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The difference in the free energy of hydration between the C; and a, conformations of alanine
dipeptide at infinite dilution is computed using Monte Carlo method in a canonical ensemble
with the united-atom AMBER force field. The recently introduced polynomial path with dif-
ferent exponents for the calculation of liquid state free energies using thermodynamic integration
(TI) is tested. This is achieved by separating the interaction energy between the solute and the
solvent molecules into the constituent »~ ', #~¢ and Coulomb terms. The separate contribution
of each term is calculated and the comparison shows that the shape of the TI integrand as a
function of the coupling parameter is mainly determined by the Coulomb term. Analysis of the
convergence characteristics shows that five-point Gaussian quadrature integration would be

sufficient to obtain quantitatively reliable results when a polynomial path is employed.

I. INTRODUCTION

Since chemical equilibria is determined by free energy
differences, the calculation of the free energies has long
been of the utmost interest. This is particularly true for
aqueous solutions. There already exists a vast amount of
literature concerning free energy calculations, methodolo-
gies used and their implementation for certain systems.!™
The main idea behind all these calculations is that being an
extensive property, the free energy difference between two
points in phase space does not depend on the selection of
the path which connects the two state points.

Although the idea and the theory behind the calcula-
tion of the free energies is rather simple, a reliable imple-
mentation of its numerical calculation proved to be non-
trivial. ™16 Throughout the last decade, several methods
have been introduced to overcome, or at least to minimize,
the difficulties encountered in free energy computer simu-
lations. These methods have been well documented and
most of them are extensively studied in Refs. 1-16. A
promising but little tested method is a recent proposal
made by Mezei’ which can be applied to the thermody-
namic integration (TI) approach.

In TI, one starts by choosing a path between two state
points for which the free energy difference is to be calcu-
lated. The parameter which defines the path is called the
coupling parameter. Although, in principle, the final re-
sults do not depend on the path employed, in reality (due
to the inaccuracy of the numerical implementation) the
reliability of the calculated results depend on the chosen
path. Thus the appropriateness of the path chosen will be
reflected in the integrand as a function of the coupling
parameter, a good choice giving a smooth and almost lin-
ear curve. Since the integrand is calculated along the path
at certain number of discrete points and then numerically
integrated, the smoothness and the curvature-free nature of
the integrand become important factors in obtaining reli-
able results. Since a smooth and almost linear curve can be
sampled efficiently by using far fewer discrete points, these
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factors are also important in speeding up the numerical
calculations.

In the early implementations of the TI approach, a
linear coupling along the coupling parameter was em-
ployed. This implementation is also referred to as linear
TIL! It was shown first numerically and then analytically!’
that when creation of particles is involved, linear TI ap-
proach gives rise to a divergent integrand. Fortunately an
analytical formula can be derived for the observed singular
behavior."!7 In the end, this known analytical form of the
integrand can be used to “subtract out” the divergent part
from the integrand, thus eliminating the problem of nu-
merical integration of a singular function. Although this
approach has been used often, '™ it is obvious that it is open
to numerical instability problems.

To overcome this singular behavior, a nearly linear
path TI (NL-TI) approach has been developed.1 In the
NL-TTI approach, a path is chosen in a manner that incor-
porates the known analytical form of the integrand from
the beginning. Therefore, the resulting TI integrand is a
smooth, but, unfortunately, in most cases is still a curved
function. Therefore, to obtain reliable results, or at least to
numerically prove their reliability, quite a number of dis-
crete integration points may be needed.

As we show later in this report, the curved behavior of
the integrand within NL-TI arises due to the overcorrection
imposed on the longer ranged interaction terms, especially
the Coulomb term. To avoid this overcorrection a further
generalization of the NL-TI approach has recently been
introduced.” In this generalization, the interaction energy
is separated into prospective terms, and different polyno-
mial paths are used simultaneously for each energy term to
calculate the integrand, and hence the free energy, of the
thermodynamic integration approach. This generalized
form will be referred to here as the polynomial path TI
(PP-TI) approach.

In this report, we will investigate the advantages and
the shortcomings of the above mentioned polynomial path
TI approach. We will do so by studying the solvation free

© 1993 American Institute of Physics

Downloaded 21 May 2001 to 192.101.100.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



H. Resat and M. Mezei: Free energy calculations. |

energy difference between two conformations of a small
biomolecule, alanine—dipeptide.

To briefly outline what follows, the next section pre-
sents a short summary of the mathematical details of the
polynomial path approach. Section III deals with the nu-
merical procedure, and details of the molecular models
and employed simulations are discussed. The results of
this study are reported and analyzed in Sec. IV.
A summary of our findings and future work is given in
Sec. V.

