report, script m is
equal either to 6 or to 12, and stands, respectively, for r~®or
r~12 terms). In Eq. (6), to make it more general, separate
exponents for the coupling parameter are included. This gen-
eralization would be needed when a polynomial path thermo-
dynamic integration is employed.”? Notice that, because of
the assumption that the solute particle can only interact with
one site of a solvent molecule at a time, the ensemble aver-
ages with respect to the pure solvent state require only the
knowledge of the singlet solvent distribution function.'® The
singlet solvent distribution, as stated above, is uniform and
corresponds to a constant p; o(r;,£,), i.e., without any spa-
tial or angular dependence, which makes further simplifica-
tion possible. Therefore, Eq. (6) may be written in a math-
ematically more convenient form as

BV=\F2 g——x" s, (7)
with C,, = 483 ;07 = EJCJ - For positive Cg, one can
similarly define the molecular solute—solvent Lennard-Jones
interaction parameters €, and oy as
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4B EmolamolE Cm . (8)

Before proceeding with performing the integrals, let us
define an effective cavity radius, r., which would also set a
length scale for the problem. One obvious choice for r,
would be to use the thermal fluctuations of the system,'’ thus
r. may be defined using the relation SV=1. Rather than
using this definition, we use only the shortest ranged term in
the interaction potential V,, and simply set BV,,=1. This
results in a much simpler expression for the cavity radius:2

ri2=cC ke, 9)

We would like to point out that the cavity radius always
factors out of the final expressions, and is defined only to
introduce a length scale to the problem with the aim of con-
ceptual simplification.

One proceeds by substituting the partial derivative of Eq.
(7) into Eq. (5). The resulting integral can be expressed in
terms of the degenerate hypergeometric and gamma
functions.?”? Using the polynomial expansion of the degen-
erate hypergeometric functions for small argument, the ex-
pression for the free energy of cavity formation can be writ-
ten as a series expansion in terms of the coupling parameter
(details of the derivation are given in Appendix A). Thus, the
required ensemble average appearing in the free energy of
cavity formation, Eq. (1), can be expressed as [Eq. (A12)]

(e Py =1-pv . I'(3/4) X, 5,,( Cs x"A). (10)

n=0 \2VCp2

Here &,’s are the series expansion coefficients and their val-
ues for small n are tabulated in Appendix A. The exponent
k and the cavity volume v, are defined as

klZ
ks=ks——>", (11)

4'rrr3
U= 3

4q
=3 (NF2C )14, (12)

Equation (10) is valid if and only if k,>>0 which is the case
for most commonly utilized exponent sets. For example, as
discussed in a previous communication, Ref. 7, for k;,=4,
the choice kg=3 gives an almost linear TI integrand in the
polynomial path TI approach (PP-TI).” Therefore, it was
concluded that in most cases {k;,,k¢}={4,~3} would be a
pretty good choice for the PP-TI approach, and with this
choice of the exponent set, k,>0. k, is also positive when
the exponents are equal, k,=k¢. For this reason, our inter-
est concentrates on the case when k,>0. But, it should be
noted that for k5, =<0, the integral in Eq. (5) is still finite, and
an asymptotic limiting behavior similar to Eq. (10) may be
obtained (Appendix A).

By turning off the longer range attractive term C¢=0 and
by setting k,=1, we obtain the result of Postma er al.'>:

4
(e Py=1- 272 1 (3/4)ClN 4 =1 pu,D(3/4).
(13)
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A general derivation of AA for a purely repulsive solute—
solvent intermolecular interaction of type Vx1/r" (n>3) is
reported in Appendix B. Notice that the series expansion
expression in Eq. (10) has a close resemblance with the cor-
responding SPT expression for a hard-sphere solute dis-
solved in a hard-sphere solvent.'” As noted by Postma
et al.," to obtain an equivalent hard-sphere solute having
volume vyg, the volume of the soft solute particle v, needs
to be scaled [e.g., I'(3/4) factor in Eq. (13)]. As shown in
Appendix B, the scaling factor to determine the equivalent
hard-sphere solute depends on the exponent of the potential
employed,” and for BV = \*=C,/r", it is given as [Eq.
(B2)]

UHs—8sVc»

2{ym  T(v) _,_6
27 Ty 1y2] 4 r=2—5

where g,=

(14)
As it should, g,—1 at the n—o0 limit (which corresponds to
hard-sphere interactions).

One important feature of the series expansion in Eq. (10)
is that the leading term of the series is not affected by the
inclusion of the attractive 1/r® term. This observation in a
way assures the applicability of the perturbation treatments
to calculate the free energy of cavity formation for a soft-
core solute with an attractive tail. To have an understanding
of how many terms to keep in the series expansion, we con-
sider, as an example, a carbon-like particle in aqueous solu-
tion. Here the solute interacts only with the oxygen site of
the water molecules, and typical solute—solvent interaction
values are 0=3.25 A and Be=0.25. Using the experimental
structure data for water, the closest distance that the oxygens
of the different water molecules can come together is ap-
proximately 2.4 A, thus the assumption that the solute can
interact with one water molecule only would be valid up to
the cavity radius of 1.2 A.'? Using the definition of the cavity
radius, Eq. (9), an upper limit for X expansion, A, , may be
determined:

re~1.2 A-a¥2=,1%/c ~6x 106, (15)

Using k;,=ks=1, i.e., ka=1/2, gives the following series
expansion for our example case:
47po’

1/4m )\n/2
3— T34\ Eg,,(z) . (16)

n=0

(e™PV)o=1~

Substituting the respective values, we see that at
A=Anax=6X107%, the contribution of the n=1 term is less
than 0.2%, and the contribution of n>1 terms is still smaller
and, therefore, negligible.

2. Thermodynamic integration method

In the thermodynamic integration (TT) approach to cal-
culating the free energy of solvation one starts with the con-
stitutive equation’!

IBE(N)
Y >de, a7

1
BAA=PB(A,—Ap)= fo <
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where (---), corresponds to an ensemble average of the en-
closed quantity with energy function E(\,X") in the Boltz-
mann factor. If EOLXY)=V(\,X")+E(\=0,X") then it can
be rigorously shown, for any observable (7, that

Ce—BYOVY, _
(On= %E—WTY;?;‘O‘Q- (18)

With the defining path given by Eq. (7), and using Eq. (18),
the integrand in Eq. (17), ZT\), may be expressed as’ (m
=6,12)

_[9BE(\)
o= 2202
=2 BTN =2 () @ig;)) (192)
with
. ko e
./l/m()\)ETK""'Cm(r me=BVy . —0s
(19b)

PN)=(e B\ =o.

In the small A\ limit, the analytical expression for the en-
semble average appearing as the denominator in Eq. (19a),
GA\), is already reported in the previous section, Eq. (10).
The calculation of the numerators, .#"(\), is quite similar and
the details of their calculation may be found in Appendix A.
Quoting from Eq. (A14), we have

N (V)= 47\ pv . T(3/4) 2 ;mn(zﬁw) :
(20)

The coefficients £, , are given in Appendix A. We note that
£60=0, so the series expansion for .47 starts with the n=1
term. Therefore, the limiting behavior of the TI integrand is
solely determined by the leading term of the repulsive 1/r'2
contribution as in the case of the purely repulsive interaction
potential, and has a \ dependence of the form A¥12/4~1
This finding shows, as stated in Ref. 1, that when the k
exponents are equal, the divergent behavior of the TI inte-
grand can be deduced from the shortest ranged intermolecu-
lar solute—solvent interaction. Thus, as can be seen from Eq.
(20), choosing the exponent k,,=4 effectively gets rid of the
divergence in the TI integrand.

