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Abstract

An iso-energy cutoff scheme is introduced for the calculation of the potential of mean force between two ions
in water. The cutoff criterion is based on the optimal interaction of the water dipole with the ion pair, for which
analytical expressions are derived. Formulas are also derived to characterize the solvent reorganization contribution
to the potential of mean force. Treatment of the contributions from waters outside the cutoff is also discussed. © 1994
John Wiley & Sons, Inc.

1. Introduction

Recent computer simulation studies [1-3] showed that the calculated interionic potential of
mean force (PMF) can be qualitatively affected by the cutoff scheme (i.e., treatment of distant
waters) employed. The main options discussed earlier are spherical cutoff on the ions, minimum
image cutoff on the ions, or Ewald summation. Recent simulations [3] have shown that the use
of spherical cutoff on two ions between which the PMF is to be calculated introduces artifactual
minima in the PMF. Alternatives schemes like the Ewald summation or the minimum image
not only require more computational effort but have their own problems as well [3].

In the following, a new cutoff scheme, called the iso-energy (IE) cutoff, is proposed that has
the following advantages: (1) The cutoff is based on an energy criterion that is designed to
work independent of the relative position of the water and is based on both of the ions—this
way the artifact discussed in [3] is expected to be eliminated. (2) It is possible to separate
the contributions to the PMF due to solvent reorganization and solvent accessibility. (3) The
long-range effects can be incorporated after the simulation based on numerical solutions of the
Poisson—Boltzmann (PB) equations, e.g., with the DELPHI program [4].

The procedure proposed places a cutoff on the idealized interaction energy of water and
the ion pair: The water is represented by a dipole and the energy is calculated assuming that
the dipole is in the orientation giving the lowest interaction energy with the charges. For this
purpose, the optimal orientation has been derived as a function of the ion—ion and ion—dipole
distances.

As the volume of the object defined by the IE cutoff varies with the interionic distance,
the calculated PMF will contain contributions due to the change in the number of waters the
ions interact with. This is a fundamental contribution to the PMF: As the ion pair separates,
the number of waters that strongly interact with both ions simultaneously is decreasing. The
estimate of this effect requires the dependence of the volume of the region within the IE surface
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on the interionic distance. Knowing the density and the ion—water energy at the surface the
volume contribution can be obtained.

The contribution from waters outside the cutoff can be obtained from the PB calculation.
As this contribution can be calculated independently of the first two, it can be based on local
dielectric constants obtained by comparison of the field of the two ions with the mean electric
field averaged over the simulation.

I1. Theory
A. Cutoff Formalism

The interaction between a dipole u and a charge Q at a distance r is given as
Eg, = —Qu cos 6/r?, ¢))

with o = |} and 6 being the angle between the dipole u and the line between the ion and
the dipole. For a dipole g interacting with charges Q and sQ (s being +1 or —1 at a distance

r1 and r, from the dipole, respectively (see Fig. 1 for the case s = —1), the interaction energy
is given as

Egu(ri,rp, D) = —Qu(cos ¢91/r12 + cos 02/r22), 2)
where

cos(8; + 6,) = —s(D? — r} — r2)/2rin) = a, 3)
i.e., for s = +1, the dipole points between the two ion—dipole lines, and for s = —1, it

points outside (as shown on Fig. 1).

A Re e D +Q

Figure 1. Definition of the angles 6 and 6; used for the determination of the optimal ion-dipole
interaction.




ISO-ENERGY CUTOFF FOR MEAN FORCE OF WATER POTENTIAL 149

Using the Lagrange multiplier method to minimize the energy subject to the constraint of
Eq. (3) leads to the system of equations

(0/00:){Eg, + Alcos(0; + 62) — al} =0 (i=12), 4)
giving
Qusin 0;/r> — Asin(@, + ;) =0 (i =1,2) &)
or
sin 8; = —r2(1 — &®)"2X/0pn (i =1,2). ©6)

A can be determined by substituting Eq. (6) into the constraint [Eq. (3)] and using trigo-
nometric identities:

a = cos(f; + 6,) = cos 8, cos 6, — sin 8; sin 6,

= {1 = r{(1 = &A%/ Qw11 — 131 = a®)A*/(Qu)* I}

— rir(1 = aHA%/(Q ). )
Solving Eq. (7) for A% gives
A= (Q,u,)z/(2ar12r22 + r14 + rg . (®)
Substitution of Eqgs. (6) and (8) into the identity
cos B; = *(1 — sin %) 9

gives
cos 0; = sg{l + ri[D* + (r} — r3? = 2D*(r} + r))Y/

[@riei +r} = s X nn(D? = v} = HI?  (10)
where i’ = 3 — 1 (i.e., the other one).

The sign of the square root, sg;, can be determined as follows: Assuming r; < rp, 5sg;
is always positive (6; < 77/2). As the angle between the two ion—dipole lines, 6, can be
obtained unequivocally from the law of cosines, a convenient criterion of requiring the negative
sign is that for s = —1, 0, + 0, < w/2, and for s = +1, 6, + (7 — O12) < 7/2.