Il. THEORY

In the coupling parameter approach to free energy cal-
culations, the energy function at a point A along the em-
ployed path can be expressed as"’

EAXY) =LA E(XY) + fo(A) Ey(XY). (1)

Here A is the coupling parameter, and as it varies from 0 to
1, the system is transformed from one end point to the
other. Or in other words, the system A=0 is gradually
turned off while simultaneously the system A=1 is gradu-
ally turned on. The functions f{(1) and f,(A) are contin-
uous functions with limiting values f,(0)=f,(1)=0 and
S[1(1) = fo(0)=1; therefore A=0 and 1 in Eq. (1) corre-
spond to state points with energy functions EO(XN ) and
E,(X"v ), respectively.

Once the path is specified, the free energy difference
between the two states can be obtained in several ways. In
this paper, we use the thermodynamic integration (TI)
approach, for which'®

Ad=A,—A o_f (aE('l)%da, (2)

where {---), corresponds to an ensemble average of the
enclosed quantity with energy function E(A,X") in the
Boltzmann factor.

A convenient choice for the f(A4) functions is

fl(ﬂ')=/{k)

Fold)=(1—1)*.

When k> 1, this choice is called nearly linear TI (NL-
TI).1 Substituting into Eq. (2) gives

(3)

|
M= [ K UEY - (-0 B (@)
This particular choice of the f(4) functions is shown’ 101
to give a smooth and monotonic integrand in the above
equation. As discussed in the previous section, the smooth-
ness of the integrand is especially convenient (and neces-
sary) when the numerical integration is executed using a
limited number of integrand points such as quadratures.
Another special case of TI, called linear TI, corre-
sponds to the particular choice k=1 in Eq. (3). When
creation or annihilation of atoms is involved, linear TI is
shown'”% to lead to an improper integral, i.e., a definite
integral where the integrand is singular for certain values
of the integration variable, in this case at the end points.
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For a potential of the form 1/7%, the asymptotic behavior of
the integrand is expected to be A*¥€)=1 where d is the
dimensionality of the space. Thus using a polynomial func-
tion of the type given in Eq. (3) and choosing a high
enough k would eliminate the divergence of the integrand.'
This observation forms the basis of the NL-TI approach.
An interesting feature, not noted before, of the coupling
given by Eq. (3) is that when k is assigned to have the
lowest possible value that still gives a nondivergent TI in-
tegrand then the volume of the solute molecule would have
a linear A dependence.?!

The generalized polynomial path approach to TI (PP-
TI) goes as follows.” Rather than using a single k expo-
nent, the individual terms in the interaction potential are
separated and different values of k exponents are assigned
to each interaction term. With the mixed-exponent pro-
posal, the Egs. (1) and (4), respectively, become’

E(LXY)= 2 AME (XN) +(1-)MEy(XY)  (5)

and

1
Ad— f Sk, (A KE )3 — (1—A) =By )1 ]dA
0 v

1
= fo 2 T 1 (A)+T 5, (A)dA

1
_ fo T 1)+ T o(A)dA
= 2 CUIT 1) +T oA (6a)
with
L7-1,1/(/1)Ekv’{k"_1<E‘l,v>/l’
T o) =—k (1=A)"WEy )1,
o (4) ( Yo" {(Eg )2 (6b)

T(A)= 2 T1,(A),

To(A) = 2 T (A).

In Eq. (6a), the last equality is valid when the integration
is done using n, point quadratures, and % (4,) is the
weight coefficient for the nth-quadrature root point. Sum-
mation over v goes over the respective interaction potential
terms. In this report an interaction potential

A; Cy q4;
Uy(N=m—F%+"" (7

is utilized. Therefore, in the rest of this report v=12,6, and
1 will be the respective labels for the first, the second, and
the last interaction terms of Eq. (7).

PP-TI has already been tested for bulk liquid water
with very satisfactory results.”® In this report, starting
with this generalized form, we further test PP-TT by study-
ing the hydration free energy of alanine-dipeptide in aque-
ous solution at infinite dilution. Our aim is also to find the
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FIG. 1. C; and ay conformations of alanine-dipeptide.

relative importance of the each interaction potential term,
and the dependence of the smoothness of the TI integrand
on the choice of the exponents set. By doing so, we will try
to reflect on the selection of an optimal set of exponents
{k,} so as to make the TI integrand a curve as close to a
straight line as possible, thus reducing the magnitude of the
error of quadrature integration and increasing the reliabil-

ity.