Substitution of Eqgs. (10) and (20) into Eq. (19a) gives
the final expression for the TI integrand:

BN = 212 pv T (3/14)27_oLal (C/2VC 12N ]"
. AN 1 po T (314) S5 &L (Co 12T N ]
(

21)

where {,=

£12,n— g6,n'

B. Solute with mulitisites

In generalizing the analytical expressions in Egs. (10),
(20}, and (21) for the solvation free energy of a small single-
site solute to multisite solutes, we notice that difference
would arise from the exclusion of the solvent molecules not
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only from the volume occupied by the labeled solute site
located at the origin but also from the volume occupied by
the other solute sites as well. It is clear from the derivation
given in Appendix A that to calculate the solvation free en-
ergy or the corresponding TI integrand, the ensemble aver-
ages of the solute—solvent site—site interaction potential
terms with respect to pure solvent state is needed. Within
ISM presentation, the solute—solvent molecular interaction
potential is site—site additive, or in other words

V=2 V=2 V=2 V), (22)
i,j i i

where the sum over j and i goes over the distinct sites of the
solvent and the solute molecules, respectively. V; is the in-
teraction potential energy of the solute site i with the solvent,
as given by Eq. (7) for each solute site. For an observable of
the form @=%,,(7,, the integrals

Ip;= f &r Ge™ BV (23)

may be expressed as

= f &’r AT exr)
k

=f d’r @;ei(f)H e (r)

k#i

= [ @ G T 15000, 24)

k#i

where the product over k goes over the distinct solute sites.
fi(r) is the Mayer f function for the solute site £ and defined
as fi(r) = e(r) — 1 = AV — 1 £,(r) is approxi-
mately equal to —BV, when V, is small, and is approxi-
mately equal to —1 when V; is very large, i.e., when r is
inside the repulsion core of solute site k. Expanding the
product results in

= f &r G, &(r), (253)
=1+ fit X fifwrt- (25b)
ki k' #i
k+k'

Since the f functions approximately vanish outside the cavi-
ties, the terms of the function &;(r) would converge very
rapidly. A close look at the &(r) function reveals that it is
approximately equal to unity except at points r belonging to
a cavity formed by solute sites other than the site i, and at
these points &;(r) approximately vanishes. Second and
higher order terms in Eq. (25b) correspond to the overlap of
two or more solute sites. For very small A, the cavities cre-
ated by solute sites are small and the overlap of the site
cavities would not be considerable. Therefore, the contribu-
tion of the second or higher order terms are expected to have
little importance.

In the implementation in this report, rather than truncat-
ing the series for &,(r) at a certain level, we use Eq. (25a)
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and numerically calculate the value of the required integrals
(a three-dimensional integral for each solute site) at each A
point. Even though we use numerical methods to calculate
the necessary integrals, analytical treatment of some simple
cases helps to understand the methodology.

To give an example, let us consider a two-site solute
assuming that the f, functions can be approximately repre-
sented as equal to —1 inside the cavities of solute sites and 0
elsewhere (as in the case of hard-sphere interactions). Two
sites of the solute are separated by a bond distance r;. When
the sum of the cavity radius of the two sites is smaller than
r;, the site cavities do not overlap. If this is the case, then the
contribution of the sites to the ensemble average of any op-
erator, (?=(?,+(,, may be calculated as [total solute—
solvent interaction energy may similarly be split as V(r)=V(i
=1;r)+V(i=2;r)]

10 1=f d31‘ @l(r)e—BV(l;r)e—ﬂV(Z;r+r,)

=_')2@)1(—1‘1)f &’r @l(r)e—ﬁV(l;r) ,

(26)
[0 )= f d3r @2(1.)(3—,BV(l;r—r,)e—BV(Z;r)

1'_’)1@)2(1‘1)1 d&’r (9’2(r)e—ﬂV(2;r)'

Since the site cavity volumes v and v, in Eq. (26) are small,
and assuming a smooth functional form for the operand, the
integrand values would not vary appreciably over the cavi-
ties. This argument justifies the approximation in passing
from the first to the second equality in the above equations.
Comparison of Eq. (26) with Eq. (23) shows that the solva-
tion properties of a multisite solute may be studied by con-
sidering the contribution of the individual solute sites sepa-
rately as if the other sites do not exist, and the required
corrections can, to a good degree, be incorporated at the end.

The above example clearly shows that the necessary cor-
rections are proportional to site cavity volumes, hence, they
vanish as A—0. The A=0 limit corresponds to the limit at
which the molecular solute has chemically bonded point in-
teracting sites. Since site cavities do not occupy any volume,
corrections to the ensemble average of any operator (7,
would vanish, and the system would be equivalent to an
independent set of spherical point cavities placed into the
solvent.

When A is increased, the spheres will start to overlap at
a certain value. Although the calculation of the overlap vol-
ume is possible in most cases, the calculation becomes rather
cumbersome as the number of sites increases.’2~>> Note that
at around A,,,, which corresponds to the upper limit for the
perturbation treatment to hold, a typical site cavity radius is
in the same range as the bond lengths of chemically occur-
ring systems. Thus around A=A, , the overlap between the
solute sites, and hence the necessary corrections, may .be
considerable. Therefore, approximations introduced in Eq.
(26) can only be used at much smaller \ values.

An additional ambiguity for the solvation of a multisite
solute is the determination of the upper bound A,., for

which the perturbation treatment would be valid. Fortunately,
Eq. (13) gives a hint that the upper bound criterion may be
based on the cavity volume. This point is further discussed in
Sec. IV.

C. Molecular solutes with site charges

In most of the studies in the literature, and in some cases
of this report, the molecular interaction sites also carry
charges. Unfortunately, a similar analytical derivation when
the solute molecule also interacts with the solvent molecules
via Coulomb forces is not currently feasible. But it is well
established that the Coulomb interaction can be renormalized
giving rise to a damped 1/r-type behavior.® As our deriva-
tion in this report shows, the addition of the longer ranged
weakly attractive 1/r° term to the pair interaction does not
change the divergence of the total T integrand. Therefore,
we make the ad hoc assumption that the inclusion of the site
charges would not change the conclusion that the divergence
of the TI integrand is determined by the shortest ranged re-
pulsive interaction term. Even though we cannot justify it
rigorously at this point, it is tempting to conclude, in analogy
with Eq. (11), that the above stated assumption would be
valid as long as

12k;>ky,. @7)

Concerning the contribution of the Coulomb term to the
solvation free energy or to the TI integrand, the ensemble
average of the Coulomb interaction between any one of the
charged solute sites and any one of the solvent sites diverges
when treated separately. But, if the solute and solvent mol-
ecules are charge neutral and if N is very small, the pure
solvent state ensemble average of the total solute—solvent
Coulomb interaction

(BV)r=0=A12 <@> (28)
ij 0

vanishes. This vanishing is exact at A=0 and holds only
approximately for nonzero \’s. Because of the uniform sol-
vent distribution assumption (see Sec. I A), the pure solvent
state ensemble average of the local solvent charge density is
conserved at each space point around the solute. Due to this
local solvent charge neutrality, site—site solute—solvent Cou-
lomb interaction contributions are cancelled, and therefore,
the ensemble average in Eq. (28) vanishes. This predicted
cancellation depends on the degree of goodness of the uti-
lized assumptions and on the validity of the perturbation
treatment. Thus, the deviation of the ensemble average
(V e BY)\ o (which is proportional to the corresponding TI
integrand, .%7;) from nullity would actually reflect on the
goodness of the underlying assumptions and on the validity
of perturbation treatment. The vanishing of the Coulomb
term contribution to TI at the A=0 limit was numerically
shown for the case of aqueous solvation of alanine-dipeptide
in a recent communication (see Figs. 4 and 5 of Ref. 7). It is
further investigated in Sec. V of this study.
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TABLE 1. Interaction potential and molecular geometry parameters.®

Site C\p (X1073 Cs q
Solute®
SS 2516.6 0 0.0
Ly 2516.6 1228.8 0.0
UD* 2516.6 1228.8 0.0
DD* 2516.6 1228.8 *0.5
Solvent!
(0] 582 595 —0.834
H 0 0 0.417

*Site i of a molecule interacts with site j of a different molecule as
Craifr'=Ceifri+q,qlr, where Cip; = VCp3,Cra; and Co;
= VC4,Ce, C1p and Cg are in units of kcal/mol A2 and kcal/mol AS,
respectively.

