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Using’the concepts of scaled particle theory, an analytical theory is developed to investigate the 
limiting behavior of solvation free energies at the particle creation limit. The new theory directly 
incorporates the weakly attractive, dispersion interaction terms into the analytical calculations. For 
neutral molecular systems, the effects of longer ranged electrostatic interactions are also 
incorporated, albeit in an ad hoc way, and the validity of the utilized assumptions are then 
demonstrated with numerical examples. It is shown that it is possible to blend the numerical and 
analytical methods to increase the reliability of quantitative results, and, at the same time, to achieve 
savings on computational expenditure for certain types of calculations. Different methods of 
performing the thermodynamic integration in solvation free energy calculations are also compared. 
Studied examples clearly show the importance of proper treatment of the divergence at the particle 
creation limit in obtaining quantitatively reliable results for the solvation free energies. 

I. INTRODUCTION 

Understanding the behavior of many chemical systems 
requires the determination of the chemical equilibria in solu- 
tion which can be calculated if the free energy differences 
between the involved chemical states are known. For this 
reason, chemical equilibrium studies have mainly concen- 
trated on the calculation of free energy differences.‘-8 Ex- 
amples of systems investigated include the free energy dif- 
ference between the two conformations of the same solute, or 
the free energy change associated with a transmutation, or 
the free energy of oxidation or activation. Free energy of 
solvation in which an ideal gas particle is transformed into a 
fully interacting particle in solution also belongs to this cat- 
egory. Calculation of the solvation free energies is particu- 
larly important, because, for relatively weak attractive sys- 
tems, it is related to the thermodynamics of hydrophobic 
solvation, an essential but not so well understood subject in 
biological sciences.’ 

There have been numerous attempts to theoretically cal- 
culate solvation free energies using both numerical and ana- 
lytical methods. For example, analytical scaled particle 
theory (SIT)‘“-12 has often been used in studying the hydro- 
phobic solvation.10-‘7 In the original implementation of the 
SPT, the solute and the solvent molecules were represented 
as hard-sphere particles. In later applications, a perturbation 
treatment was used to allow for realistic repulsive interac- 
tions between the solute and the solvent particles,15 but the 
weakly attractive dispersive interactions were not incorpo- 
rated. Another often used analytical approach which is more 
empirical in character compared to the SIT is based on sol- 
vent accessible surface areas. 18-20 Also, some approximation 
schemes have been introduced for including the effects of the 
weakly attractive solute-solvent interactions to the solvation 
free energies.“.21 

Solvation free energies can, in principle, be calculated 
for any system using numerical molecular simulations. But, 
it is now well established that the molecular simulation ap- 

proaches are subject to numerical uncertainties which arise 
from the possible undersampling of the phase space. This is 
especially true for the class of solvation free energy calcula- 
tions done in a way that a null point solute particle is allowed 
to gradually grow until it reaches the desired size and the 
shape of the studied solute. In this gradual growth approach 
to numerical calculation of the solvation free energies, the 
most serious of the encountered problems arises at the limit 
of creating a cavity from an uninteracting point particle. This 
is the limit when the size of the gradually created solute is 
considerably smaller than a cavity which can accommodate 
the full sized solute. Availability of an analytical method at 
this small cavity limit would make it possible to combine the 
analytical and numerical methods. Use of a combined ap- 
proach would increase the reliability and the quantitative ac- 
curacy of the calculated solvation free energies. 

The issue of eliminating the encountered problems at the 
very small solute limit from the numerical calculations is the 
subject of this report. Using the concepts of SET, we first 
develop an analytical formula for the limiting value of the 
solvation free energy of a weakly attractive solute molecule. 
In the second part, we combine the new analytical approach 
with numerical simulation methods to study the solvation 
properties of some model solutes. The robustness and the 
reliability of this combined approach is demonstrated by sev- 
eral examples. 

The layout of this report is as follows. In Sec. II, we first 
present the theory of creating a Lennard-Jones particle in a 
molecular solvent, and the theory is then generalized to mo- 
lecular solutes. Section III presents the details of the numeri- 
cal calculations employed in this study. Section IV develops 
and compares the different schemes for combining the ana- 
lytical and the numerical simulation methods in calculating 
the solvation free energies. It is followed by the results pre- 
sented in Sets. V and VI. Section V deals with the limiting 
behavior of solvation of various solutes. Numerical and ana- 
lytical approaches are contrasted, and the convergence char- 
acteristics of molecular simulations and the applicability of 
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the new analytical theory are discussed. Section VI investi- 
gates the appropriateness of the use of Gaussian quadratures 
in the thermodynamic integration (TI) method of calculating 
the solvation free energies. Section VII summarizes the im- 
portant aspects and results of this work, and establishes the 
connection to our previous work, Ref. 7. 

II. THEORY 

A. Single site solute 

1. Free energy of cavify formafion: Perturbation 
freefmenf 

The main aim of this report is to calculate an analytical 
formula for the solvation free energies at the limit when the 
created solute is very small. At this limit, the interaction 
between the solute and the solvent particles in the Hamil- 
tonian can be presented as a perturbing potential energy 
term.15 Separating the Hamiltonian in this way, the Helm- 
holtz free energy of creating a cavity in solution, AA, can be 
expressed in terms of the following rigorous expression:22 

j3AA = - ln(exp( - PV)), . (1) 

Here p= l/k,T is the inverse of the temperature expressed in 
energy units, and (***). corresponds to a canonical ensemble 
average consisting of pure solvent at constant volume, num- 
ber density, and temperature. V is the solute-solvent interac- 
tion potential energy (throughout this report, V and u, re- 
spectively, correspond to solute-solvent interaction potential 
and to volume, with subscripts specifying certain contribu- 
tions). In a wide range of studies, an interaction site model 
(ISM) representation23 is used to accommodate the appropri- 
ate solute-solvent and solvent-solvent intermolecular inter- 
actions. Within ISM representation, and for a Lennard-Jones- 
type interaction, the solute-solvent interaction potential is 
expressed as 

V(X)=C V,(X)=hkC 4 ” 2 
iJ 

iJ %[( J”-(q], (2) 

where the sum j goes over all distinct sites of all the solvent 
molecules. Similarly, the sum i is over the distinct sites of 
the solute molecule. A is the so-called coupling parameter 
and as it is changed from 0 to 1, the null solute particle gets 
transformed into a fully interacting solute. Therefore the size 
(or the radius) of the solute particle is governed by the value 
of the coupling parameter. The exponent k is an arbitrary 
positive exponent included for convenience in studying the 
asymptotic behavior of the free energy change curve as the 
solute particle is created. 

For a single site spherical solute, the required ensemble 
average appearing in Eq. (1) may be expressed as 

dbi e-‘svpi,o(r, ,ai), (3) 

where dni=dS1,/~ (sZ-Sdni=873 is the normalization 
constant over the Euler angle integrals). If the solute is lo- 
cated at the origin, pi.0 (ri t.ni) in Eq. (3) is the normalized 
probability distribution function for having the ith solvent 
molecule with its center of mass at ri with an orientation pi 

in terms of its Euler angles. Since Cipi,o(ri,fii) is normal- 
ized (number of solvent molecules is conserved), the above 
equation may also be written as 

(e-Pv)o=l+~ d3ri d~i[e-~v-l]pi,o(ri,~i). 
i s I 

(4) 
Let us suppose that the cavity created by the solute par- 

ticle is small enough that the solute can only interact with a 
single site of one of the solvent molecules at a time. Then, 
since it is the probability distribution function with respect to 
pure solvent state, we have15 pi,c(ri ,,Ri)=po(r,fi)=p/Ns . 
Here p is the number density of solvent molecules, and N, is 
the number of solvent molecules. If the longest ranged pair 
interaction decays faster than re3, for ISMs, integrating Eq. 
(4) by parts results in a more convenient form:24 

(e-Bv)o= 1 + F I d3r r F c-P”. 
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The above integral has the form of a second virial coefficient 
and can be done analytically for some forms of the interac- 
tion potential. 

Using this approach, Postma et al. have derived the nec- 
essary expressions for a repulsive r-12-type potential be- 
tween the solute and the solvent molecules (soft sphere 
solute).15 To see the effect of the inclusion of the longer 
ranged weak attractive interaction, we generalize their deri- 
vation to a 6-12-type potential which is a more general form 
of Lennard-Jones-type potential (the following derivation is 
quite general, and the C6 parameters can have negative val- 
ues as well). Let us rewrite the solute-solvent interaction 
potential energy, Eq. (2), between a single site solute and a 
multisite solvent molecule as 

pv= c Ah2 $.+& 9, 
j I J 

where sumrnation over j goes over the distinct solvent sites, 
and Cjm = 4PEj~n (for the rest of this report, script m is 
equal either to 6 or to 12, and stands, respectively, for rm6 or 
r-l2 terms). In Eq. (6), to make it more general, separate 
exponents for the coupling parameter are included. This gen- 
eralization would be needed when a polynomial path thermo- 
dynamic integration is employed.7.25 Notice that, because of 
the assumption that the solute particle can only interact with 
one site of a solvent molecule at a time, the ensemble aver- 
ages with respect to the pure solvent state require only the 
knowledge of the singlet solvent distribution function.” The 
singlet solvent distribution, as stated above, is uniform and 
corresponds to a constant pi,a(ri ,fizi), i.e., without any spa- 
tial or angular dependence, which makes further simplifica- 
tion possible. Therefore, Eq. (6) may be written in a math- 
ematically more convenient form as 

c 
pv= iku --.k Aks c6 

i-l2 7, 

with C, G 4PZjEjUim = CjCi,m. For positive Cg, one GUI 

similarly define the molecular solute-solvent Lennard-Jones 
interaction parameters em,,, and omol as 
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4P%ncPmmol” cm - (8) 

Before proceeding with performing the integrals, let us 
define an eJgrective cavity radius, rc , which would also set a 
length scale for the problem. One obvious choice for rc 
would be to use the thermal fluctuations of the system,15 thus 
rc may be defined using the relation pV= 1. Rather than 
using this definition, we use only the shortest ranged term in 
the mteractlon potential VI2 and simply set pV,*= 1. This 
results in a much simpler expression for the cavity radius? 

r1*zzC12Xk12. 
c (9) 

We would like to point out that the cavity radius always 
factors out of the final expressions, and is defined only to 
introduce a length scale to the problem with the aim of con- 
ceptual simplification. 