A few special cases can be immediately solved:

Case 1: rn—r = D: 6, =0 and 6, =0
Case 2: r, + rp = D: =0 and 6, =
Case 3: ry = ;. 01 = 02. (11)

The result for Case 1 can be used to relate the IE cutoff to the conventional spherical cutoff.
For a water on the interionic line outside the ions at the conventional cutoff distance R, from
the closer ion (and D + R, distance from the other), the cutoff energy Eg,(D,R,) is

E(,(D, R.) = Qu[l/R: + s/(R. + D)*]. (12)

Therefore, the IE cutoff that gives a resonable correspondence to the spherical cutoff around
the ions with radius R, would neglect ion—water interactions whenever

Egu(r1,r2,D) = E5,(D,R,). (13)
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Figure 2 shows the shape of the cutoff region defined by Eq. (13) for several different D
values. Note that with this choice the cutoff energy will vary with the interionic distance
(it increases in magnitude as the ions separate). This reflects the fact that increasing the
separation of the ion pair increases its dipole moment. Application of the electrostatic long-
range correction (through the PB equation) will (ideally) compensate for any artifact that the
dependence of the cutoff energy on the ion—ion distance might introduce. An alternative would
keep Eg, (D) = Eg,(Do) with a selected ion—ion distance Dy (say, the closest possible), but
this would result in a larger volume variation.

B. Estimating the Solvent Reorganization Term

Even if the solvent formed an unperturbed continuum around the ions, the variation in the
number of solvents interacting with the two ions introduces a driving force between the ions.
This would be the case with (most) any kind of cutoff. The choice of the IE cutoff provides a
mean for estimating this contribution to the PMF, as described below.

The contribution to the PMF from the changing number of interacting solvents when the IE
cutoff is applied with cutoff value EOQ u(D), Wy (D), can be used to obtain an estimate of the

R(I-I)=4 A V=1767 A3
R(I~-I)=8 A V=2449 A3
R(I-I})=12 A V=3036 A?
R(I~-I)=16 A V=3470 A2
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Figure 2. The 1E surfaces corresponding to R, = 9 A spherical cutoff for interionic dis-
tances D = 4, 8, 12, and 16 A.
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solvent reorganization contribution as W(D) — Wy (D). Wy (D) can be obtained as

D
Wy (D) = ]  Ep,(D)p av(D)/aD' dD', (14)

where p is the density of the water, as the waters in the region representing the volume change
from V(D) to V(D + dD) are all within infinitesimal distance of the surface and thus their
energy is Eg,,.

The volume of the area within the IE surface can be obtained as

vo) = [ [y D)Frar, as)

where the ion pair is assumed to lie along the x axis and y(x) is the point on the IE surface
at x. For x outside the cutoff region, y(x) = 0. The dependence of y on x is defined through
the relation

S(r1,r2, D) = Egu(r,r;,D) = Eg, (D) = 0, (16)

which does not lend itself to expressing y explicitly; therefore, a numerical solution is required.
Fortunately, y(x) turned out to be single-valued for the cases examined.
For Eg,(D) = Ej,, the expression for Wy (D) simplifies into

Wy(D) = EéﬂP[V(D) — V(Dmin)]. A7)
For the variable Eg, (D) case, the derivative /3D can be expressed as

av/eD = fw H{[y(x)PY oD mdx, (18)

and using the law of the derivative of an implicit function, we obtain
Hy®)PY/ oD = 2y(x)a[y(x))/oD

= _2y(x) [(GS(rl, ra, D)/aD)/(aS(rla ra, D)/a}’)] ’ (19)

where
88(r1,12,D)/dD = 3Eq,(r1,r2,D)/dD — 0Eg,(D)/oD
= > — (3 cos 6;/aD)/r? — 2/(R, + D)’ (20)
i=1,2

and

aS(rl’ r29D)/6y = aEQ;L(rl,r21D)/ay

> (8Egu(r1,r2,D)/8,) (8,/3y) = > — (8(cos 0,/r})/d,,) (y/7:)

i=1,2 i,j=1,2

> = {[8(cos 6;/rD/ar)] + [(3 cos 6:/ar)/r3](y/r)

i=1,2

I

— {[(3 cos 6:;/3r;)/r} = 2 cos 6;/r}))] + [(d cos 6:/3r)/rilt(y/ri) (21)

i=1,2
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The derivatives of cos 6; in Egs. (20) and (21) are given by the following expressions:
d cos 6;/0D = {[(r2(D* — D(r? + r2)))/[r3 DEN]
+ [sDr} NUMJ/[ry DEN?]/2}/(2 cos 6,) (22)

— [F2NUM(@r} — sry(D? — r? — r}(2s + 1))))/[4r} DEN?1}/(2 cos 6;)
(23)

d cos 6;/ar; = {{riNUM + 2r3(r? — r2 — D?))/[2r}DEN]

8 cos 6;/0ry = {~[2r2r2(r? = % + D?) — r}NUMY/[2r; DEN]
— [F?NUM(@@r} — sri(D? — r? = r2Q2s + 1)))]/[4r3 DEN?]}/(2 cos 6;),

i

24

where the abbreviations NUM and DEN have been introduced:
NUM = D* + (r} — r})* = 2D*(r} + r}) (25)
DEN = r}{ + rj — sXrir(D?* — rf - 3. (26)

The integrations with respect to D and x in Egs. (14) and (15) have to be performed
numerically, as the integrand itself is obtained from a numerical procedure.

ITII. Summary

A computationally accessible description is provided for an iso-energy cutoff for the
interaction of a water molecule with an ion pair. Its use in simulations for the interionic
PMF allows postsimulation determination of the contributions from waters outside the cutoff
and formulas are also given for the determination of the structural contribution of the water
to the PMF.
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