“For the molecular parameters of the alanine-dipeptide solute, see Ref. 7.

“Dumbbelis have two chemically bonded sites which are separated by [=1.5
A. The sites have the same short range potential parameters.

SThe water bond lengths- are /0;;=0.9572 A and /;;;=1.5139 A.

lll. COMPUTATIONS

In this report, the aqueous solvation properties of a soft
sphere particle, of a Lennard-Jones particle, and of a dumb-
bell with two fused equivalent sites separated by a bond
length of 1.5 A are studied. The solvent liquid water is rep-
resented by the TIP3P model.”” To investigate the contribu-
tion and effects of the Coulomb term, the aqueous solvation
of a dipolar dumbbell which has the same molecular geom-
etry and short range potential parameters of the dumbbell
solute but also carries partial site charges =0.5¢ is also stud-
ied. The molecular model parameters of all simulated sys-
tems are reported in Table I. In addition, to investigate the
solvation properties of a complex solute, solvation properties
of alanine-dipeptide at C; and a4 conformations were simu-
lated at a few small coupling parameter values. Alanine-
dipeptide was the subject of a recent study in our group, Ref.
7, which tabulates the solute molecular model parameters.

All simulations were performed using constant volume
canonical ensemble Monte Carlo (MC) simulations. Face-
centered-cubic periodic boundary conditions were employed.
Water—water interactions were truncated at a spherical cutoff
of 7.75 A, and the minimum image convention was used for
the solute—solvent interactions. All simulations involved a
single solute and 215 solvent molecules at T=298 K. Addi-
tional relevant details of the simulation runs are tabulated in
Tables III-IX.

The sampling rate was accelerated by using force
biasing,*® as well as by using a preferential sampling of type
1/R,;, where R is the distance between the nearest solute
interaction site and the solvent molecules. The convergence
problem in the molecular simulations is more pronounced
when the coupling parameter is small. The encountered con-
vergence problem partly arises from the fact that around
A=0 the solute—solvent interaction contribution becomes
very small, and the motion of the molecules are mainly de-
termined by the interaction of the solvent molecules among
themselves. Thus, to enhance the contribution of the solute to
the underlying dynamics of the system, certain methodologi-
cal tricks may prove to be useful. In addition to preferential
sampling and force bias, we have employed a selection

scheme in which the solute has an eight times higher selec-
tion probability with respect to the selection probability of
the solvent molecules. When the particular studied property
is strongly related to the solute—solvent interactions, the em-
ployment of a selection rule in which the solute is moved as
much as possible is important in improving the statistics and
the convergence.3® Availability of such enhanced solute se-
lection schemes in calculating the solvation free energies is
probably the most important advantage of the Monte Carlo
simulation method over the corresponding molecular dynam-
ics method.

IV. QUADRATURE INTEGRATION

As we have shown in Ref. 7, the TI approach using
Gaussian quadrature integration with four to nine points
were quite successful in studying the solvation free energies
at different conformations of a small biomolecule. Based on
this success and on the results reported in the following sec-
tions, we propose to incorporate the analytical theory devel-
oped in this report into the TI approach to calculate the sol-
vation free energies using quadratures. This section gives the
details of how this incorporation can be achieved, and states
a particular integration scheme which will be employed later
in this report.

As is shown in Sec. II A 1, and also in Sec. V, the ana-
lytical theory is valid up to A,,, and typical values of A,
for realistic systems are smaller than 107 This approxi-
mately corresponds to the first Gaussian quadrature point
with exponent k=4. Let us say that an n-point Gaussian
quadrature is chosen to perform molecular simulations, and
various TI integrand terms corresponding to different solute—
solvent interaction contributions, namely .%; with i=12, 6,
and 1 in this report, are calculated. In the most straightfor-
ward implementation, the simulation results at n different A
points can be supplemented by analytical results at p small A
points. Overall n+ p results can then be fitted to a certain
functional form, or (n+ p)-point quadrature integration can
be employed. The drawback of this approach is that the first
root point of the Gaussian quadratures is generally very
small and additional use of analytical results at p additional
very small A points would bias the integration toward the
small A range. Another drawback is that when two of the root
points are very close to each other, the errors arising from the
statistical fluctuations produces unphysical oscillations in the
resulting polynomial fit to the integrand. Simulations at very
small A generally carry the largest statistical error, and there-
fore, the mismatch between the results at two very close
adjacent points may be considerable. Due to the statistical
fluctuations, this type of mismatches between two simulation
results, or a simulation result and an analytical result, is ac-
tually unavoidable. When this mismatch happens, forcing the
fitting polynomial to go through all the data points (as in
quadrature integration) gives rise to pronounced oscillations
in the polynomial fit. .

To avoid these complications, we propose and imple-
ment the following approach. The simulation &t the first root
point of the n-point Gaussian quadrature is simply omitted,
and the n—1 simulation results are supplemented by the ana-
lytical result at A=0, which is exact. This approach again
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TABLE II. Root points and weight functions of five-point quadratures.
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TABLE IIl. Soft sphere and Lennard-Jones solutes.*®

Gaussian quadrature Modified Gaussian quadrature Solute Theory N7, A7 ISave
N %, N %, A=10""7
SS AT 1.08 1.08
0.046 91 0.118 46 0.000 00 0.076 35 MC 1.08+0.03 e 1.08+0.03
0.23076 0.239 31 0.23076 0.307 51 L AT 108 _3: 108
0.500 00 0.284 46 0.500 00 0.24374 MC 1.11+0.03 -3.22+0.03 1.10+0.03
0.769 24 0.239 31 0.769 24 0.259 77 A=10"6
0.953 09 0.118 46 0.953 09 0.112 63 Ss AT 1.20 1.20
“For an n-point quadrature integration, the integral over  of a function f(\) LI hﬁg i.g(l)t0.0B —3.60 i.;(l)i0.0?»
is given as Z7%f(\,). The modified Gaussian quadrature is explained in MC 1:21 £0.02 _ 3: 47+0.03 1:21 +0.02
Sec. IV. A=4.8424X 10"%(c)
SS AT 1.37 1.37
MC 1.33x0.02 1.33+0.02
) ) o | AT 1.38 —4.11 137
results in an n-point quadrature approach. But this time, MC 1.32+0.03 —~3.68+0.04 1.32+0.03

since the first root point is replaced with zero, the choice of
the sampled coupling parameter points results in a modified
Gaussian quadrature integration. Analytical expression for
the TI integrand simplify considerable at A=0, and may be
calculated using Egs. (10) and (20). If k,,=4 and k,>0, Eq.
(10) gives

(e )o(A=0)=2(0)=1, (29)
and, using Eq. (20), we obtain

BT 1,(A=0)=4",(0)=

apk
”3 2 p3i4)cit,

(30)

rpk
DS I (1/4)CoCy) ks

3

BIA=0)= 1 (0)=~

—0,

and as assumed B7;(A=0)=0. Since one of the simulation
points is omitted, this approach also allows for some savings
in computational expenditure. For example, for the five-point
quadrature TI, the savings is roughly equal to 20%. In this
report, we employ five-point quadratures, and compare the
performance of the Gaussian quadratures with its above
stated modified form. The root points and the integration
weight coefficients for both cases are tabulated in Table II.