One proceeds by substituting the partial derivative of Eq. 
(7) into Eq. (5). The resulting integral can be expressed in 
terms of the degenerate hypergeometric and gamma 
functions.27*28 Using the polynomial expansion of the degen- 
erate hypergeometric functions for small argument, the ex- 
pression for the free energy of cavity formation can be writ- 
ten as a series expansion in terms of the coupling parameter 
(details of the derivation are given in Appendix A). Thus, the 
required ensemble average appearing in the free energy of 
cavity formation, Eq. (l), can be expressed as [Eq. (A12)] 

(e-pv)o= 1-pv,r(3/4) 2 5 (10) 
n=O 

Here &‘s are the series expansion coefficients and their val- 
ues for small n are tabulated in Appendix A. The exponent 
kA and the cavity volume v, are defined as 
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A general derivation of AA for a purely repulsive solute- 
solvent intermolecular interaction of type Vm l/r” (n>3) is 
reported in Appendix B. Notice that the series expansion 
expression in Eq. (10) has a close resemblance with the cor- 
responding SPT expression for a hard-sphere solute dis- 
solved in a hard-sphere solvent.” As noted by Postma 
et LTIL.,‘~ to obtain an equivalent hard-sphere solute having 
volume v HS , the volume of the soji solute particle v c needs 
to be scaled [e.g., I’(3/4) factor in Eq. (13)]. As shown in 
Appendix B, the scaling factor to determine the equivalent 
hard-sphere solute depends on the exponent of the potential 
employed,29 and for /3V = hknC,/r”, it is given as [Eq, 
O-32)1 
vHS-‘gsvc 9 

26 r(Y) 
where gs= 2~ r[ty+ q/2] and y=2-?. 

n (14) 
As it should, g,--, 1 at the n -+m limit (which corresponds to 
hard-sphere interactions). 

4Tr: 4~ 
V,’ - = 3 (Ah2q2)1/4. 

3 

Equation (10) is valid if and only if k,>O which is the case 
for most commonly utilized exponent sets. For example, as 
discussed in a previous communication, Ref. 7, for k12=4, 
the choice k,-3 gives an almost linear TI integrand in the 
polynomial path TI approach (PP-TI).= Therefore, it was 
concluded that in most cases {k12 ,k,} ={4,%3} would be a 
pretty good choice for the PP-TI approach, and with this 
choice of the exponent set, kh>O. ka is also positive when 
the exponents are equal, k 12 = k, . For this reason, our inter- 
est concentrates on the case when kA>O. But, it should be 
noted that for kA<O, the integral in Eq. (5) is still finite, and 
an asymptotic limiting behavior similar to Eq. (10) may be 
obtained (Appendix A). 

One important feature of the series expansion in Eq. (10) 
is that the leading term of the series is not affected by the 
inclusion of the attractive l/r6 term. This observation in a 
way assures the applicability of the perturbation treatments 
to calculate the free energy of cavity formation for a soft- 
core solute with an attractive tail. To have an understanding 
of how many terms to keep in the series expansion, we con- 
sider, as an example, a carbon-like particle in aqueous solu- 
tion. Here the solute interacts only with the oxygen site of 
the water molecules, and typical solute-solvent interaction 
values are (+=3.25 8, and p~=O.25. Using the experimental 
structure data for water, the closest distance that the oxygens 
of the different water molecules can come together is ap- 
proximately 2.4 A, thus the assumption that the solute can 
interact with one water molecule only would be valid up to 
the cavity radius of 1.2 A.‘* Using the definition of the cavity 
radius, Eq. (9), an upper limit for A expansion, A,,, , may be 
determined:30 

r,=1.2 ~-+Xk’2=r~2/C,2~6X10-6. ma% (15) 

Using k 12 = k, = 1, i.e., kA= l/2, gives the following series 
expansion for our example case: 

(16) 

Substituting the respective values, we see that at 
X=X,, =6X 10e6, the contribution of the n = 1 term is less 
than 0.2%, and the contribution of n>l terms is still smaller 
and, therefore, negligible. 

2. Thermodynamic integration method 

By turning off the longer range attractive term C,=O and 
by setting k,,= 1, we obtain the result of Postma et ~1.‘~: 

(e-Bv)o= I- 4Tp 3 r(3/4)c;:4x1’4= 1 -pvJ(3/4). 

(13) 

In the thermodynamic integration (TI) approach to cal- 
culating the free energy of solvation one starts with the con- 
stitutive equation3’ 

/3AA=p(a,-Ao)=/01( F) dh, 
x 

(17) 
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where (.**)h corresponds to an ensemble average of the en- 
closed quantity with energy function E(X,XN) in the Boltz- 
mann factor. If E(A,XN)=V(X,XN)+E(A=O,XN) then it can 
be rigorously shown, for any observable @, that 

0% 

With the defining path given by Eq. (7), and using Eq. (18), 
the integrand in Eq. (17), Y(X), may be expressed as7 (m 
=6,12) 

=c P.9jm(A)=x (-)m’6 M#, (194 
m m 

with 

J’,(A)= k Ak~Cm(r-~e-PV)k,O, 

In the small A limit, the analytical expression for the en- 
semble average appearing as the denominator in Eq. (19a), 
%A), is already reported in the previous section, Eq. (10). 
The calculation of the numerators, N(A), is quite similar and 
the details of their calculation may be found in Appendix A. 
Quoting from Eq. (A14), we have 

.&(A)= 2 pv,r(3/4) i c,,, 
n=O 

(20) 
The coefficients c,,, are given in Appendix A. We note that 
c&~=O, so the series expansion for M6 starts with the 12 = 1 
term. Therefore, the limiting behavior of the TI integrand is 
solely determined by the leading term of the repulsive l/r’* 
contribution as in the case of the purely repulsive interaction 
potential, and has a A dependence of the form A(kr2’4)-1. 
This finding shows, as stated in Ref. 1, that when the k 
exponents are equal, the divergent behavior of the TI inte- 
grand can be deduced from the shortest ranged intermolecu- 
lar solute-solvent interaction. Thus, as can be seen from Eq. 
(20). choosing the exponent k,,34 effectively gets rid of the 
divergence in the TI integrand. 

Substitution of Eqs. (10) and (20) into Eq. (19a) gives 
the final expression for the TI integrand: 

k12 PV,r(3/4)X~=05,[(C6/2~)hkAiR 

B’gA)=X1-pv r(3/4)~;~o~n[(c6/2~)~kA]n’ c 
(20 

where L=512.~-56,~- 

B. Solute with multisites 

In generalizing the analytical expressions in Eqs. (lo), 
(20), and (21) for the solvation free energy of a small single- 
site solute to multisite solutes, we notice that difference 
would arise from the exclusion of the solvent molecules not 

only from the volume occupied by the labeled solute site 
located at the origin but also from the volume occupied by 
the other solute sites as well. It is clear from the derivation 
given in Appendix A that to calculate the solvation free en- 
ergy or the corresponding TI integrand, the ensemble aver- 
ages of the solute-solvent site-site interaction potential 
terms with respect to pure solvent state is needed. Within 
ISM presentation, the solute-solvent molecular interaction 
potential is site-site additive, or in other words 

V=C Vij=C Vi=C Vj, (22) 
Li i j 

where the sum overj and i goes over the distinct sites of the 
solvent and the solute molecules, respectively. Vi is the in- 
teraction potential energy of the solute site i with the solvent, 
as given by Eq. (7) for each solute site. For an observable of 
the fOMl ~=Si~i, the integrals 
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may be expressed as 

Zo,i= 
I 

d3r @in ek(r) 
k 

= 
I 

d3r @$?i(r)n ek(r) 
k#i 

= 
I 

d3r @@i(r)n [ 1 +fk(r)], (24) 
k#i 

where the product over k goes over the distinct solute sites. 
fk(r) is the Mayer f function for the solute site k and defined 
as fk(r) = ek(r) - 1 = emBvkcr) - 1. fk(r) is approxi- 
mately equal to -pvk when vk is small, and is approxi- 
mately equal to -1 when vk is very large, i.e., when r is 
inside the repulsion core of solute site k. Expanding the 
product results in 

Zo,i= 
I 

d3r &igi(r), (254 

?Yi(r)E1+C fk+ c fkfk’+**’ . (2W 
kZi k,k’#i 

k+k’ 

Since the f functions approximately vanish outside the cavi- 
ties, the terms of the function gi(r) would converge very 
rapidly. A close look at the gi(r) function reveals that it is 
approximately equal to unity except at points r belonging to 
a cavity formed by solute sites other than the site i, and at 
these points ZFi(r) approximately vanishes. Second and 
higher order terms in Eq. (25b) correspond to the overlap of 
two or more solute sites. For very small A, the cavities cre- 
ated by solute sites are small and the overlap of the site 
cavities would not be considerable. Therefore, the contribu- 
tion of the second or higher order terms are expected to have 
little importance. 