{1Il. COMPUTATIONAL. DETAILS

Because of its small size and simplicity for a biomole-
cule, alanine—dipeptide was chosen to be our test system in
this report. Another factor in this choice is the availability
of earlier reports by several groups concerning its hydra-
tion properties.?2?* Alanine—dipeptide is known to exist in
several conformations with comparable probabilities. Us-
ing the standard representation (W¥,®) in terms of the an-
gles of torsion ¥(N-C-C-N) and ¢(C-N-C-C), equato-
rial C; (90°,—90°) and ai (—50°,—70°) conformations
are believed to be the dominant structures both in gas
phase and in solution. Because of their importance, we
have chosen to investigate the hydration free energy differ-
ence between C,; and ap structures to test the mixed-
exponent polynomial path choice in TI approach.

The molecular geometry of alanine—dipeptide at each
conformation (see Fig. 1) was generated using the model
builder of the INSIGHTII program (Biosym Technologies,
Inc.) on a Silicon Graphics workstation. A rigid molecule
was assumed, and bond length and angle values were taken
from the system library. To keep the calculations at a sim-
pler level, the united-atom representation was chosen.
Since it is not important for this study, no a priori mini-
mization with fixed torsion angles (adiabatic minimiza-
tion) was applied. Therefore, the results of this study may
include some enthalpic contribution. Site 6-12 potential
parameters, A and C, as well as the site charges, ¢, in Eq.
(7) were that of the AMBER force field.?* To characterize
the water, the TIP3P model?® of Jorgensen was used.
Water-solute interactions were calculated using the geo-
metric mixing rules 4;;=(4,4,)"/* and C;;=(CC))"% A
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TABLE I. Interaction potential and molecular geometry parameters.*

Site A4 (x107%) C q

Solute:

(CH,), 2516.6 1228.8 —0.026
C 789.95 615.77 0.526
O 230.58 429.50 —0.500
N 540.68 588.25 —0.520
H 0.0819 0.0026 0.248
CH, 592.47 461.83 0.215
(CH;), 2516.6 1228.8 0.031
(CHj;), 2516.6 1228.8 0.272
Solvent:

O 582.0 595.0 —0.834
H 0.0 0.0 0.417

Bond lengths

[(CH{P-C)=I(CH-C)=1.51
I(CH{»-N) =I(CH,-N) =1.46
(CH{»-CH,)=1.54
[(C-N)=1.48

I(C-0)=1.24

I(N-H) =1.08

Solute:

1(O-H)=0.9572
I(H-H)=1.5139

Solvent:

3Site i of a molecule interacts with site j of a different molecule as A/r'?
—~C/P+qg /r where the combination rules for 4 and C parameters are
given in the text. 4 and C are in units of kcal/mol A2 and kcal/mol AS,
respectively. All distances, /, are in Angstroms.

systematic picture of the alanine—dipeptide may be seen in
Fig. 1, and a list of the potential parameters used in this
report are given in Table I.

TI integrand values were determined by (N,V,T) en-
semble Metropolis Monte Carlo (MC) simulations. A
preferential sampling of type 1/R., where R, is the dis-
tance between the center of masses of the solute and the
solvent molecules, was used to accelerate the sampling.
Face-centered cubic periodic boundary conditions were
employed. Water-water short range interactions were
truncated at a spherical cutoff of 7.75 A, and the minimum
image convention was used for the solute-water interac-
tions. The system involved a single solute and 215 solvent
molecules at 7=298 K. The volume of the cubic unit cell,
V=6481.153 As, was determined using the density re-
ported by Bose and Hudt.¢

Simulations at each A point involved an equilibration
period of 2 10® (2 M) configurations, followed by a con-
sequent run of 10 M configurations (~4.63% 10* steps/
molecules). We note that initial drifts in energies were
considerable, therefore, long equilibration runs were nec-
essary to obtain well equilibrated configurations. Due to
this, use of shorter equilibration runs resulted in larger
thermodynamic cycle errors. Simulations were performed
on IBM RS6000/550 and Convex C220 machines. Further
details of the simulations may be found in Table II.