V. LIMITING BEHAVIOR
A. Soft sphere and Lennard-Jones solutes

In Table III, the results for the solvation of a single site
Lennard-Jones (LJ) solute are reported and compared to the
solvation of a soft sphere (SS) solute. Note that these two
solutes have the same C,, parameter, but C4=0 for the SS
solute (Table I). Comparison of the SS and LJ results reveal
that, as expected, .7, for the LJ solute lies slightly above the
one for the SS solute. The existence of the negative 1/r®
solute—solvent energy term for the LJ case allows the solute
to come closer to the solvent molecules, thus sampling more
of the higher 1/r'? solute—solvent energy range. Since the
J 1, contribution is proportional to the 1/r'? solute—solvent
energy term, the .77, for the LJ solute is expected to be
larger than the .77, for the SS solute. But, as predicted by the
analytical theory, the inclusion of the attractive 1/r8 interac-

*TI integrand values are in kcal/mol. .7}, and .7 are defined in Eq. (13). AT
is the prediction of the scaled particle type theory, Eq. (15). SS and LJ
stand, respectively, for the soft sphere and Lennard-Jones solutes.

"The estimated statistical errors are calculated using a method of batch
means with batch sizes of 10° MC steps, and correspond to two standard
deviations. The MC results are for run lengths of 6 10° steps ~2.78x 10*
cycles. '

°This A value is the first root point of five-point Gaussian quadrature with
k=4, and these results are repeated in Tables VI and VIL

tion term has little effect on the contribution of the 1/r'2
interaction term, .7},, which is expected to be nearly equal
for both SS and LJ solutes at small X’s.

The upper limit for the applicability of perturbation
treatment, A, , for SS and LJ solutes may approximately be
obtained by using Eq. (15). Substituting the value for C,
(Table 1) with r,=1.2 A gives A, =4.36X107° (unless
stated otherwise, from this point on in this report, for sim-
plicity, k,, and kg are treated as if they are equal to 1). As can
be seen from Table III, the agreement between the analytical
and the simulation results for A<\, is well within the sta-
tistical error bars which are estimated to be about 3%. The
only noticeable exception is .7 at A=107%, for which the
difference is 3.5%. Although it may be the result of insuffi-
cient statistical sampling, this disagreement is most probably
due to the inappropriateness of the perturbation treatment in
the analytical theory at this coupling parameter. This conclu-
sion is based on the observations that the performed simula-
tion runs are comparatively long and seem to be well con-
verged. Also notice that the assumed upper bound of the
perturbation treatment, Eq. (9), can only be taken as a sen-
sible estimate and its validity needs to be further justified
using independent tests. As expected, the agreement between
the analytical theory and the simulation resulis gets worse as
M\ is increased. For example, at 7\=4.84><10"6, which is
slightly larger than the estimated A, , the disagreement in
T values is approximately 10%. This sudden worsening of
the agreement between the results when there is a small in-
crease in the coupling parameter implies that the validity
criteria employed for the perturbation treatment is actually
pretty good, but it may need slight alterations. Therefore, it
can be safely stated that the criteria given by Eq. (9) with
“some” allowance of indeterminance is a quite successful

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994

Downloaded 21 May 2001 to 192.101.100.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



H. Resat and M. Mezei: Molecular solvations

6133

TABLE IV. Uncharged dumbbell and dipolar dumbbell solutes.*®

Solute Theory A7, Ay T A7
A=10"8

UD, DD AT 2.14 ~6.29 c 2.14

UD MC 2.14+0.06 —6.17+0.08 2.14+0.06
DD MC 2.15+0.05 —6.19+0.07 0.12+0.27 2.15%0.05
A=10""

UD, DD AT 2.19 —6.57 c 2.18

UD MC 2.17+0.04 —6.27+0.06 2.17£0.04
DD MC 2.13+0.05 —6.27+0.07 0.05+0.30 2.13%0.05
A=10"°

UD, DD AT 244 -7.57 c 243

uD MC 2.30:0.04 —6.61:+0.06 2.30+0.04
DD MC 2.28+0.04 —6.63+0.07 0.07+0.22 2.28+0.04

*TI integrand values are in kcal/mol. 7}, and F are defined in Eq. (13), and 7, the contribution of the
Coulomb term to the TI integrand for the DD solute, is defined analogously (see Ref. 7). AT is the prediction
of the scaled particle type theory, where the required ensemble average integrals are numerically calculated
using Eq. (18). UD and DD stand, respectively, for the (uncharged) dumbbell and dipolar dumbbell solutes.
bThe estimated statistical errors are calculated using a method of batch means with batch sizes of 10° MC steps,
and correspond to two standard deviations. The MC results are for run lengths of 6X 108 steps.

Analytical theory assumes that the contribution of solute—solvent Coulomb interaction vanishes.

criteria for establishing the upper bound of the perturbation
treatment.

B. Dumbbell and dipolar dumbbell solutes

Possibly the simplest models to study the solvation prop-
erties of multisite solutes are dumbbells. As discussed in Sec.
II B, the determination of A, is not unambiguous for mul-
tisite solutes. One possibility for estimating A,, is the use of
a criterion based on the cavity volumes. This criterion can be
justified on the physical grounds that it is the pressure of the
solvent exerted on the surface of the cavity that requires the
work, and thus gives rise to solvation free energies. Of
course other criteria, such as equal energy surface areas, may
also be employed. Since we are only interested in a rough
Amax Criteria, and since it is conceptually simpler and easy to
implement, we prefer to utilize the A, values obtained by
using the criterion based on the cavity volumes.

To obtain the desired approximate relation, we start with
Eq. (10). For small BV,

(e BV)o=(1—BV)o=1—pv I'(3/4),

or equivalently

(31a)

(BV)o=pv T (3/4)=U; al i“(3/4)()\clz AR
3 ’
(31b)

The above equation shows that two solutes will have ap-
proximately equal cavity volumes if the ensemble averages
of the respective solute—solvent interaction potentials,
{BV)¢’s, are equal. U; in Eq. (31b) stands for the summation
over individual site cavity volumes while taking into consid-
eration the possible overlap of the site cavities to avoid the
overcounting.

Amax for uncharged dumbbell (UD) and dipolar dumbbell
(DD) solutes may be calculated by utilizing Eq. (31b) with
LJ solute as the reference. As reported in Table I, C, param-

eters for the UD and DD solute sites and LJ solute are the
same. Therefore, Eq. (31b) establishes the estimate for
A nax,p for the UD and DD solutes as

(ngmax,DERmax,U . (32)

Depending on the amount of overlap between site cavities of
the dumbbell solute, the factor ¢y, appearing in Eq. (32) can
have values between one (completely overlapping dumbbell
site cavities) and two (nonoverlapping cavities). For some
small molecules, analytical formulas to calculate the volume
of overlapping spheres exist,'"#*35 but, its implementation
gets complicated as the number of sites increase. Note that
the solute sites are kept apart by the chemical bonds and the
involved site cavities are relatively small, therefore, a likely
value of ¢, should be closer to two. Since we are only in-
terested in an approximate upper bound, the use of the most
conservative estimate (¢p=2) would be safer in establishing
the coupling parameter range for which the perturbation
treatment should be valid. Using the A\, for LJ solute, and
using ¢p=2, we obtain A p =~ 2.7 X 1077 as the upper
bound estimate for dumbbell solutes.

In the analytical theory calculations for DD solute, it is
implicitly assumed that (Sec. II C), for very small A, the
contribution of the solute—solvent Coulomb interaction to the
solvation free energy vanishes. Because of this assumption,
and since they have the same short range potential param-
eters, the analytical theory results for UD and DD solutes are
the same.