In the implementation in this report, rather than truncat- 
ing the series for q(r) at a certain level, we use Eq. (25a) 
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and numerically calculate the value of the required integrals 
(a three-dimensional integral for each solute site) at each A 
point. Even though we use numerical methods to calculate 
the necessary integrals, analytical treatment of some simple 
cases helps to understand the methodology. 

To give an example, let us consider a two-site solute 
assuming that the fk functions can be approximately repre- 
sented as equal to - 1 inside the cavities of solute sites and 0 
elsewhere (as in the case of hard-sphere interactions). Two 
sites of the solute are separated by a bond distance rl . When 
the sum of the cavity radius of the two sites is smaller than 
rl, the site cavities do not overlap. If this is the case, then the 
contribution of the sites to the ensemble average of any op- 
erator, @=@t+e2, may be calculated as [total solute- 
solvent interaction energy may similarly be split as V(r) = V(i 
=l;r)+V(i=2;r)] 

I o,l= 
I 

d3r ~~(r)e-pV(l;r)e-BV(2;r+rl) 

=-v2@,(-q) 
I 

d3r &l(r)e-pv(‘;r) , 

Z o,2= 
I 

&. ~2(r)e-pv(l;r-rl)e-pv(*:r) 
(26) 

=-v1@2(rl) 
I 

d3r @2(r)e-~V(2;‘). 

Since the site cavity volumes v , and v 2 in Eq. (26) are small, 
and assuming a smooth functional form for the operand, the 
integrand values would not vary appreciably over the cavi- 
ties. This argument justifies the approximation in passing 
from the first to the second equality in the above equations. 
Comparison of Eq. (26) with Eq. (23) shows that the solva- 
tion properties of a multisite solute may be studied by con- 
sidering the contribution of the individual solute sites sepa- 
rately as if the other sites do not exist, and the required 
corrections can, to a good degree, be incorporated at the end. 

The above example clearly shows that the necessary cor- 
rections are proportional to site cavity volumes, hence, they 
vanish as X+0. The A=0 limit corresponds to the limit at 
which the molecular solute has chemically bonded point in- 
teracting sites. Since site cavities do not occupy any volume, 
corrections to the ensemble average of any operator pi 
would vanish, and the system would be equivalent to an 
independent set of spherical point cavities placed into the 
solvent. 

When A is increased, the spheres will start to overlap at 
a certain value. Although the calculation of the overlap vol- 
ume is possible in most cases, the calculation becomes rather 
cumbersome as the number of sites increases.32-35 Note that 
at around A,, , which corresponds to the upper limit for the 
perturbation treatment to hold, a typical site cavity radius is 
in the same range as the bond lengths of chemically occur- 
ring systems. Thus around A-A,, , the overlap between the 
solute sites, and hence the necessary corrections, may .be 
considerable. Therefore, approximations introduced in Eq. 
(26) can only be used at much smaller A values. 

An additional ambiguity for the solvation of a multisite 
solute is the determination of the upper bound A,, , for 
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which the perturbation treatment would be valid. Fortunately, 
Eq. (13) gives a hint that the upper bound criterion may be 
based on the cavity volume. This point is further discussed in 
Sec. IV 

C. Molecular solutes with site charges 

In most of the studies in the literature, and in some cases 
of this report, the molecular interaction sites also carry 
charges. Unfortunately, a similar analytical derivation when 
the solute molecule also interacts with the solvent molecules 
via Coulomb forces is not currently feasible. But it is well 
established that the Coulomb interaction can be renormalized 
giving rise to a damped l/r-type behavior.36 As our deriva- 
tion in this report shows, the addition of the longer ranged 
weakly attractive l/r6 term to the pair interaction does not 
change the divergence of the total TI integrand. Therefore, 
we make the ad hoc assumption that the inclusion of the site 
charges would not change the conclusion that the divergence 
of the TI integrand is determined by the shortest ranged re- 
pulsive interaction term. Even though we cannot justify it 
rigorously at this point, it is tempting to conclude, in analogy 
with Eq. (ll), that the above stated assumption would be 
valid as long as 

12kl>k12. (27) 

Concerning the contribution of the Coulomb term to the 
solvation free energy or to the TI integrand, the ensemble 
average of the Coulomb interaction between any one of the 
charged solute sites and any one of the solvent sites diverges 
when treated separately. But, if the solute and solvent mol- 
ecules are charge neutral and if A is very small, the pure 
solvent state ensemble average of the total solute-solvent 
Coulomb interaction 

(PVl)x=o=Ak’~ ( y) 
id 0 

(28) 

vanishes. This vanishing is exact at A=0 and holds only 
approximately for nonzero A’s Because of the uniform sol- 
vent distribution assumption (see Sec. II A), the pure solvent 
state ensemble average of the local solvent charge density is 
conserved at each space point around the solute. Due to this 
local solvent charge neutrality, site-site solute-solvent Cou- 
lomb interaction contributions are cancelled, and therefore, 
the ensemble average in Eq. (28) vanishes. This predicted 
cancellation depends on the degree of goodness of the uti- 
lized assumptions and on the validity of the perturbation 
treatment. Thus, the deviation of the ensemble average 
(V,e-Bv)x=o ( w c is proportional to the corresponding TI hi h 
integrand, 9-r) from nullity would actually reflect on the 
goodness of the underlying assumptions and on the validity 
of perturbation treatment. The vanishing of the Coulomb 
term contribution to TI at the A=0 limit was numerically 
shown for the case of aqueous solvation of alanine-dipeptide 
in a recent communication (see Figs. 4 and 5 of Ref. 7). It is 
further investigated in Sec. V of this study. 
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TABLE I. Interaction potential and molecular geometry parameters.” 

Site c,, (X 10-3) c6 4 

Soluteb 
ss 2516.6 0 0.0 
LJ 2516.6 1228.8 0.0 
uDc 2516.6 1228.8 0.0 
DD’ 2516.6 1228.8 20.5 
Solventd 
0 582 595 -0.834 
H 0 0 0.417 

‘Site i of a molecule interacts with site j of a different molecule as 
C12,ij/r’2-C6,ijir6+qiqj~r, where Clz,ij = JG and c6,;j 

=tktk Cl2 and c6 are in units of kcaYmo1 A” and kcal/mol A6, 

boor the molecular parameters of the alanine-dipeptide solute, see Ref. 7. 
‘Dumbbells have two chemically bonded sites which are separated by I= 1.5 
A. The sites have the same short range potential parameters. 

?‘he water bond lengths are loH=0.9572 A and lW=1.5139 A. 

III. COMPUTATIONS 

In this report, the aqueous solvation properties of a soft 
sphere particle, of a Lennard-Jones particle, and of a dumb- 
bell with two fused equivalent sites separated by a bond 
length of 1.5 A are studied. The solvent liquid water is rep- 
resented by the TIP3P mode1.37 To investigate the contribu- 
tion and effects of the Coulomb term, the aqueous solvation 
of a dipolar dumbbell which has the same molecular geom- 
etry and short range potential parameters of the dumbbell 
solute but also carries partial site charges f0.5e is also stud- 
ied. The molecular model parameters of all simulated sys- 
tems are reported in Table I. In addition, to investigate the 
solvation properties of a complex solute, solvation properties 
of alanine-dipeptide at C7 and cu, conformations were simu- 
lated at a few small coupling parameter values. Alanine- 
dipeptide was the subject of a recent study in our group, Ref. 
7, which tabulates the solute molecular model parameters. 

All simulations were performed using constant volume 
canonical ensemble Monte Carlo (MC) simulations. Face- 
centered-cubic periodic boundary conditions were employed. 
Water-water interactions were truncated at a spherical cutoff 
of 7.75 A, and the minimum image convention was used for 
the solute-solvent interactions. All simulations involved a 
single solute and 215 solvent molecules at T=298 K. Addi- 
tional relevant details of the simulation runs are tabulated in 
Tables III-IX. 

The sampling rate was accelerated by using force 
biasing,38 as well as by using a preferential sampling of type 
l/R,,, where R,, is the distance between the nearest solute 
interaction site and the solvent molecules. The convergence 
problem in the molecular simulations is more pronounced 
when the coupling parameter is small. The encountered con- 
vergence problem partly arises from the fact that around 
X-O the solute-solvent interaction contribution becomes 
very small, and the motion of the molecules are mainly de- 
termined by the interaction of the solvent molecules among 
themselves. Thus, to enhance the contribution of the solute to 
the underlying dynamics of the system, certain methodologi- 
cal tricks may prove to be useful. In addition to preferential 
sampling and force bias, we have employed a selection 

scheme in which the solute has an eight times higher selec- 
tion probability with respect to the selection probability of 
the solvent molecules. When the particular studied property 
is strongly related to the solute-solvent interactions, the em- 
ployment of a selection rule in which the solute is moved as 
much as possible is important in improving the statistics and 
the convergence.39 Availability of such enhanced solute se- 
lection schemes in calculating the solvation free energies is 
probably the most important advantage of the Monte Carlo 
simulation method over the corresponding molecular dynam- 
ics method. 