IV. RESULTS
A. Thermodynamic integration integrand

Table II summarizes the results for the hydration free
energy for the C; to ap conformational change for alanine-
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TABLE II. Simulation run information.*

A T (Cy—ap) T o (Cy—ag) T (Cy—ap)
Run #1. eight-point quadrature with {k,,k¢,k;} ={4,4,4}.
0.019 86 144.448+3.137 126.962 17.486
0.101 67 101.741+=2.158 76.304 25.437
0.23723 42.0191.495 28.486 13.533
0.408 28 9.673%0.747 3.476 6.198
0.591 72 —10.270+0.889 —17.163 —3.107
0.762 77 —46.835+1.486 —13.003 —33.831
0.898 33 —114.087+2.687 —20.832 —93.255
0.980 14 —184.030=:4.267 —19.942 —164.088
AA —4.240=1.919 13.345 —17.584
Run #2. eight-point quadrature with {k;,ks,k1}=1{4,3,2}.
0.019 86 81.72743.291 60.126 21.601
0.101 67 69.167+2.781 49.449 19.718
0.23723 40.727+1.608 31.119 9.608
0.408 28 11.749:1.712 13.675 —1.926
0.59172 —16.275+1.372 1.427 —17.703
0.762 77 —50.9991.663 —1L.779 —-39.219
0.898 33 —77.812£2.256 —18.601 —59.211
0.980 14 —92.621+3.044 —18.726 —73.894
A4 —3.944+1.968 11.298 —15.242
Run #3. five-point quadrature with {k,,k¢.k,} ={4,4,4}.
0.046 91 122.858 £2.742 104.855 18.002
0.230 76 40.733+1.285 28.611 12.122
0.500 00 0.658 £0.839 —3.144 3.802
0.769 24 —~51.257+1.711 —16.444 —34.812
0.953 09 —153.011+3.290 —22.955 —130.057
Ad —5.9041.862 11.720 —17.623
Run #4. five-point quadrature with {k;,,kq,k}={4,3,2}.
0.046 91 72.96242.522 55.976 16.986
0.230 76 40.408 + 1.546 30.592 9.816
0.500 00 —0.200=1.234 7.203 —17.403
0.769 24 —48.639+ 1,946 —9.487 —-39.152
0.953 09 —92.608+2.842 —19.881 —72.727
AA —4.354+1.903 11.375 —15.729

*TI integrand, .7, and A4 values are in kcal/mol. The estimated errors are calculated using method of batch
means with batch sizes of 10° MC steps, and corresponds to two standard deviations. 7 and .77, are

defined in Eq. (6).

dipeptide, and tabulates the integrand values at simulation
A points. Two sets of simulations for each k-exponent set
were performed involving thermodynamic integration
based on five-point and eight-point Gaussian quadratures.
Convergence statistics of each simulation run are given in
Fig. 2.

Even though three of the four simulation sets agree
very well, the five-point Gaussian quadrature with {k}
={4,4,4} run shows a systematic disagreement with the
rest. While the disagreement between this run and the oth-
ers are still within the estimated statistical error limit, ex-
tending the runlength for the five-point equal-exponent
case with another 4 M steps (not shown) did not change
the comparison. Therefore we partially attribute this ob-
served disagreement to inadequacy of five-point Gaussian
quadrature with equal exponents.

Figure 3 reports the respective TI integrands as a func-

10 L ' ! 1
0 20 40 60 80 100

FIG. 2. Convergence characteristic of MC runs for transition C;—ag.
Additional details may be found in Table II. The ordinate scale is in
kcal/mol and horizontal axis is in number of blocks with a block size of
10° MC steps. Run #1: dotted; run #2: long-dashed; run #3: short-
dashed; and run #4: solid lines.
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FIG. 3. Thermodynamic integration integrand for the transition C;—»ag.
Horizontal scale is the coupling parameter and unitless. Ordinate scale is
in kcal/mol. (+4) and (X)) are eight and five-point Gaussian quadratures
MC results with k={4,4,4}, respectively; and ({}) and (1), respectively,
are eight- and five-point Gaussian quadratures MC results with
k={4,3,2}. Dotted and solid lines represents the eight- and five-point
Gaussian quadrature fit polynomials to the simulation results.

tion of the coupling parameter. The PP-TI integrand is
almost linear, and its y range is about half of that of the
NL-TI. What is more important is that the slope at the end
points is significantly reduced with PP-TI. This difference
in slopes is important in the sense that a larger slope makes
the extrapolation needed in taking the integral more vul-
nerable to errors due to possible statistical fluctuations.
Hence, the difference in the slopes most likely would have
been a factor in the agreement for the case of PP-TI and in
the disagreement for the case of NL-TI between the five-
and eight-point Gaussian quadrature based integrals. It is
not so obvious from the figure but the results using eight-
point Gaussian quadrature actually produce some weakly
oscillatory integrands, an unreal feature. A similar experi-
ence with eight-point Gaussian quadrature has been en-
countered before (see Fig. 2 of Ref. 19). The oscillatory
integrand most probably arises due to the inclusion of too
many fitting parameters (n-parameters for n-point quadra-
ture).