As in the case of LJ and SS solutes, the agreement be-
tween the analytical theory and the simulation results (Table
IV) is quite satisfactory within the valid A range implying a
good enough convergence of the numerical calculations. At
A= 10_8, MC and analytical results are in agreement within
the statistical fluctuations. Similarly, for A=10""~\ .\, T2
results are well within the error bars. As in the case of LJ
solute, disagreement between the .7 results, 4.6%, is worse
when compared to J7;, results, but an uncertainty of this
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TABLE V. Alanine-dipeptide solute.*”

Conlf. Theory N7, A7 T IS are
A=10"1

C;, o AT 9.12 —26.44 c 9.12

c, MC 9.19+0.37 —26.14%0.54 —0.33£0.97 9.19+0.37
ag MC 8.92+0.34 —25.94+0.51 0.88+1.05 8.92+0.34
A=10"12

C,, o AT 9.37 =27.17 c 9.37

c, MC 8.90+0.34 —25.600.41 0.06+1.05 8.90+0.34
o MC 8.87+0.28 —25.72+0.49 -1.05+1.07 8.87+0.28
A=10"1"

Cq.op AT 9.86 —28.54 c 9.86

C, MC 8.97+0.28 —26.03+0.45 —0.95+0.87 8.97+0.28
ag MC 9.25+0.27 —26.34+0.45 —0.64+1.06 9.25+0.27
A=10710

Cy, o AT 10.86 —31.30 c 10.86

C, MC 9.46+0.26 —26.90£0.35 —1.84%0.73 9.46:£0.26
ay MC 9.47+0.23 —26.83+0.30 —1.06+0.58 9.47+0.23

*T1 integrand values are in kcal/mol. .7, and 5 are defined in Eq. (13), and .77, the contribution of the
Coulomb term to the TI integrand, is defined analogously (see Ref. 7). AT is the prediction of the scaled
particle type theory, where the required ensemble average integrals are numerically calculated using Eq. (18).

For the A range of this table, the analytical theory results are the same for both conformations.

YThe estimated statistical errors are calculated using a method of batch means with batch sizes of 10° MC steps,

and correspond to two standard deviations. The MC results are for run lengths of 6X10° steps.
“Analytical theory assumes that the contribution of solute—solvent Coulomb interaction vanishes.

magnitude is not unusual in solvation free energy
simulations.”® When \ is further increased to 10™5(>\_,),
the disagreement between the analytical and simulation re-
sults becomes quite large, as expected.

Comparison of UD and DD results (Table IV) shows that
the existence of the solute—solvent Coulomb interaction for
the DD solute has only a slight effect on the contributions of
the shorter ranged terms to the TI integrand. Especially the
contribution of the r~¢ interaction term, .7, is almost un-
changed. Although there is a small but noticeable change in
T 19, 2% at A=107", this difference between UD and DD
results is still less than the statistical fluctuations and cannot
be conclusive. This observation strongly supports the validity
of the underlying assumption of the analytical theory in re-
gard to the effects of the solute—solvent Coulomb interaction
as discussed in Sec. II C.

C. Alanine-dipeptide solute

To further investigate the limiting behavior of solvation
free energies, simulations were performed at a few coupling
parameter values for the alanine-dipeptide solute at C; and
ag conformations with the results tabulated in Table V. Com-
parison of the analytical theory with the numerical method
can be used to test if the thermodynamic integration ap-
proach is capable of retaining the correct limiting behavior,
and if the analytical theory is appropriate to study the solva-
tion of this relatively complex system. As in the DD case,
analytical theory calculations assume that the contribution of
the solute—solvent Coulomb interaction to the solvation free
energy and to the TI integrand vanishes. The solvation prop-
erties of alanine-dipeptide were studied in detail in an earlier
work,’ and it was numerically shown that the contribution of
the Coulomb interaction term to the T1 integrand vanishes at
the small X limit (see Figs. 4 and 5 of Ref. 7). Table V further
shows that, at small \’s, contribution of the solute—solvent

Coulomb interaction to the TI integrand is almost zero for
both C5 and a; conformations. This vanishing of the solute—
solvent Coulomb interaction contribution further justifies the
underlying assumption of the analytical theory.

An analysis*! similar to the one given in Egs. (31) and
(32) for UD and DD solutes estimates ¢,,=9.2, and estab-
lishes the upper bound for the perturbation treatment as

QDgep)\max,pep’*“)\max,u OF a5 Appay pep=~6X 10"0.(33)

Table V reflects that, at A=10"'3, the disagreement between
the simulation and the analytical results is about 2%. This is
to be compared to the statistical fluctuations in the simula-
tions which are roughly 4%. But as A\ is increased, the agree-
ment between the numerical and the analytical results rapidly
worsens, becoming approximately 6%, 9%, and 14% for
A=10"'2, 107", and 1079, respectively. There are two pos-
sible sources of this rather large disagreement. First is the
possibility that the phase space is undersampled in the nu-
merical methods. The second and the more likely case is due
to the omission of the Coulomb interactions, especially that
of the hydrogen sites, in the analytical theory.

The results of Tables IV and V justify that, for small
enough A, the overall contribution of the solute—solvent elec-
trostatic interaction to the solvation free energies and to the
TI integrand can be neglected as is done in the analytical
theory. Because of this neglect, it is intrinsically assumed in
the analytical theory that the water hydrogens do not play an
explicit role in the expulsion of the water molecules from the
cavities formed by the solute molecule, and it is also as-
sumed that the water molecules around solute sites can have
any orientation. These deductions follow from the model
used to represent the water molecules, in which the partially
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charged hydrogen sites do not have any short range repulsion
cores around them. Due to the complex structure of the
dipeptide molecule, the charge interaction between the water
hydrogens and the dipeptide sites would prohibit the water
molecules from having certain unfavorable orientations (es-
pecially when they are in the solute pockets). However, these
orientational effects are overlooked in the analytical theory.
These additional effects coming from the solute—solvent
Coulomb interactions are expected to vanish as A—0 as dis-
cussed in Sec. II. The effects of the electrostatic interactions
of the hydrogen sites can be mimicked in the analytical cal-
culations by assigning very small cores to water hydrogens.
This makes the solute sites “see’ the water hydrogens, and,
if the assigned hydrogen cores are tiny, the overall modeling
of the solute—solvent interaction would be left almost un-
changed. Assignment of very small repulsion core param-
eters to water hydrogens is in effect equivalent to consider-
ing the analytical theory to be valid up to a smaller cavity
radius,?® r,~0.75 A. Thus a different A ,,, could be derived,
and the new A, would be considerable smaller than the one
obtained in Eq. (33). In fact, the use of r.=0.75 A estab-
lishes the upper bound of validity as Ayax pep=2X 1072, be-
low which the observed agreement between the analytical
and the molecular simulation results is very good. This ob-
servation strongly points to the effects of the solute—solvent
charge interactions.

Based on the results for the aqueous solvation of
alanine-dipeptide, it can be safely concluded that the analyti-
cal theory developed in this report using the concepts of
scaled particle theory can be used for studying the solvation
properties of complex and of site-charged solutes. But,
whenever complex solutes with charged interaction sites are
involved, a much more conservative range of validity criteria
may need to be employed.

Another outcome of the analytical theory for the multi-
site solutes, as discussed in Sec. II B, is that as A—O0, the
corrections to the TI integrands coming from the additional
solute sites [Eqs. (23)—(26)] asymptotically vanish. This ef-
fectively gives an independent set of solute sites. Therefore,
as long as the same short range site potential parameters, C ),
and Cg, are used in studying the solvation properties of a
certain solute at different conformations, then the asymptotic
limiting behavior should be independent of conformation.
This provides an additional test of the convergence of the
molecular simulations. In our alanine-dipeptide test case, the
interaction potential parameters are the same at both C, and
ap conformations. As Table V reflects, for small enough A,
the simulations at these two different conformations are in
very good agreement with each other, thus confirming the
success of the analytical theory in predicting this particular
aspect of solvation.

VI. TEST OF GAUSSIAN QUADRATURES

In some recent contributions from our laboratory,”*>*?

we have shown that Gaussian quadratures capture all the
essentials of the TI integrand, and quadrature integration can
be successfully utilized in taking the required integrals to
obtain the solvation free energies. The most important advan-
tage of quadrature thermodynamic integration over compara-
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tive schemes such as slow growth is that simulations are
necessary at only a few coupling parameter points which
makes it an economical method.