IV. QUADRATURE INTEGRATION 

As we have shown in Ref. 7, the TI approach using 
Gaussian quadrature integration with four to nine points 
were quite successful in studying the solvation free energies 
at different conformations of a small biomolecule. Based on 
this success and on the results reported in the following sec- 
tions, we propose to incorporate the analytical theory devel- 
oped in this report into the TI approach to calculate the sol- 
vation free energies using quadratures. This section gives the 
details of how this incorporation can be achieved, and states 
a particular integration scheme which will be employed later 
in this report. 

As is shown in Sec. II A 1, and also in Sec. V, the ana- 
lytical theory is valid up to A,,, and typical values of A,, 
for realistic systems are smaller than 10e6. This approxi- 
mately corresponds to the first Gaussian quadrature point 
with exponent k=4. Let us say that an n-point Gaussian 
quadrature is chosen to perform molecular simulations, and 
various TI integrand terms corresponding to different solute- 
solvent interaction contributions, namely 5 with i = 12, 6, 
and 1 in this report, are calculated. In the most straightfor- 
ward implementation, the simulation results at n different X 
points can be supplemented by analytical results at p small h 
points. Overall n+p results can then be fitted to a certain 
functional form, or (n +p)-point quadrature integration can 
be employed. The drawback of this approach is that the first 
root point of the Gaussian quadratures is generally very 
small and additional use of analytical results at p additional 
very small X points would bias the integration toward the 
small X range. Another drawback is that when two of the root 
points are very close to each other, the errors arising from the 
statistical fluctuations produces unphysical oscillations in the 
resulting polynomial fit to the integrand. Simulations at very 
small X generally carry the largest statistical error, and there- 
fore, the mismatch between the results at two very close 
adjacent points may be considerable. Due to the statistical 
fluctuations, this type of mismatches between two simulation 
results, or a simulation result and an analytical result, is ac- 
tually unavoidable. When this mismatch happens, forcing the 
fitting polynomial to go through all the data points (as in 
quadrature integration) gives rise to pronounced oscillations 
in the polynomial fit. 

To avoid these complications, we propose and imple- 
ment the following approach. The simulation Bt the first root 
point of the n-point Gaussian quadrature is simply omitted, 
and the n - 1 simulation results are supplemented by the ana- 
lytical result at h=O, which is exact. This approach again 
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TABLE II. Root points and weight functions of five-point quadratures.” 

Gaussian quadrature Modified Gaussian quadrature 

Ai fFi Xi Fi 

0.046 91 0.118 46 o.ooo 00 0.076 35 
0.230 76 0.239 3 1 0.230 76 0.307 5 1 
0.500 00 0.284 46 0.500 00 0.243 74 
0.769 24 0.239 3 1 0.769 24 0.259 77 
0.953 09 0.118 46 0.953 09 0.112 63 

‘For an n-point quadrature integration, the integral over A of a function f(A) 
is given as Zyg$(Xi). The modified Gaussian quadrature is explained in 
Sec. IV. 

results in an n-point quadrature approach. But this time, 
since the first root point is replaced with zero, the choice of 
the sampled coupling parameter points results in a modiJied 
Gaussian quadrature integration. Analytical expression for 
the TI integrand simplify considerable at X=0, and may be 
calculated using Eqs. (10) and (20). If k,*=4 and k,>O, Eq. 
(10) gives 

(e-pV)o(h=O)=!BfO)=l, (29) 

and, using Eq. (20), we obtain 

p.Y-*2(A=o)=M,*(o)= q r(3/4)C;;4, 

Tpk6 
(30) 

~&(h=0)=-&“6(0)=--?;-r(1/4)C,C;;’4kkA 

-0, 
and as assumed @7,(X=0) =O. Since one of the simulation 
points is omitted, this approach also allows for some savings 
in computational expenditure. For example, for the five-point 
quadrature TI, the savings is roughly equal to 20%. In this 
report, we employ five-point quadratures, and compare the 
performance of the Gaussian quadratures with its above 
stated modified form. The root points and the integration 
weight coefficients for both cases are tabulated in Table II. 

V. LIMITING BEHAVIOR 

A. Soft sphere and LennardJones solutes 

In Table III, the results for the solvation of a single site 
Lennard-Jones (LJ) solute are reported and compared to the 
solvation of a soft sphere (SS) solute. Note that these two 
solutes have the same Cl2 parameter, but C6=0 for the SS 
solute (Table I). Comparison of the SS and LJ results reveal 
that, as expected, Y12 for the LJ solute lies slightly above the 
one for the SS solute. The existence of the negative l/P 
solute-solvent energy term for the LJ case allows the solute 
to come closer to the solvent molecules, thus sampling more 
of the higher llr12 solute-solvent energy range. Since the 
Y12 contribution is proportional to the l/r-l2 solute-solvent 
energy term, the Y12 for the LJ solute is expected to be 
larger than the .Y12 for the SS solute. But, as predicted by the 
analytical theory, the inclusion of the attractive l/P interac- 

6132 H. Resat and M. Mezei: Molecular salvations 

TABLE III. Soft sphere and Lennard-Jones solutes.“xb 

Solute Theory 

A= lo-’ 
ss AT 

MC 
LJ AT 

MC 
A= W6 
ss AT 

MC 
LJ AT 

MC 
X=4.8424X W6(c) 
ss AT 

MC 
LJ AT 

MC 

A3’4.T 12 ), “43 6 X3/4? 

1.08 . . . 1.08 
1.08t0.03 . . . 1.08?0.03 
1.08 -3.23 1.08 
1.111ro.03 -3.2220.03 1.10+0.03 

1.20 . . . 1.20 
1.21?0.03 . . . 1.21&0.03 
1.20 -3.60 1.20 
1.21t0.02 -3.4720.03 1.2lkO.02 

1.37 . . . 1.37 
1.33kO.02 . . . 1.33kO.02 
1.38 -4.11 1.37 
1.32kO.03 -3.68+0.04 1.3220.03 

aTi integrand values are in kcal/mol. .7,* and Y6 are defined in Eq. (13). AT 
is the prediction of the scaled particle type theory, Eq. (15). SS and LJ 
stand, respectively, for the soft sphere and Lennard-Jones solutes. 

%e estimated statistical errors are calculated using a method of batch 
means with batch sizes of IO5 MC steps, and correspond to two standard 
deviations. The MC results are for run lengths of 6X IO6 steps -2.78X 104 
cycles. 

“This A value is the first root point of five-point Gaussian quadrature with 
k=4, and these results are repeated in Tables VI and VII. 

tion term has little effect on the contribution of the llr12 
interaction term, rL2, which is expected to be nearly equal 
for both SS and LJ solutes at small )c’s. 

The upper limit for the applicability of perturbation 
treatment, X,, , for SS and LJ solutes may approximately be 
obtained by using Eq. (15). Substituting the value for Cl2 
(Table I) with r,=1.2 A gives h,,=4.36X10W6 (unless 
stated otherwise, from this point on in this report, for sim- 
plicity, k 12 and k6 are treated as if they are equal to 1). As can 
be seen from Table III, the agreement between the analytical 
and the simulation results for XSX,, is well within the sta- 
tistical error bars which are estimated to be about 3%. The 
only noticeable exception is Y6 at X= 10m6, for which the 
difference is 3.5%. Although it may be the result of insuffi- 
cient statistical sampling, this disagreement is most probably 
due to the inappropriateness of the perturbation treatment in 
the analytical theory at this coupling parameter. This conclu- 
sion is based on the observations that the performed simula- 
tion runs are comparatively long and seem to be well con- 
verged. Also notice that the assumed upper bound of the 
perturbation treatment, Eq. (9), can only be taken as a sen- 
sible estimate and its validity needs to be further justified 
using independent tests. As expected, the agreement between 
the analytical theory and the simulation results gets worse as 
A is increased. For example, at X=4.84X10W6, which is 
slightly larger than the estimated A,,, the disagreement in 
& values is approximately 10%. This sudden worsening of 
the agreement between the results when there is a small in- 
crease in the coupling parameter implies that the validity 
criteria employed for the perturbation treatment is actually 
pretty good, but it may need slight alterations. Therefore, it 
can be safely stated that the criteria given by Eq. (9) with 
“some” allowance of indeterminance is a quite successful 
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TABLE IV. Uncharged dumbbell and dipolar dumbbell solutes.**b 

Solute 

A= IO-* 
UD, DD 
UD 

DD 
A= lo-’ 
UD, DD 
UD 
DD 
A= lo+ 
UD, DD 
UD 
DD 

Theory 

AT 
MC 
MC 

AT 
MC 
MC 

AT 
MC 
MC 

X349- 12 A”49- 6 s, A3149- 

2.14 -6.29 C 2.14 
2.14r0.06 -6.17-cO.08 . . . 2.14?0.06 
2.1520.05 -6.1920.07 0.1220.27 2.1550.05 

2.19 -6.57 C 2.18 
2.17+0.04 -6.27-cO.06 . . . 2.17+0&I 
2.13kO.05 -6.2720.07 0.05 kO.30 2.13kO.05 

2.44 -7.57 C 2.43 
2.30?0.04 -6.61-cO.06 . . . 2.30+0.04 
2.28?0.04 -6.63t0.07 0.07zbO.22 2.28+0.04 

Pn integrand values are in kcal/mol. 7,s and S6 are defined in E!q. (13), and Y,;. the contribution of the 
Coulomb term to the TI integrand for the DD solute, is defined analogously (see Ref. 7). AT is the prediction 
of the scaled particle type theory, where the required ensemble average integrals are numerically calculated 
using Bq. (18). UD and DD stand, respectively, for the (uncharged) dumbbell and dipolar dumbbell solutes. 

bThe estimated statistical errors are calculated using a method of batch means with batch sizes of ld MC steps, 
and correspond to two standard deviations. The MC results are for run lengths of 6X lo6 steps. 