To further investigate the accuracy of numerical inte-
gration, we combine the results of the five- and eight-point
Gaussian quadrature runs for each k-exponent group to
obtain a set of 13-points along the thermodynamic integra-
tion path. Use of this combined set enables us to perform
three additional tests.

The first test involves an ordinary 13-point quadrature
fit to the combined 13-point set and then analytically inte-
grating over A. Here the word ordinary stands to point out
that the A points of the combined set were an arbitrary
combination of quadrature points, rather than an optimal
choice as in the case of Gaussian quadratures. For
k={4,3,2} exponents, this test way of integrating gives
—3.945 kcal/mol for the free energy difference between the

TABLE III. Different order polynomial fits to the free energy data.?

No. of fit AA(Cy>ag) AA(Cy - ap)
parameters {k}={4,4,4} {k}={4,3,2}

3 —5.0018 —4.0737

4 —5.0019 —4.0737

5 —4.9156 —4.1001

6 —4.9156 —4.1001

7 —4.8926 —4.0995

8 —4.8927 —4.0995

9 —4.8925 —4.0994

*AA values are in kcal/mol.

C; and a, conformations. This is to compare with — 3.944
and —4.354 kcal/mol, respectively, for eight- and five-
point Gaussian quadrature integrals (from Table II). Sim-
ilarly for k={4,4,4}, a 13-parameter fit gives —4.238 kcal/
mol, compared to —4.240 and —5.904 kcal/mol for eight-
and five-point Gaussian quadratures. Therefore the 13-
parameter fit results are much closer to eight-point Gauss-
ian quadrature results. This is to be expected on the basis
that, since it involves more data points, eight-point Gauss-
ian quadrature results will be favored in a functional fit.
Note that the 13-parameter fit involves a 12th order poly-
nomial and, based on experience with the eight-point
Gaussian quadrature case, is expected to produce oscilla-
tions. Although not reported, the oscillations do appear
implying the necessity of caution in using high-order
quadratures.

In the second test, polynomials of varying order were
least square fitted to 13 MC simulation points for each
k-exponent set. This was followed by analytical integration
with results tabulated in Table III. This approach would
point to the lowest possible order polynomial which cap-
tures all the essentials of the TI integrand. Knowledge of
this polynomial with the lowest possible order would be
important in setting up future simulations for related or
chemically similar systems. All these varying order fits are
essentially in very good agreement with each other. Their
differences are unnoticeable by eye on a single plot and
therefore are not reported. This very good agreement is
also reflected in Table III showing that a four-parameter
(third order polynomial) fit is essentially sufficient to ob-
tain quantitatively reliable results. As experienced before,
using polynomials of order higher than six produce some
weak oscillations in the integrand.?’

We should point out that simulation run lengths of this
report (=~4.63X10* MC cycles ~46 ps of molecular dy-
namics) are long compared with most of the other pub-
lished simulation results for similar systems. This might
have led to obtaining a smoother integrand curve than
usual, and hence might be misleading. For this reason, a
safer range of choosing the order of the fit polynomial
would be 5-6, which avoids using too few simulation
points and also avoids possible unphysical oscillatory inte-
grands. But given the disagreement encountered in this
study for the case of the five-point equal-exponent Gauss-
ian quadrature approach, the above stated polynomial
range can only be taken as a good starting guess for setting
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up a simulation and needs to be supplemented with some
additional tests. With the preceding caution in mind it still
may be stated, based on the experience of this study, that
five or six-point Gaussian quadratures would be the most
reliable ones to use in TI approach with a fair degree of
assurance.

Results of the second test lead us to our third test. In
this test, for each k-exponent set, we proceed with the
fourth order polynomial least squares fit of the above given
second test. As mentioned before, this fit is in principle
equivalent to a five-point Gaussian quadrature integration,
but using a wider set of integrand points. Now using this fit
function, we interpolate the TI integrand at the A points
which form the root points of the n-point Gaussian quadra-
tures. We repeat this calculation for n=3 to 9. The aim of
this test. as in the above case. is to find a convenient ranoa

ety G2 222 LN QUYL LASL, 10 10 130 4 COLVCLILY Tangl

for the number of quadrature points that one needs to
employ to calculate the conformational free energy differ-
ences using the thermodynamical integration approach.
The difference between A4 values calculated using n=3 to
9 were less than 10~ kcal/mol. Therefore, the results of
the third test supports the conclusion reached in the second
test.