One intrinsic problem with quadrature integration is that
a certain functional form is assumed from the beginning, and
the results are fitted to that form. For example, in Gaussian
quadratures the integrand is fitted to a polynomial. The actual
TI integrand is of course much more complex, and its func-
tional form for the whole A range is mostly unknown. For the
small X range, our analytical derivation actually gives some
clues regarding the functional form of the TI integrand. Us-
ing Egs. (10) and (20) in Eq. (19a), and performing the poly-
nomial division, we obtain

BT 1(NeN 2T S s (14 715 N1 N,

n=0

(34)

-]

BT g(A)oxhksTk2/4=1 30 e (1475 NFr2lh)\mka,
n=0

It was shown that the use of k,=4 was important in
eliminating the divergencies from the integrand function.
Equation (34) shows its other aspect: when k=k ,=ks=4
(ko=2), the TI integrand is an exact polynomial. Hence, the
use of Gaussian quadrature would be appropriate. This
analysis also predicts that if the set k=k ,=kg=1 (k,=1/2)
is employed, the resulting TI integrand is again a polyno-
mial, but this time for the variable )\”4, and the TI integrand
has an overall multiplying A~ factor making it divergent at
A=0. Therefore, even though the divergent factor can be
accounted for analytically, as done in Ref. 43, for k=1, a
blind application of Gaussian quadratures shouid be avoided.
Alternatively, a variable change from X to A4 can be made,
and Gaussian quadratures can subsequently be used. This
section discusses these points.

To test how well the Gaussian quadratures perform in
evaluating the required integrals, we did some additional MC
simulations for SS, LJ, UD, and DD solutes. Two different
sets of five-point Gaussian quadratures with equal k expo-
nents were used.** Also simulations were performed for each
full solute, i.e., at A=1. Tables VI-IX present the results of
these additional simulations. These simulations combined
with the ones at smaller \’s (Tables III and IV) add up to a
total of 13 simulation points for LJ and SS solutes, and to a
total of 14 simulation points for UD and DD solutes.

For each solute, the combined set of MC simulation re-
sults were first least-square fitted to the functions*’

N

j
3/4 _ il4
A Z2—012,0+2 ap N,
j=1
. (35)
J
MNATg=ago+ D as N,
j=1

and then analytically integrated from zero to one to obtain
the solvation Helmholtz free energies. Results of the analyti-
cal theory at A=0 were used for the constants a, and a4
to assure that the fitting functions have the correct limiting
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TABLE VI. Soft sphere solute.?

TABLE VIII. Uncharged dumbbell solute.

xl/k y=‘?]2 xl/k 3712 ‘76 K

k=1 k=1
0.046 91 20.18+1.77 0.046 91 32.67+3.03 —16.57+0.81 16.11+£2.24
0.230 76 6.16+0.56 0.230 76 10.67x1.02 —11.32+0.54 —0.64*0.51
0.500 00 3.56x0.30 0.500 00 7.11+0.58 —10.00%0.44 —2.89+0.19
0.769 24 2.49%0.20 0.769 24 6.12+0.38 -9.75+0.27 —3.63*+0.14
0.953 09 2.14%0.16 0.953 09 5.37%0.31 —9.37x0.29 —4.00+0.10
k=4 k=4
0.046 91 12 837+218 0.046 91 24 388 * 414 —149.83+1.62 24238 + 413
0.230 76 161.70+8.25 0.230 76 248.8 *£17.1 —33.01%1.38 215.8 *15.7
0.500 00 16.28+1.49 0.500 00 23.50%1.89 —14.54+0.60 8.97+1.33
0.769 24 4.54+043 0.769 24 9.08+0.85 —10.97%0.58 —1.90+0.32
0.953 09 2.40+0.25 0.953 09 5.86£0.27 —9.64+0.23 —3.78+0.10
1. 1.97+0.14 1. 5.82+0.31 —9.85+0.25 —4.02+0.11
AA (fit to 13 MC points) 7.81 AA (fit to 13 MC points) 2.70
AA (five-point Gaussian quadrature 7.81 AA (five-point Gaussian quadrature 2.62

with k=4, method I)° with k=4, method I)°
AA (five-point Gaussian quadrature 7.80 AA (five-point Gaussian quadrature 2.57

with k=4, method II)® with k=4, method I)®
AA (five-point Gaussian quadrature 5.73 AA (five-point Gaussian quadrature -0.41

with k=1, method I)° with k=1, method I)°
AA (five-point Gaussian quadrature 8.23 AA (five-point Gaussian quadrature 2.40

with k=1, method I)®

with k=1, method I)°

*TI integrand and AA values are in kcal/mol. The estimated errors are cal-
culated using a method of batch means with batch sizes of 10° MC steps,
and correspond to two standard deviations. The MC results are for run
lengths of 3X10° steps, except for the run at A=0.046 91 with k=4, for
which the run length is 6X10° steps.
®For the definition of methods I and II, see the text (Sec. IV B).

TABLE VII. Lennard-Jones solute.?

AVE .7-1 2 376 7

k=1
0.046 91 25.33+2.02 ~10.45+047 14.88+1.56
0.230 76 8.45+0.53 —7.25+0.24 1.20£0.30
0.500 00 491040 —5.87+0.25 —0.96+0.17
0.769 24 4.67+0.35 —5.99+0.23 —1.32%+0.14
0.953 09 3.99+0.30 —5.69+0.21 —-1.71x0.10

k=4
0.046 91 12 826 * 257 —78.36+0.77 12748 * 256
0.23076 164.89+6.82 —19.42+0.50 145.46+6.34
0.500 00 18.74+1.43 —9.33+0.39 9.41x1.06
0.769 24 6.85+0.54 —6.78+0.31 0.07+0.24
0.953 09 3.96+0.31 —5.60+0.21 —1.65*0.11
1. 3.79%+0.37 —5.52x0.27 —-1.73+0.10
AA (fit to 13 MC points) 3.09
AA (five-point Gaussian quadrature with k=4, 3.03

method 1)°
AA (five-point Gaussian quadrature 3.03

with k=4, method IT)°
AA (five-point Gaussian quadrature 1.26

with k=1, method 1)

AA (five-point Gaussian quadrature 3.91

with k=1, method II)®

*TI integrand and AA values are in kcal/mol. The estimated errors are cal-
culated using a method of batch means with batch sizes of 10° MC steps,
and correspond to two standard deviations. The MC results are for run
lengths of 3X10° steps, except for the run at A=0.046 91 with k=4, for
which the run length is 6X10° steps.

®For the definition of methods I and II, see the text (Sec. IV B).

*TI integrand and AA values are in kcal/mol. The estimated errors are cal-
culated using a method of batch means with batch sizes of 10° MC steps,
and correspond to two standard deviations. The MC results are for run
lengths of 3x10° steps, except for the run at A=0.046 91 with k=4, for
which the run length is 6X10° steps.

®For the definition of methods I and 11, see the text (Sec. IV B).

behavior, and the series expansion was truncated at N j=8. A
simple calculation, Eq. (30), gives a,,=0.958 kcal/mol for
SS and LJ solutes, and 1.915 kcal/mol for UD and DD sol-
utes. Similarly ago=—2.862 kcal/mol for the LJ solute, and
—5.723 kcal/mol for UD and DD solutes. Varying N ; be-
tween 6 and 11 did not have any considerable effect, and the
change in solvation Helmholtz energies calculated with dif-
ferent N;’s was at most 0.05 kcal/mol for all the solute cases.
These “‘correct” values were then compared to Gaussian
quadrature integration results.

As discussed above, the use of k=1 results in divergent
TI integrands. For this reason, five-point Gaussian quadra-
ture with k=1 results were integrated in two different ways.
The first way involves a bold application of the quadrature
integration ignoring the divergence, which is obviously the
wrong approach to integrate an improper function (in Tables
VI-IX, the label for this approach is k=1, method I). In the
second approach (with label k=1, method II) .7, the total TI
integrand, was first multiplied with A to eliminate the di-
vergence. The corresponding integrand was then generated
using the five-point Gaussian quadrature fit polynomial. The
resulting polynomial function was later multiplied by A~
to account for the initial correction and then analytically in-
tegrated.