‘Analytical theory assumes that the contribution of solute-solvent Coulomb interaction vanishes. 

criteria for establishing the upper bound of the perturbation 
treatment. 

B. Dumbbell and dipolar dumbbell solutes 

Possibly the simplest models to study the solvation prop- 
erties of multisite solutes are dumbbells. As discussed in Sec. 
II B, the determination of A,, is not unambiguous for mul- 
tisite solutes. One possibility for estimating A,, is the use of 
a criterion based on the cavity volumes. This criterion can be 
justified on the physical grounds that it is the pressure of the 
solvent exerted on the surface of the cavity that requires the 
work, and thus gives rise to solvation free energies. Of 
course other criteria, such as equal energy surface areas, may 
also be employed. Since we are only interested in a rough 
Amax criteria, and since it is conceptually simpler and easy to 
implement, we prefer to utilize the A,, values obtained by 
using the criterion based on the cavity volumes. 

To obtain the desired approximate relation, we start with 
Eq. (10). For small PV, 

(e-pV)o~( 1 -gV),= 1 -pu,F(3/4), 

or equivalently 
(314 

The above equation shows that two solutes will have ap- 
proximately equal cavity volumes if the ensemble averages 
of the respective solute-solvent interaction potentials, 
(pV),‘s, are equal. Ui in Eq. (31b) stands for the summation 
over individual site cavity volumes while taking into consid- 
eration the possible overlap of the site cavities to avoid the 
overcounting. 

A,, for uncharged dumbbell (UD) and dipolar dumbbell 
(DD) solutes may be calculated by utilizing Eq. (31b) with 
LJ solute as the reference, As reported in Table I, C,, param- 

eters for the UD and DD solute sites and LJ solute are the 
same. Therefore, Eq. (31b) establishes the estimate for 
A mmP for the UD and DD solutes as 

4% max,/F A max.LJ * (32) 

Depending on the amount of overlap between site cavities of 
the dumbbell solute, the factor 500 appearing in Eq. (32) can 
have values between one (completely overlapping dumbbell 
site cavities) and two (nonoverlapping cavities). For some 
small molecules, analytical formulas to calculate the volume 
of overlapping spheres exist,‘7,23*35 but, its implementation 
gets complicated as the number of sites increase. Note that 
the solute sites are kept apart by the chemical bonds and the 
involved site cavities are relatively small, therefore, a likely 
value of cpo should be closer to two. Since we are only in- 
terested in an approximate upper bound, the use of the most 
conservative estimate (cp~=2) would be safer in establishing 
the coupling parameter range for which the perturbation 
treatment should be valid. Using the A,, for LJ solute, and 
using (PD=~, we obtain Amax,D w 2.7 X 10m7 as the upper 
bound estimate for dumbbell solutes. 

In the analytical theory calculations for DD solute, it is 
implicitly assumed that (Sec. II C), for very small A, the 
contribution of the solute-solvent Coulomb interaction to the 
solvation free energy vanishes. Because of this assumption, 
and since they have the same short range potential param- 
eters, the analytical theory results for UD and DD solutes are 
the same. 

As in the case of LJ and SS solutes, the agreement be- 
tween the analytical theory and the simulation results (Table 
IV) is quite satisfactory within the valid A range implying a 
good enough convergence of the numerical calculations. At 
A= 10-s, MC and analytical results are in agreement within 
the statistical fluctuations. Similarly, for A= 10e7mA,, , 5, 
results are well within the error bars. As in the case of LJ 
solute, disagreement between the r6 results, 4.6%, is worse 
when compared to 9’$ results, but an uncertainty of this 
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TABLE V. Alanine-dipeptide solute.a.b 

Conf. Theory x314Y- 12 A”/dF 6 9- I x3/4y 

xc 10-13 

c7~ ffR 

c7 

c7~ aR 

c7 

c7, aR 

C7 

x”= ,o-1o 

c7, aR 

c7 

a, 

AT 
MC 
MC 

AT 
MC 
MC 

AT 
MC 
MC 

AT 
MC 
MC 

9.12 -26.44 
9.19eo.37 -26.14?0.54 
8.9220.34 -25.9420.51 

9.37 ~27.17 
8.9020.34 -25.6O-cO.41 
8.8720.28 -25.7220.49 

9.86 -28.54 
8.97+0.28 - 26.03 to.45 
9.2520.27 -26.34-cO.45 

10.86 -31.30 
9.4620.26 -26.9020.35 
9.47-cO.23 -26.83t0.30 

c 9.12 
-0.3320.97 9.1920.37 

0.88?1.05 8.9250.34 

0.06c+l.O5 
-1.05’1.07 

-0.9&0.87 
-0.642 1.06 

c 10.86 
- 1.84ZO.73 9.4620.26 
- 1.06+0.58 9.4720.23 

9.37 
8.90t0.34 
8.87?0.28 

9.86 
8.97+0.28 
9.25 to.27 

aTI integrand values are in kcaUmo1. Yt2 and &, are defined in Eq. (13). and Yt, the contribution of the 
Coulomb term to the TI integmnd, is defined analogously (see Ref. 7). AT is the prediction of the scaled 
particle type theory, where the required ensemble average integrals are numerically calculated using Eq. (18). 
For the X range of this table, the analytical theory results are the same for both conformations. 

bThe estimated statistical errors are calculated using a method of batch means with batch sizes of lo5 MC steps, 
and correspond to two standard deviations. The MC results are for run lengths of 6X lo6 steps. 

‘Analytical theory assumes that the contribution of solute-solvent Coulomb interaction vanishes. 

magnitude is not unusual in solvation free energy 
simulations.40 When X is further increased to 10-6(>&,,,), 
the disagreement between the analytical and simulation re- 
sults becomes quite large, as expected. 

Comparison of UD and DD results (Table IV) shows that 
the existence of the solute-solvent Coulomb interaction for 
the DD solute has only a slight effect on the contributions of 
the shorter ranged terms to the TI integrand. Especially the 
contribution of the rm6 interaction term, &, is almost un- 
changed. Although there is a small but noticeable change in 
&, 2% at X=10e7, this difference between UD and DD 
results is still less than the statistical fluctuations and cannot 
be conclusive. This observation strongly supports the validity 
of the underlying assumption of the analytical theory in re- 
gard to the effects of the solute-solvent Coulomb interaction 
as discussed in Sec. II C. 

C. Alanine-dipeptide solute 

To further investigate the limiting behavior of solvation 
free energies, simulations were performed at a few coupling 
parameter values for the alanine-dipeptide solute at C, and 
L~R conformations with the results tabulated in Table V. Com- 
parison of the analytical theory with the numerical method 
can be used to test if the thermodynamic integration ap- 
proach is capable of retaining the correct limiting behavior, 
and if the analytical theory is appropriate to study the solva- 
tion of this relatively complex system. As in the DD case, 
analytical theory calculations assume that the contribution of 
the solute-solvent Coulomb interaction to the solvation free 
energy and to the TI integrand vanishes. The solvation prop- 
erties of alanine-dipeptide were studied in detail in an earlier 
work,7 and it was numerically shown that the contribution of 
the Coulomb interaction term to the TI integrand vanishes at 
the small X limit (see Figs. 4 and 5 of Ref. 7). Table V further 
shows that, at small X’s, contribution of the solute-solvent 

Coulomb interaction to the TI integrand is almost zero for 
both C7 and aR conformations. This vanishing of the solute- 
solvent Coulomb interaction contribution further justifies the 
underlying assumption of the analytical theory. 

An analysis4’ similar to the one given in Eqs. (31) and 
(32) for UD and DD solutes estimates (ppe+,=9.2, and estab- 
lishes the upper bound for the perturbation treatment as 

P&mx,pep~ hmx,LJ or as hmaxpep=6X lo-“. 
(33) 

Table V reflects that, at A= IO-“, the disagreement between 
the simulation and the analytical results is about 2%. This is 
to be compared to the statistical fluctuations in the simula- 
tions which are roughly 4%. But as h is increased, the agree- 
ment between the numerical and the analytical results rapidly 
worsens, becoming approximately 6%, 9%, and 14% for 
X=10-‘* lo-“, and lo-“, respectively. There are two pos- 
sible souices of this rather large disagreement. Fist is the 
possibility that the phase space is undersampled in the nu- 
merical methods. The second and the more likely case is due 
to the omission of the Coulomb interactions, especially that 
of the hydrogen sites, in the analytical theory. 