Since they are based on a wider (13-point) set of sim-
ulation results, and because of the good consistency be-
tween them, we accept #=35 and 6 results of the second
and the third tests to be the most reliable ones. Using these
values, we see that the conformational free energy differ-
ence values for the separate runs with {k}={4,4,4} and
{4,3,2} exponent sets are in reasonably good agreement
with each other. Averaging these two, we estimate the free
energy of hydration difference between the C; and ay con-
formations of alanine—dipeptide in liquid TIP3P model wa-
ter to be =~ —4.5+1.9 kcal/mol in favor of the ax confor-
mation. This calculated free energy difference between the
C; and ai conformations of alanine-dipeptide is quantita-
tively in the same range of earlier studies,>?® and it does
not include the contributions from the internal degrees of
freedom. Assuming that inter- and intramolecular degrees
of freedom do not couple, and using the A4™™ value re-
ported in Ref. 28 as an approximate value for our molec-
ular model, we see that the intermolecular contribution,
which is in favor of ap conformation, to the conforma-
tional free energy difference is approximately nullified by
the intramolecular contribution; thus giving comparable
existence probabilities for C; and ay conformations in
aqueous solution.

What is also apparent in Table II is the fact that the
quadrature points close to the end points carry relatively
larger uncertainties compared with the ones near the cen-
ter, A=0.5. Thus, using the same total number of MC
steps, i.e., same amount of numerical work, but distribut-
ing them among the quadrature points in an optimal way
such that quadrature points close to end points would have
longer run lengths than the ones in the vicinity of 1=0.5
would reduce the overall uncertamty This finding supports
argument given by Mezei,® and might be useful in obtain-
ing numerical results with relatively less statistical error
with the minimal amount of numerical work.
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FIG. 4. (a) Contribution of each interaction term to the total TI inte-
grand. Five-point Gaussian quadrature with k={4,4,4}. Solid line: total
TI integrand; dash-dot, dashed, and dotted lines, respectively, are the
contributions of 1/'%, 1//° and Coulomb terms. (b) Same as in (a) but
for k={4,3,2}.

B. Separation into interaction energy terms

In this section, we investigate the contribution of indi-
vidual interaction energy terms (see Sec. II) to pinpoint
the term which gives rise to a curved TI integrand. To do
this, in Table II, we first separate the TI integrand into
contributions of A=0 (C; configuration) and 1=1 (ag
configuration) solutes, .7 ((1) and .77,(4), respectively.
These two contributions are qualitatively similar (see Figs.
5, 6, and 8) and they closely resemble the TI integrand for
going from an uninteracting point particle to a certain con-
formation of the solute particle.!®?

Figures 4-6 show the partition of the TI integrand into
constituents according to the interaction potential terms. It
can be seen in Fig. 4(a) that for the case of equal expo-
nents ky,=k¢=k,=4, the contribution of the =2 and r—
terms are close to straight lines; thus it is mainly the Cou-
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FIG. 5. (a) Contribution of C; conformation solute to the TI integrand
of transition C;—ag, and its separation into constituent interaction
terms. Five-point Gaussian quadrature with k=1{4,4,4}. Solid line: C
part of the T integrand, .77,; dash—dot, dashed, and dotted lines, respec-
tively, are the contributions of 1/7'2, 1//* and Coulomb terms. (b) Con-
tribution of ap conformation solute to the TI integrand of transition
Cy—apg, and its separation into constituent interaction terms. Five-point
Gaussian quadrature with k={4,4,4}. Solid line: a part of the TI inte-
grand, 7 ,; dash~dot, dashed, and dotted lines, respectively, are the con-
tributions of 1/7'%, 1//° and Coulomb terms.

lomb term which gives rise to a curved TI integrand. In
contrast, using a lower exponent for the 1/7 term distrib-
utes the contribution of the Coulomb interaction more
evenly through the coupling parameter range. One of the
main objectives of this study was to show that by choosing
a k-exponent set with different exponents for different in-
teraction energy terms it would be possible to straighten
and lower the slope of the TI integrand function. This
would in turn be expected to decrease the magnitude of the
error of integration, and increase the reliability of the re-
sults. As it is obvious from the comparison of Figs. 4(a)
and 4(b) that the choice of {k;,,ks,k1}=1{4,3,2} brings

100 P To(A) -
k={4,3,2}

=100 - -

13 1 1 1
v} 0.2 0.4 0.6 0.8 1
@ A
T T T T
TN
100 | km{4,3,2)