For k=4 results, we again used two different ways to
perform the quadrature integral. The first way (with label
k=4, method I) is the usual direct application of five-point
Gaussian quadrature integration. The second approach uses
the scheme reported in Sec. IV. To briefly summarize, the
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TABLE IX. Dipolar dumbbell solute.?

6137

AV T 7 7 7
k=1
0.046 91 33.52%2.36 —17.00%0.65 —0.41+0.43 16.11+1.87
0.230 76 12.21+0.94 —12.08+0.48 —2.90+0.45 —2.77%+0.42
0.500 00 8.75+0.56 —10.87+0.36 —6.19+0.47 —8.31+0.39
0.769 24 8.12+041 —10.66+0.31 —9.37+0.45 —11.91+0.37
0.953 09 8.09+0.37 —10.56+0.29 —11.93+0.47 —14.40+0.40
k=4
0.046 91 24 021 = 409 —148.68+1.48 0.14+0.23 23 873 + 408
0.230 76 242.1*16.6 —32.88+1.34 —0.19+0.29 209.0 154
0.500 00 27.85%£2.37 —15.83*0.69 ~-1.16+0.45 10.86*1.69
0.769 24 10.32+0.86 —11.60x0.60 —4.74+0.44 —6.02+0.48
0.95309 7.65+0.43 —10.29+0.34 —10.22x1.34 —12.85+0.36
1. 7.39+0.48 —10.23+0.39 —12.00+0.67 —14.85+0.58
AA (fit to 13 MC points) -2.61
AA (five-point Gaussian quadrature with k=4, method I)°® -2.72
AA (five-point Gaussian quadrature with k=4, method II)° -2.79
AA (five-point Gaussian quadrature with k=1, method I)® —5.67
AA (five-point Gaussian quadrature with k=1, method II)® —-2.90

“TI integrand and AA values are in kcal/mol. The estimated errors are calculated using a method of batch means
with batch sizes of 10°> MC steps, and correspond to two standard deviations. The MC results are for run
lengths of 3108 steps, except for the run at A=0.046 91 with k=4, for which the run length is 6 10° steps.

bFor the definition of methods I and II, see the text (Sec. IV B).

first quadrature A root point was replaced with A=0, and the
analytical results at A=0 were utilized to obtain the equiva-
lent modified Gaussian quadratures. The results of this ap-
proach is labeled as k=4, method II.

When compared to the solvation free energy results ob-
tained using the set of all the MC simulation points and the
analytical result at A=0, the results (Tables VI-IX) for each
studied solute clearly show that both five-point quadrature
integration approaches with k=4 perform superbly. It is im-
portant to note that the exact solvation free energies are not
known, and the results obtained by fitting to all MC simula-
tion points can only be taken as the “best estimated” values.
For this reason, small deviations from these results cannot be
completely conclusive. Both approaches (methods I and II)
with k=4 seem to be performing equally well, and the de-
viations from the correct results are much smaller than the
statistical errors which are estimated to be about 0.5-0.8
kcal/mo]l depending on the solute and the exponent em-
ployed. This success is mainly due to the fact that the use of
k=4 results in a better sampling of low X\ range, and there-
fore, to the correct estimation of the divergent behavior. An-
other not so surprising outcome is that, if k=1, a straightfor-
ward application of (five-point) Gaussian quadratures
(method I) performs very poorly. But the results of the sec-
ond method with k=1 described above are considerably bet-
ter which is ought to be expected, because the divergence of
the integrand is accounted for from the beginning.

The overall outcome of this section reinforces earlier
conclusions that in order to obtain accurate and reliable
quantitative results for the solvation free energies using the
TI method, it is very important to choose a thermodynamic
path which avoids the singularity at A=0. It is equally im-
portant to choose a fitting and integration scheme which can
properly represent the integrand. As is shown with examples

Downloaded 21 May 2001 to 192.101.100.146J.' r?é‘rﬁ’é}'r%'ﬂx%'nvé’&'b]

here, the analytical theory developed in this report can be
combined with numerical simulation methods via a combi-
nation scheme introduced in Sec. IV to achieve improve-
ments in correct characterization of the limiting behavior at
small coupling parameters, and at the same time to achieve
some savings in computational expenditure.

VIl. SUMMARY AND DISCUSSION

Using the concepts of scaled particle theory, an analyti-
cal method is developed to study the limiting behavior of
solvation free energies. The derivation is based on a
perturbation-type treatment, and successfully incorporates
the effects of the weakly attractive dispersion interaction be-
tween the solute and the solvent molecules. An approximate
criterion for the upper bound of validity for the perturbation
treatment is established in terms of the interaction potential
parameters, and the possible shortcomings of the validity cri-
terion are investigated.

In the first paper of the series,” we have shown that the
use of a polynomial path TI (PP-TI) makes it possible to
“linearize” the integrand hence lowering the integration er-
rors in free energy simulation studies. The focus of this ear-
lier work was the whole coupling parameter range, and it
was shown that the curved nature of the TI integrand (and
the solvation free energy as a function of A} is mainly due to
the Coulomb interactions. In this work, the limiting behavior
of the solvation free energies is analytically determined. As
is shown, the Coulomb term does not have any important
role in the limiting behavior which is essentially determined
by the shortest ranged interaction term. In this respect, this
study complements our previous work. Therefore, combining
the achievements of both works, i.e., using PP-TI to linearize

the integrand and incorporating the analytical theory to ob-
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tain the correct limiting behavior, would further minimize the
integration errors. Although only the equal & exponents are
used in this report, the analytical theory is derived for an
arbitrary combination of exponents, thus, it can be used as
easily in the PP-TI approach which employs a mixed-
exponent set.

The analytical theory also introduces an independent test
for the convergence and the appropriateness of the simula-
tion method employed, where the latter has been a major
concern in free energy simulations.'~®® As the comparison of
the analytical theory and the numerical results indicate, the
use of the thermodynamic integration method to calculate the
solvation free energies is quite successful in accounting for
the predicted divergence. This finding supports the previous
observations that the thermodynamic integration method us-
ing (five-point) Gaussian quadratures with k,>4 is a robust,
powerful, and economical method for studying the free en-
ergy of solvation. The theory developed in this report will
make it even sounder by assuring the correct limiting behav-
ior of the integrand. As is shown in Sec. IV, the analytical
theory results at A=0 can be used as the first root point of a
quadrature integration, thereby further lowering the compu-
tational expenses. An equally useful application of the ana-
lytical theory would be the comparison of the numerical re-
sult at A=0 determined by extrapolating the simulation
results to that of the analytical result at A=0. This compari-
son would form an independent test criterion for the conver-
gence of such molecular simulations.

Comparison of different integration schemes shows that
Gaussian quadrature with exponents k,=4 and k,>0 is
quite successful and should be the preferred choice. The poor
performance of a bold application of Gaussian quadrature
integration with exponents k;,=ks=1 clearly shows the im-
portance of properly accounting for the divergence of the TI
integrand. Another important outcome of this study is that
when creation of particles are involved, it is important to
sample the low coupling parameter values with more weight.
For example, the approaches k=4, method I and k=1,
method II discussed in Sec. VI both take into account the
divergent behavior at A=0. The major difference between
these two approaches is in the selection of the quadrature
root points at which molecular simulations are performed.
Comparison of these two approaches show that k=4, method
I which samples the low A range with more weight is more
successful than the k=1, method II approach. This is an
important point to consider in designing future simulations.