The results of Tables IV and V justify that, for small 
enough X, the overall contribution of the solute-solvent elec- 
trostatic interaction to the solvation free energies and to the 
TT integrand can be neglected as is done in the analytical 
theory. Because of this neglect, it is intrinsically assumed in 
the analytical theory that the water hydrogens do not play an 
explicit role in the expulsion of the water molecules from the 
cavities formed by the solute molecule, and it is also as- 
sumed that the water molecules around solute sites can have 
any orientation. These deductions follow from the model 
used to represent the water molecules, in which the partially 
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charged hydrogen sites do not have any short range repulsion 
cores around them. Due to the complex structure of the 
dipeptide molecule, the charge interaction between the water 
hydrogens and the dipeptide sites would prohibit the water 
molecules from having certain unfavorable orientations (es- 
pecially when they are in the solute pockets). However, these 
orientational effects are overlooked in the analytical theory. 
These additional effects coming from the solute-solvent 
Coulomb interactions are expected to vanish as A-+0 as dis- 
cussed in Sec. II. The effects of the electrostatic interactions 
of the hydrogen sites can be mimicked in the analytical cal- 
culations by assigning very small cores to water hydrogens. 
This makes the solute sites “see” the water hydrogens, and, 
if the assigned hydrogen cores are tiny, the overall modeling 
of the solute-solvent interaction would be left almost un- 
changed. Assignment of very small repulsion core param- 
eters to water hydrogens is in effect equivalent to consider- 
ing the analytical theory to be valid up to a smaller cavity 
radius,30 r, aO.75 A. Thus a different A,, could be derived, 
and the new A,, would be considerable smaller than the one 
obtained in Eq. (33). In fact, the use of r-,=0.75 A estab- 
lishes the upper bound of validity as A,,,pep=2X 10-12, be- 
low which the observed agreement between the analytical 
and the molecular simulation results is very good. This ob- 
servation strongly points to the effects of the solute-solvent 
charge interactions. 

Based on the results for the aqueous solvation of 
alanine-dipeptide, it can be safely concluded that the analyti- 
cal theory developed in this report using the concepts of 
scaled particle theory can be used for studying the solvation 
properties of complex and of site-charged solutes. But, 
whenever complex solutes with charged interaction sites are 
involved, a much more conservative range of validity criteria 
may need to be employed. 

Another outcome of the analytical theory for the multi- 
site solutes, as discussed in Sec. II B, is that as A-0, the 
corrections to the TI integrands coming from the additional 
solute sites [Eqs. (23)-(26)] asymptotically vanish. This ef- 
fectively gives a.n independent set of solute sites. Therefore, 
as long as the same short range site potential parameters, Cl2 
and Cgr are used in studying the solvation properties of a 
certain solute at different conformations, then the asymptotic 
limiting behavior should be independent of conformation. 
This provides an additional test of the convergence of the 
molecular simulations. In our alanine-dipeptide test case, the 
interaction potential parameters are the same at both C7 and 
c~ conformations. As Table V reflects, for small enough A, 
the simulations at these two different conformations are in 
very good agreement with each other, thus confirming the 
success of the analytical theory in predicting this particular 
aspect of solvation. 

VI. TEST OF GAUSSIAN QUADRATURES 

In some recent contributions from our laboratory,7,25*42 
we have shown that Gaussian quadratures capture all the 
essentials of the TI integrand, and quadrature integration can 
be successfully utilized in taking the required integrals to 
obtain the solvation free energies. The most important advan- 
tage of quadrature thermodynamic integration over compara- 

tive schemes such as slow growth is that simulations are 
necessary at only a few coupling parameter points which 
makes it an economical method. 

One intrinsic problem with quadrature integration is that 
a certain functional form is assumed from the beginning, and 
the results are fitted to that form. For example, in Gaussian 
quadratures the integrand is fitted to a polynomial. The actual 
TI integrand is of course much more complex, and its func- 
tional form for the whole A range is mostly unknown. For the 
small A range, our analytical derivation actually gives some 
clues regarding the functional form of the TI integrand. Us- 
ing Eqs. (10) and (20) in Eq. (19a), and performing the poly- 
nomial division, we obtain 

03 

L39--i2(~)m~ 
k12 14- 1 

c ~12,n(l+ ~~~~~~~~~~~~~~~~~ 
n=O 
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m 

L%(h) ocA h-kn’4-1 2 y6J 1 + Q$,~IZ’~)A”~A. 

n=O 

It was shown that the use of k12>4 was important in 
eliminating the divergencies from the integrand function. 
Equation (34) shows its other aspect: when k = k,, = k6 = 4 
(kA=2), the TI integrand is an exact polynomial. Hence, the 
use of Gaussian quadrature would be appropriate. This 
analysis also predicts that if the set k = k , 2 = k6 = 1 (kA= l/2) 
is employed, the resulting TI integrand is again a polyno- 
mial, but this time for the variable Au4, and the TI integrand 
has an overall multiplying A-1’4 factor making it divergent at 
X=0. Therefore, even though the divergent factor can be 
accounted for analytically, as done in Ref. 43, for k= 1, a 
blind application of Gaussian quadratures should be avoided. 
Alternatively, a variable change from A to A1’4 can be made, 
and Gaussian quadratures can subsequently be used. This 
section discusses these points. 

To test how well the Gaussian quadratures perform in 
evaluating the required integrals, we did some additional MC 
simulations for SS, LJ, UD, and DD solutes. Two different 
sets of five-point Gaussian quadratures with equal k expo- 
nents were used.44 Also simulations were performed for each 
fuZZ solute, i.e., at A=l. Tables VI-IX present the results of 
these additional simulations. These simulations combined 
with the ones at smaller A’s (Tables III and IV) add up to a 
total of 13 simulation points for LJ and SS solutes, and to a 
total of 14 simulation points for UD and DD solutes. 

For each solute, the combined set of MC simulation re- 
sults were first least-square fitted to the functions45 

Nj 
A3’4T12=a 12,0+ C a12,jAi’4y 

j=l 

Nj 
k1’4~6=U6,0+ 2 U6,jhj14, 

j=l 

(35) 

and then analytically integrated from zero to one to obtain 
the solvation Helmholtz free energies. Results of the analyti- 
cal theory at A=0 were used for the constants a12,o and ag,a 
to assure that the fitting functions have the correct limiting 
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TABLE VI. Soft sphere solute.’ 

xl/k 

k=l 
0.046 91 
0.230 76 
0.500 oil 
0.769 24 
0.953 09 
k=4 
0.046 91 
0.230 76 
0.500 ocl 
0.769 24 
0.953 09 

1. 

AA (fit to 13 MC points) 
AA (five-point Gaussian quadrature 

with k=4, method I)b 
AA (five-point Gaussian quadrature 

with k=4, method II)b 
AA (five-point Gaussian quadrature 

with k = 1, method I)b 
AA (five-point Gaussian quadrature 

with k= 1, method IBb 

7=.F, , 

20.18kl.77 
6.16kO.56 
3.5620.30 
2.4920.20 
2.14t0.16 

12 8372218 
161.7OZ8.25 

16.2821.49 
4.5420.43 
2.40Z0.25 

1.97r0.14 

7.81 
7.81 

7.80 

5.73 

8.23 

TI integrand and AA values are in kcal/mol. The estimated errors are cal- 
culated using a method of batch means with batch sizes of IO5 MC steps, 
and correspond to two standard deviations. The MC results are for run 
lengths of 3X106 steps, except for the run at X=0.04691 with k=4, for 
which the run length is 6X IO6 steps. 

boor the definition of methods I and II, see the text (Sec. IV B). 

TABLE VII. Lennard-Jones solute.a 
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TABLE VIII. Uncharged dumbbell solute.a 

,,,llk 
52 -51 9- 

k=l 
0.046 91 32.6723.03 - 16.5720.81 16.1122.24 
0.230 76 10.67+1.02 -11.3220.54 -0.64+0.51 
0.500 00 7.llkO.58 - 10.00+0.44 -2.8920.19 
0.769 24 6.1220.38 -9.7520.27 -3.63kO.14 
0.953 09 5.3720.31 -9.3720.29 -4.OO-eo.10 

k=4 
0.046 91 24388 + 414 -149.8321.62 24238 ? 413 
0.230 76 248.8 217.1 -33.01 -c 1.38 215.8 + 15.7 
0.500 co 23.502 1.89 - 14.54+0.60 8.97? 1.33 
0.769 24 9.08kO.85 - 10.9720.58 - 1.9020.32 
0.953 09 5.8610.27 -9.6420.23 -3.78t0.10 

1. 5.8220.31 -9.85kO.25 -4.02kO.11 

AA (fit to 13 MC points) 2.70 
AA (five-point Gaussian quadrature 2.62 

with k=4, method I)b 
AA (five-point Gaussian quadrature 2.57 

with k=4. method IBb 
AA (five-point Gaussian quadrature -0.41 

with k= 1, method I)b 
AA (five-point Gaussian quadrature 2.40 

with k = 1, method IBb 

@II integrand and AA values are in kcahmol. The estimated errors are cal- 
culated using a method of batch means with batch sizes of 10’ MC steps, 
and correspond to two standard deviations. The MC results are for run 
lengths of 3X IO6 steps, except for the run at X=0.046 91 with k=4, for 
which the run length is 6X IO6 steps. 

boor the definition of methods I and II, see the text (Sec. IV B). 