50

~-50

~100

®) 0 . . . N

FIG. 6. (a) and (b) are same as in Figs. 5(a) and 5(b), but for the case
k={4,3,2}.

the TI integrand curve very close to a straight line, thus
fulfilling the desired objective.
Success of the unequal exponent approach allows us to

-suggest the following recipe to increase the reliability and

possibly lower the numerical error of the thermodynamical
integration approach in the solvation free energy calcula-
tions: (a) First run a short simulation with a certain k’-
exponent set (say {k{,,k¢,k}}) to obtain the 7~ jy(A) val-
ues where j=0or 1 and v=12, 6, or 1. (b) Then form the
cumulants ™. ,(A) and (1 — AT 4 (). (c)
Choose the m, values which give a straight line for the
cumulants. Using these m,, obtain a new k-exponent set as
{k}={k'}+{m,}. This new set would be a very good es-
timate for obtaining a straight TI integrand.?® (d) After
short test simulation runs, if necessary, make adjustments
to the exponent set.

What is studied in this report is the free energy differ-
ence between two conformations of the same biomolecule.
Therefore there is in a way a symmetry between the two A

J. Chem. Phys., Vol. 99, No. 8, 15 October 1993
Downloaded 21 May 2001 to 192.101.100.146. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



H. Resat and M. Mezei: Free energy calculations. | 6059

TABLE IV. Solvation free energies.

five-point quadrature with {k,,,k¢.k,}={4,3,2}

A T (Cy-1G) T (IG-ag)
0.046 91 54.367 46.146
0.23076 33.189 17.985
0.500 00 6.487 —7.236
0.769 24 —19.282 —40.864
0.953 09 —39.645 —70.568
AA (kcal/mol) 6.917 —10.426

end points of the system. In this respect, this study com-
plements a previous study.” In Ref. 7, the PP-TI approach
was applied to study the solvation free energy of liquid
water. For liquid water, the investigated quantity was the
change in the free energy of a water molecule in going from
an ideal gas state to a condensed phase. Therefore, there is
an asymmetry between the two end points. Since the PP-TI
approach seems to work very well for these two comple-
mentary test cases, it can be confidently stated that it is
possible to obtain, for almost any system, an integrand
which is very close to a straight line within the PP-TI
approach. Since the error involved in integration (or
extrapolation/interpolation) of a straight line is minimal,
this achievement increases the accuracy of integration.

C. Thermodynamic cycle

To further study the convergence and the statistical
error involved in the simulations, we make use of the ther-
modynamic circle idea.*® For this, we defined a triangle.
This requires two additional simulation runs: simulations
of the ideal gas to C; and of the ideal gas to az conforma-
tion transitions. This forms a closed loop and the deviation
of the free energy change of traversing one complete cycle
from zero gives an idea about the statistical error of the
simulations. The results of these runs are summarized in
Table IV. Adding up the free energy values defines the

N

FIG. 7. Thermodynamic cycle error which is defined by Eq. (7) in the
text. k=1{4,3,2} and five-point Gaussian quadratures is used. The ordi-
nate scale is in kcal/mol and horizontal axis is in number of blocks with
a block size of 10° MC steps.

FIG. 8. Solid lines: TI integrand for transitions C;—IG and IG-ap
(IG=ideal gas). Horizontal axis is the coupling parameter, and ordinate
scale is in kcal/mol. Dotted lines are the 77, and 7| of the transition
C,—a, as tabulated in Table II, and, respectively, correspond to the
contribution of C; and az conformation solute to the total TI integrand.

cycle error (IG=ideal gas)
M, g +DAg, 16+ A41g_.c,=cycle error. (8)

In Fig. 7, cycle error is reported as a function of run
length. Although it oscillates with a period of approxi-
mately 2 million steps, the cycle error has a magnitude of
less than 1 kcal/mol. This value is well within the statisti-
cal error estimates (approximately 2 kcal/mol) based on
the fluctuations of the system. Another concern in Fig. 7 is
what looks like a steady upward trend. Even though it is
not reported, follow-up simulations showed that the re-
ported cycle error takes a downturn and stays as less than
1 kcal/mol.

Thermodynamic cycle error and the convergence sta-
tistics reported in Figs. 7 and 2 show that the transitions
studied here are fairly well converged around 6 M steps,
but before that the fluctuations are considerable. This puts
a lower limit to simulation run lengths. 6 M steps is rather
long and emphasizes the well established!™'¢ fact that sim-
ulations of biosystems (even the smallest ones) require
quite lengthy computations.