Although, the new analytical theory is incapable of in-
corporating the solute—solvent Coulomb interaction, using
physical arguments and deducing from earlier results, some
assumptions about the role of Coulomb interaction in the
asymptotic limiting behavior are made and tested using mo-
lecular simulations. For this the aqueous solvation of a dipo-
lar dumbbell solute and of alanine-dipeptide at two different
conformations were studied. For charge neutral solute and
solvent molecules, analytical theory predicts that the Cou-
lomb term should not effect the asymptotic limiting behavior.
The results of the studied cases confirm the predictions of the
analytical theory, and thus justify the validity of its underly-
ing assumptions in relation to the treatment of solute—solvent

Coulomb interactions. Based on the results of the alanine-
dipeptide study, when “coreless” proton sites are involved,
or when strong orientational correlations may exist, we sug-
gest to use the analytical theory only at extremely small val-
ues of the coupling parameter.

Note added in proof. After the work has been completed
we came across Ref. 46 also dealing with the analysis of the
singularity discussed in this report but using an alternative
approach.
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APPENDIX A
1. Perturbation treatment formulation

In this appendix we give a detailed derivation of Egs.
(10) and (20). Starting with Eq. (5), and by substituting the
partial derivative of the interaction potential, Eq. (7), the
ensemble average of the exponential term can be written in
terms of ensemble averages of solute—solvent interaction en-
ergy terms as

o Ao
(e—ﬁv)o=1—4’rer0 r? dr[4 r1212~2

A6 Cy
r6

e~ BV

=1-4NhaC ,(r~12e 7AYo + 2056 Ce(r 0 TAY),.
(AD)

Subsequent variable changes to unitless s=r/r, and x=1/ 58
gives (m=6,12)

<r—me—BV>0= PU. fmdx x(m/6~3/2)e—812x2+B6x, (A2)

2r7

c

where B, = C1,\¥12/r2, Bg = CoN*o/rS,and v =4 mri/3 is
the volume of the spherical cavity. Note that B,=1 if r, is
defined as in Eq. (9). But, to reserve generality of the deri-
vation, we assume an arbitrary definition for r, in the rest of
this Appendix. Also note that B, always appears in combi-
nation with the cavity volume as ch}/24, and therefore, there
is no explicit r, dependence in any of the final results.
Let us define the generalized integral

Iv(Blz’Bs)Ef dx x¥" e Bix"+Bex, (A3)
0
Then Eq. (A1) may be written as
(e7PV)o=1~2pv B 3132(B12,B)
+pv Bgly5(B13,Bs)- (Ad)

The results of the 1,(B;,,Bg) integrals for Re[»]>0 and for
B ;>0 are given in terms of the parabolic cylinder functions,
D_,(z), as [Ref. 27, p. 337, Eq. (3.462.1)]
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1(B13,Bg)=(2B1,) " T'(»)e? ™D _ (z), (A5)

where z = —By/\2B1,, and I'(») is the gamma function.
The parabolic cylinder functions may be expressed in terms
of the degenerate hypergeometric functions, ®(a,¥;z) [Ref.
27, p. 1064, Eq. (9.240)]
—opi2,—2H4 v q)( -
Dplz)=2"e { TT(1-p)72]
V27z q)(l—p 3 2)]

- S (A6
T(—pi2) \ 2 *2°2 )

Defining y=z*/2=B2%/4B,,, thus z =
subsequent substitution gives

T'(3/4) (3 1‘)
257 | Pl 2V
I'(1/4) 5 3
VY 3Ty ‘D(Z’ E;y)}’

T'(3/4) {r(1/4) @(1 1 )
2B1% | T'(3/4) 2

2y, and the

I35(B12,Bg) =

(A7)
I1/2(By2,Bg)= 73

+2\/§<I>(i—, ;y)]

Eliminating B in favor of y, B¢ = 2yyB,, then using Egs.
(A7) in Eq. (A4), and utilizing the relation [Ref. 27, p. 1058,
Eq. (9.212.3)]

(a=y)P(a,y+1;y)=a®(a+1,y+1;y)— 7<D(a,7;y(k8)

we obtain

31
(e™”)o=1~puv, F(3/4)B"4[ (4, E;y)

3 I'(1/4)
_2y¢(4 2’y) ‘/_21“(3/4)

¢(l 3, y) ]
4’ 2’
(A9)
Using the expression of y in terms of the coupling pa-
rameter A:
By _ Ci
Y= 4B, 4Cy,

A2ke~ki2, (A10)
and defining ky=kg—k /2, it is obvious that, as long as
k>0, small A corresponds to small y. For a small argument,

the series expansion of the degenerate hypergeometric func-
tions [Ref. 27, p. 1058, Eq. (9.210.1)]

@y N ala+1)y?
y1! p(y+1)2!
a(a+1)(a+2)y?
y(y+1)(y+2) 3!

will prove to be useful. Making use of the expansion for the
degenerate hypergeometric functions, as given above, we de-
rive a series expansion for the required ensemble average

D(a,y;y)=1+

(A11)
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n
w) =1

(e ) =1-puv, r(3/4>B“42 &n

\/ET

n
-a C“‘*x"n"‘E 5,.( "A) , (A12)

2\Cyy

with ay=4pl'(3/4)/3, T'(3/4)=1.225 42, and T'(1/4)/T'(3/4)
=2.958 67. A few leading ¢ coefficients are

~ _1T(1/4)
&=1, ‘fl“_im,
1 1T
=7 3T 12T(3/4)’
1 1 T(1/4)
fa=—73, ES_—RW'

For the k5, =0 case, the generalized integrals /,,(B,,B¢)
are again finite, and their asymptotic expressions can be ob-
tained (see, e.g., Sec. 19 of Ref. 28, or Sec. 9.246 of Ref.
27). But these asymptotic expressions, and the resulting ex-
pressions for (e_B ¥}, and for .7; are relatively complicated.
Since our main interest is in using exponent sets for which
k>0, the k,=<0 case is not pursued in this report.

2. Thermodynamic integration integrand

To calculate the numerator factors in Egs. (19), the en-
semble averages (r ™e 8"}, with m=6 and 12 are needed.
These averages are already calculated in the first part of this
Appendix. After some straightforward algebra, the numera-
tors in Eq. (19b), .4}, and .#7, can be expressed as

kiz
N 12= I pu B i3135(B;,B6),
k (A13)
6
N = N pvBel;2(B12,Bs).

For small y, the series expansion of the generalized integrals,
Egs. (A7), with r=k¢/k,, give (m=6,12)

”“r<3/4)2 Im, (

n=0

N = ult: s RkA)"
m=qn PV 2yCq, ’
(A14)

where {5 ,=(1—2n)§, and {¢ ,= —4nr§,.

APPENDIX B

This appendix deals with the purely repulsive potentials
of the form BV = A*C,/r" for n>3. As in the case of the
6-12 potential (Appendix A), the following variable changes
simplify the derivation: B, = A\%C,/ re, s=rir,, and
x=s""2_As in Appendix A, B,=1 if the cavity radius is
determined by using the criterion SV =1. To reserve gener-
ality of the derivation, we again assume an arbitrary defini-
tion for r, in the rest of this Appendix. Following the steps of
Appendix A, it is straightforward to show that
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(e™F) =1 —2pch,,f0 dx x(1=6/m g Bus"

=1—2pchnl2_6/"(B" ,0), (Bl)

where we have used the definition of integrals /,(B,,,B¢)
given in Eq. (A3) with B,,=B, and B4=0. Therefore z=0,
and hence, the final equations simplify considerably to

27 T(y)

-BV\ _1_ 3/n
(e >0 1 pchn 27 F[(’)’+l)/2]’ (B2)
or equivalently to
amp 2Vm  T()
“BYN —1— — L (\kn 3/n
(™ o=1= == M) 5 T+ AT’
(B3a)
with
6
y=2—~—. (B3b)

n

Similarly, one can also easily derive that [see Egs. (19)]

1 3k 2V T(y)
F= -n 3/n
BT= 1By Xon PUeB Sy G iz
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