k=l 
0.046 91 25.33t2.02 - 10.45+0.47 
0.230 76 8.4520.53 -7.2520.24 
0.500 00 4.91~040 -5.87kO.25 
0.769 24 4.67kO.35 -5.9920.23 
0.953 09 3.99t0.30 -5.69kO.21 

k=4 
0.046 91 12 826 -c 257 -78.3650.77 
0.230 76 164.8926.82 - 19.42kO.50 
0.500 00 18.741’1.43 -9.3320.39 
0.769 24 6.85f0.54 -6.7820.31 
0.953 09 3.9620.31 -5.6OkO.21 

1. 3.7920.37 -5.5220.27 

AA (fit to 13 MC points) 
AA (five-point Gaussian quadrature with k =4, 

method I)b 
AA (five-point Gaussian quadrature 

with k =4, method IBb 
AA (five-point Gaussian quadrature 

with k = 1, method I)b 
AA (five-point Gaussian quadrature 

with k = 1, method II)b 

14.8821.56 
1.20t0.30 

-0.96t0.17 
-1.3220.14 
-1.71+0.10 

12 748 t 256 
145.46k6.34 

9.4121.06 
0.07t0.24 

-1.65+0.11 

-1.73+0.10 

3.09 
3.03 

3.03 

1.26 

3.91 

behavior, and the series expansion was truncated at Nj=8. A 
simple calculation, Eq. (30), gives aiz,s=0.958 kcal/mol for 
SS and LJ solutes, and 1.915 kcal/mol for UD and DD sol- 
utes. Similarly &s#= -2.862 kcal/mol for the LJ solute, and 
-5.723 kcal/mol for UD and DD solutes. Varying Nj be- 
tween 6 and 11 did not have any considerable effect, and the 
change in solvation Helmholtz energies calculated with dif- 
ferent Nj’s was at most 0.05 kcal/mol for all the solute cases. 
These “correct” values were then compared to Gaussian 
quadrature integration results. 

As discussed above, the use of k = 1 results in divergent 
TI integrands. For this reason, five-point Gaussian quadra- 
ture with k = 1 results were integrated in two different ways. 
The first way involves a bold application of the quadrature 
integration ignoring the divergence, which is obviously the 
wrong approach to integrate an improper function (in Tables 
VI-IX, the label for this approach is k = I, method I). In the 
second approach (with label k = 1, method II) K the total TI 
integrand, was first multiplied with X3’4 to eliminate the di- 
vergence. The corresponding integrand was then generated 
using the five-point Gaussian quadrature fit polynomial. The 
resulting polynomial function was later multiplied by Am3” 
to account for the initial correction and then analytically in- 
tegrated. 

TI integrand and AA values are in kcal/mol. The estimated errors are cal- 
culated using a method of batch means with batch sizes of IO5 MC steps, 
and correspond to two standard deviations. The MC results are for run 
lengths of 3X IO6 steps, except for the run at h=0.046 91 with k=4, for 
which the run length is 6X lo6 steps. 

bFor the definition of methods I and II, see the text (Sec. IV B). 

For k=4 results, we again used two different ways to 
perform the quadrature integral. The first way (with label 
k=4, method I) is the usual direct application of five-point 
Gaussian quadrature integration. The second approach uses 
the scheme reported in Sec. IV To briefly summarize, the 
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TABLE IX. Dipolar dumbbell solute.a 

AIlk 
62 s, s, r 

k=l 
0.046 91 33.5222.36 - 17.OO-cO.65 -0.41 kO.43 16.11+1.87 
0.230 76 12.21 kO.94 - 12.0820.48 -2.9020.45 -2.7720.42 
0.500 00 8.7520.56 - 10.87-eO.36 -6.19kO.47 -8.31 kO.39 
0.769 24 8.12+0.41 - 10.66?0.31 -9.37rto.45 -11.91t0.37 
0.953 09 8.0920.37 -10.5620.29 -11.9320.47 - 14.40?0.40 

k=4 
0.046 91 24 021 k 409 - 148.68+ 1.48 0.14kO.23 23 873 rf: 408 
0.230 76 242.1? 16.6 -32.88tl.34 -0.19kO.29 209.0 k15.4 
0.500 00 27.8522.37 - 15.83kO.69 - 1.1620.45 10.8621.69 
0.769 24 10.32?0.86 -11.6010.60 -4.74rto.44 -6.02kO.48 
0.953 09 7.6520.43 - IO.2920.34 -10.2221.34 -12.8520.36 

1. 7.3920.48 - 10.23ZO.39 - 12.0020.67 - 14.8520.58 

AA (fit to 13 MC points) -2.61 
AA (five-point Gaussian quadrature with k=4, method I)b -2.72 
AA (five-point Gaussian quadrature with k=4, method II)b -2.79 
AA (five-point Gaussian quadrature with k= 1, method I)b -5.67 
AA (five-point Gaussian quadrature with k= 1, method II)b -2.90 

‘TI integrand and AA values are in kcal/mol. The estimated errors are calculated using a method of batch means 
with batch sizes of lo5 MC steps, and correspond to two standard deviations. The MC results are for run 
lengths of 3X lo6 steps, except for the run at h=0.046 91 with k=4, for which the run length is 6X IO6 steps. 

bFor the definition of methods I and II, see the text (Sec. IV B). 
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first quadrature A root point was replaced with X=0, and the 
analytical results at A=0 were utilized to obtain the equiva- 
lent modified Gaussian quadratures. The results of this ap- 
proach is labeled as k=4, method II. 

When compared to the solvation free energy results ob- 
tained using the set of all the MC simulation points and the 
analytical result at X=0, the results (Tables VI-IX) for each 
studied solute clearly show that both five-point quadrature 
integration approaches with k=4 perform superbly. It is im- 
portant to note that the exact solvation free energies are not 
known, and the results obtained by fitting to all MC simula- 
tion points can only be taken as the “best estimated” values. 
For this reason, small deviations from these results cannot be 
completely conclusive. Both approaches (methods I and II) 
with k=4 seem to be performing equally well, and the de- 
viations from the correct results are much smaller than the 
statistical errors which are estimated to be about OS-O.8 
kcal/mol depending on the solute and the exponent em- 
ployed. This success is mainly due to the fact that the use of 
k=4 results in a better sampling of low A range, and there- 
fore, to the correct estimation of the divergent behavior. An- 
other not so surprising outcome is that, if k = 1, a straightfor- 
ward application of (five-point) Gaussian quadratures 
(method I) performs very poorly. But the results of the sec- 
ond method with k = 1 described above are considerably bet- 
ter which is ought to be expected, because the divergence of 
the integrand is accounted for from the beginning. 

The overall outcome of this section reinforces earlier 
conclusions that in order to obtain accurate and reliable 
quantitative results for the solvation free energies using the 
TI method, it is very important to choose a thermodynamic 
path which avoids the singularity at A-O. It is equally im- 
portant to choose a fitting and integration scheme which can 
properly represent the integrand. As is shown with examples 

here, the analytical theory developed in this report can be 
combined with numerical simulation methods via a combi- 
nation scheme introduced in Sec. IV to achieve improve- 
ments in correct characterization of the limiting behavior at 
small coupling parameters, and at the same time to achieve 
some savings in computational expenditure. 

VII. SUMMARY AND DISCUSSION 

Using the concepts of scaled particle theory, an analyti- 
cal method is developed to study the limiting behavior of 
solvation free energies. The derivation is based on a 
perturbation-type treatment, and successfully incorporates 
the effects of the weakly attractive dispersion interaction be- 
tween the solute and the solvent molecules. An approximate 
criterion for the upper bound of validity for the perturbation 
treatment is established in terms of the interaction potential 
parameters, and the possible shortcomings of the validity cri- 
terion are investigated. 

In the first paper of the series,7 we have shown that the 
use of a polynomial path TI (PP-TI) makes it possible to 
“linearize” the integrand hence lowering the integration er- 
rors in free energy simulation studies. The focus of this ear- 
lier work was the whole coupling parameter range, and it 
was shown that the curved nature of the TI integrand (and 
the solvation free energy as a function of A) is mainly due to 
the Coulomb interactions. In this work, the limiting behavior 
of the solvation free energies is analytically determined. As 
is shown, the Coulomb term does not have any important 
role in the limiting behavior which is essentially determined 
by the shortest ranged interaction term. In this respect, this 
study complements our previous work. Therefore, combining 
the achievements of both works, i.e., using PP-TI to linearize 
the integrand and incorporating the analytical theory to ob- 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 Downloaded 21 May 2001 to 192.101.100.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6136 H. Resat and M. Mezei: Molecular solvations 

tain the correct limiting behavior, would further minimize the 
integration errors. Although only the equal k exponents are 
used in this report, the analytical theory is derived for an 
arbitrary combination of exponents, thus, it can be used as 
easily in the PP-TI approach which employs a mixed- 
exponent set. 

Coulomb interactions. Based on the results of the alanine- 
dipeptide study, when “coreless” proton sites are involved, 
or when strong orientational correlations may exist, we sug- 
gest to use the analytical theory only at extremely small val- 
ues of the coupling parameter. 