D. Solvation free energies

Additional simulations that were performed to calcu-
late the thermodynamic cycle error enable us to calculate
the solvation free energies of each conformation. These
simulations were done using PP-TI with an exponent set
k={4,3,2}, and involved a five-point Gaussian quadrature
integration. The simulation results are tabulated in Table
IV and are also reported in Fig. 8. As Fig. 8 reveals, the use
of the PP-TI for the C;—IG transition results in a TI
integrand which is again very close to a straight line. How-
ever, for the IG—ay transition, the deviation of the TI
integrand from a straight line is still quite apparent. There-

Downloaded 21 May 2001 to 192.101.100.146?‘|RQB%l?Lmﬁn gﬁ‘oj%%’tN?AQPﬁﬁ%gwegayright, see http://ojps.aip.org/jcpoljcpcer.jsp



6060

fore, the k=1{4,3,2} exponent set which gives satisfactory
results for the other cases studied in this report needs to be
further modified for studying the IG —ay transition. This
observation points to the fact that the optimal choice for
the exponent set is not unique but is system dependent.
Results for the solvation free energies (Table IV) show
that intermolecular interaction with the solvent molecules
has a large stabilizing effect on both of the solute confor-
mations, 6.92 and 10.43 kcal/mol for C; and ay, respec-
tively. To find out if the C; and the az conformations of
alanine—dipeptide would favor either the gas phase or
aqueous solution, contributions coming from the intramo-
lecular degrees of freedom are also needed, and this is not

done here.

V. SUMMARY AND DISCUSSION

Mixed exponents for the polynomial path have been
employed for the calculation of the hydration free energy
difference between the C; and «j conformations of
alanine—dipeptide with quite satisfactory and promising re-
sults. The role of different exponents has been investigated
by separating the interaction between the solute and the
solvent into constitutive terms. This enabled us to point
out the importance of each particular term, especially the
Coulomb term, and, by proper adjustment, helped us to
reduce both the curvature of the integrand and its slope at
the endpoints. Both of these effects are helpful in reducing
the quadrature integration error.

It has also been shown that inclusion of more than the
necessary fitting parameters sometimes produces some un-
expected and possibly unphysical features in the TI inte-
grand, signaling the need for extra caution when using
fitting polynomials with large powers. The quantitative re-
sults with TI based on eight-point and five-point Gaussian
quadratures are found to be within the statistical accuracy,
but the example of this report showed that the agreement is
improved when the TI integrand is linearized. Detailed
study of our results showed that for the hydration of
alanine-dipeptide case (which is simple but sophisticated
enough to suggest that this finding is quite general) the use
of five-point quadrature over the polynomial path is
enough and possibly better than eight-point quadrature.
Based on the findings of this report and an earlier study,’
the choices kj,=4, ks=2 or 3, and k;=2 or 1 for the
exponents would be a good starting point in the free energy
of hydration calculations via thermodynamic integration
based on polynomial path with mixed-exponents (PP-TI).

The calculations over the thermodynamic cycle
IG - C;—ag—IG show that TI over the path of Eq. (4)
(NL-TT) and especially over the path of Eq. (5) (PP-TI)
are capable of handling the creation of larger solutes with
the same ease as calculating solvation free energy differ-
ences, supporting the earlier suggestion® that it is the
method of choice for calculating free energy differences
between very different systems.

The aim of this study was to test study the ways to
improve the quadrature integration. Of course, there are
more fundamental sources of error, which we have not
addressed here, in numerical calculations of statistical sys-

H. Resat and M. Mezei: Free energy calculations. |

that the error arising from 1mproper quadrature integra-
tion might be on the same order as the statistical sampling
error. To give some numbers, let us consider the C;—ay
transformation studied in this report. Reading from Table
I1, the sampling error for this transition is approximately
1.9 kcal/mol. This is to compare with the quadrature in-
tegration error. Taking the calculated solvation free energy
using five- and eight-point quadratures, we see that the
integration error might be of order 1.6 kcal/mol (k=4,4,4
case). Thus these two sources of error are of the same
magnitude, and both need serious consideration.

In this study, we have not incorporated the protons
(carbon hydrogens) into the model explicitly. This was
done to reduce the numerical work in testing PP-TI. With
the promising results of this report, it would be interesting
to see if the explicit inclusion of hydrogens (all-atom
model) would make any difference in the success of the
unequal exponent approach. Another interesting point is of
course to study the effect of the hydrogens on the hydra-
tion free energies. Work along these lines as well as the
study of the dependence on site charges is currently in
process in our laboratory and will be the subject of a future
communication.
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