The analytical theory also introduces an independent test 
for the convergence and the appropriateness of the simula- 
tion method employed, where the latter has been a major 
concern in free energy simulations.‘-@ As the comparison of 
the analytical theory and the numerical results indicate, the 
use of the thermodynamic integration method to calculate the 
solvation free energies is quite successful in accounting for 
the predicted divergence. This finding supports the previous 
observations that the thermodynamic integration method us- 
ing (five-point) Gaussian quadratures with k,,>4 is a robust, 
powerful, and economical method for studying the free en- 
ergy of solvation. The theory developed in this report will 
make it even sounder by assuring the correct limiting behav- 
ior of the integrand. As is shown in Sec. IV, the analytical 
theory results at X=0 can be used as the first root point of a 
quadrature integration, thereby further lowering the compu- 
tational expenses. An equally useful application of the ana- 
lytical theory would be the comparison of the numerical re- 
sult at X=0 determined by extrapolating the simulation 
results to that of the analytical result at h=O. This compari- 
son would form an independent test criterion for the conver- 
gence of such molecular simulations. 

Note added in proofi After the work has been completed 
we came across Ref. 46 also dealing with the analysis of the 
singularity discussed in this report but using an alternative 
approach. 
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APPENDIX A 

1. Perturbation treatment formulation 

Comparison of different integration schemes shows that 
Gaussian quadrature with exponents k,,=4 and kA>O is 
quite successful and should be the preferred choice. The poor 
performance of a bold application of Gaussian quadrature 
integration with exponents k 12 = k, = 1 clearly shows the im- 
portance of properly accounting for the divergence of the TI 
integrand. Another important outcome of this study is that 
when creation of particles are involved, it is important to 
sample the low coupling parameter values with more weight. 
For example, the approaches k=4, method I and k = 1, 
method II discussed in Sec. VI both take into account the 
divergent behavior at X=0. The major difference between 
these two approaches is in the selection of the quadrature 
root points at which molecular simulations are performed. 
Comparison of these two approaches show that k =4, method 
I which samples the low X range with more weight is more 
successful than the k= 1, method II approach. This is an 
important point to consider in designing future simulations. 

In this appendix we give a detailed derivation of Eqs. 
(10) and (20). Starting with Eq. (5), and by substituting the 
partial derivative of the interaction potential, Eq. (7), the 
ensemble average of the exponential term can be written in 
terms of ensemble averages of solute-solvent interaction en- 
ergy terms as 

(e-pv)o= 1-4mp 
XkW** XksC6 -gv 

r12 -2r,e 1 
= 1 -4Xk12C12(r- 12e-pv)o+ 2hk6C6( r-6e-pv)o. 

(Al) 
Subsequent variable changes to unitless s = r/r, and X= 1 /s6 
gives (m=6,12) 

(r- 
“e-p”)o- 2”;; la& X(m/6-3/2)e-B,2x2+Bg~, 642) 

c 0 

Although, the new analytical theory is incapable of in- 
corporating the solute-solvent Coulomb interaction, using 
physical arguments and deducing from earlier results, some 
assumptions about the role of Coulomb interaction in the 
asymptotic limiting behavior are made and tested using mo- 
lecular simulations. For this the aqueous solvation of a dipo- 
lar dumbbell solute and of alanine-dipeptide at two different 
conformations were studied. For charge neutral solute and 
solvent molecules, analytical theory predicts that the Cou- 
lomb term should not effect the asymptotic limiting behavior. 
The results of the studied cases confirm the predictions of the 
analytical theory, and thus justify the validity of its underly- 
ing assumptions in relation to the treatment of solute-solvent 

whereB12 = C12Xk12/r~2, B6 = C6Xk6/&indv,=4~r~13 iS 

the volume of the spherical cavity. Note that B,,=l if rc is 
defined as in Eq. (9). But, to reserve generality of the deri- 
vation, we assume an arbitrary definition for rc in the rest of 
this Appendix. Also note that B,, always appears in combi- 
nation with the cavity volume as v,B !‘;‘, and therefore, there 
is no explicit rc dependence in any of the final results. 

Let us define the gkneralized integral 

I 

m 
z,tB,2,B6)= 

dx xY- le-B,2X2+&X (A3) 
0 

Then Eq. (Al) may be written as 

(e-Bv)O=1-2pv,B12z3/2(B12,B6) 

+Pv~~6~1/2(~12,~6). (A4) 
The results of the Z,(B,,, B6) integrals for Re[v]>O and for 
B 12>0 are given in terms of the parabolic cylinder functions, 
D-v(z), as [Ref. 27, p. 337, Eq. (3.462.1)] 
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(A5) 

where z = - B6 / &, and I’(V) is the gamma function. 
The parabolic cylinder functions may be expressed in terms 
of the degenerate hypergeometric functions, cP(a,,y;z) [Ref. 
27, p. 1064, Eq. (9.240)] 

Dp( z) = 2P12e-z2t4 
i 

J;; 
r[t 1  -pm1 

@ ( 2, ;; ;) 

JGz @( 9, ;; q. 
- r( -p/2) (A6) 

Defining y=~~/2=B$4B,~, thus z = -6, and the 
subsequent substitution gives 

zm(B,2,&)= y;;; [cP(;, a;y) 

+JI; 
r(i/4) 5  3  

2r(3/4) @  4' y;y 
i ii 

, 

Eliminating B6 in favor of y, B6 = 2 G, then using Eqs. 
(A7) in Eq. (A4), and utilizing the relation [Ref. 27, p. 1058, 
Eq. (9.212.3)] 

we obtain 

(e-Bv)o=1-pv,r(3/4)B :;( @( a. $Y) 

-2y@ ;7 ;:, -6 2rT(f:/44)) 
i 1  

a  ;, ;;y 
( iI 

. 

Using the expression of y in terms of the coupling pa- 
rameter A: 

(A9) For small y, the series expansion of the generalized integrals, 
Eqs. (A7), with r=k6/k,2 give (m=6,12) 

A’-,,,= 2 pv,Bf/24r(3/4) 5 
n 

&,,, , 
n=O 

(AlO) (A14) 
where 512,n=(1-2n)&, and &j,n=-4nr5,. and defining kh = k, - k r 2/2, it is obvious that, as long as 

kh>O, small A corresponds to small y. For a small argument, 
the series expansion of the degenerate hypergeometric func- 

B: G - A%-h2 
Y=~=4C12 ’ 

6139 

n 
E = 1  

n=O 

-aoci/,4Ak12/4i 5  6412) 
n=O 

with ao=4rpr(3/4)/3, I’(3/4)= 1.225 42, and I’( 1/4)/r(3/4) 
=2.958 67. A few leading 5 coefficients are 

i r(i/4) 
tO=1~ 51=-2r(3/4)' 

1  i r(i/4) 
52=-57 53=-~r(3/4)~ 

&=2, &=-Lro. 
48 I-(3/4) 

For the k,<O case, the generalized integrals Z,(B12, B6) 
are again finite, and their asymptotic expressions can be ob- 
tained (see, e.g., Sec. 19 of Ref. 28, or Sec. 9.246 of Ref. 
27). But these asymptotic expressions, and the resulting ex- 
pressions for (e-PV)o and for z are relatively complicated. 
Since our main interest is in using exponent sets for which 
k,>O, the k,<O case is not pursued in this report. 

2. Thermodynamic integration integrand 

To calculate the numerator factors in Eqs. (19), the en- 
semble averages (r -me-Bv)o with m=6 and 12 are needed. 
These averages are already calculated in the first part of this 
Appendix. After some straightforward algebra, the numera- 
tors in Eq. (19b), HI2 and He, can be expressed as 

tions [Ref. 27, p. 1058, Eq. (9.210.1)] APPENDIX B 

@(cY,y;y)= lf ;;+ 
cu(aSl)y2 

. y(y+1)2! 

+ LY(a+l)b+2)y3+*** 
y(y+ l)(r+2) 3! (AlO 

will prove to be useful. Making use of the expansion for the 
degenerate hypergeometric functions, as given above, we de- 
rive a series expansion for the required ensemble average 

This appendix deals with the purely repulsive potentials 
of the form PV = AknC,lr” for n>3. As in the case of the 
6-12 potential (Appendix A), the following variable changes 
simplify the derivation: B, = AknC,lrz, s=r/r, , and 
X’S -nf2. As in Appendix A, B,= 1 if the cavity radius is 
determined by using the criterion pV= 1. To reserve gener- 
ality of the derivation, we again assume an arbitrary defini- 
tion for rc in the rest of this Appendix. Following the steps of 
Appendix A, it is straightforward to show that 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 
Downloaded 21 May 2001 to 192.101.100.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6140 H. Resat and M. Mezei: Molecular solvations 

(e-pv)o= 1 -zpv B 
c n 

I 

m& XU-6We-4x2 
0 

= 1--2Pv,B,I~-6/,,(B,, ,o), 031) 
where we have used the definition of integrals I,( B,, ,B6) 
given in Fq. (A3) with B12= B, and B6=0. Therefore z=O, 
and hence, the final equations simplify considerably to 

2J;; 
(e-pv)o= 1 -pvcB3”’ - 

r(Y) 
n 27 r[( y+ 1)/2] ’ 032) 

or equivalently to 

(e-B”)o= l- 4Tp 2J;; 
-j- (hkcn)3’n - 

r-(Y) 
2y r[(y+ 1)/2-j’ 

OW 

6 
y=2- ;. W-9 

Similarly, one can also easily derive that [see Eqs. (19)] 

pr= & X 2 pv,B;‘” 
2J;; r(Y) 

27 r[(y+i)/2]* 
034) 
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