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CALCULATION OF SOLVATION FREE-ENERGY
DIFFERENCES FOR LARGE SOLUTE CHANGE
FROM COMPUTER SIMULATIONS WITH
QUADRATURE-BASED NEARLY LINEAR
THERMODYNAMIC INTEGRATION

MIHALY MEZEI

Department of Physiology and Biophysics, Mount Sinai School of Medicine,
Cuny, New York, NY 10029

(Received January 1993, accepted January 1993)

The free-energy simulation methodology is reviewed from the point of view of calculating large free-
energy differences. The advantages of the nearly linear thermodynamic integration based on Gaussian
quadrature are highlighted and its performance is characterized on systems ranging from the Lennard-
Jones fluid to the A to B transition of DNA oligomers. A technique for optimizing the runlength at
each quadrature point is given. Examples for the sensitivity of the calculated free energy to the atomic
charges used are also presented.

KEY WORDS: Free-energy simulation, thermodynamic integration polynomial path, glycine, alanine
dipeptide, DNA

INTRODUCTION

Free energy is the key quantity for the understanding of chemical equilibria, allow-
ing the characterization of molecular associations, selectivities of associations and
conformational preferences. Theoretical treatment of solvated macromolecules
generally involve computer simulations, due to the multitude of effects determining
their behaviour. The calculation of solvation free energies from computer simula-
tions, however, has long been recognized as a computationally more demanding task
than the calculation of structural properties or the internal energy. This critical
status of the free energy is a consequence of its close relationship with the partition
function as the general simulation methodologies developed over the last few
decades owe their success to their ability to provide results without having to
calculate the partition function.

However, the importance of the free energy in the understanding of chemical
equilibria led to diverse and ultimately largely succesful attempts at its calculation.
As the various methodologies were developed and tested, it became clear that
reliable results with generally applicable methods require the adequate sampling of
states that lie on a path connecting the initial and final systems in the configuration
space. This feature brings an additional increase in the necessary effort for free
energy calculations with increasing solvent complexity: not only does one need
longer calculations for adequate estimation of the solute-solvent properties, the
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number of such calculations will also increase as the path connecting the initial and
final states in the configuration space becomes longer.

The purpose of this paper is to discuss methods that are aimed at interpolation
over this path of ever increasing length and show that successful interpolation is
indeed possible. As the state of the art of free energy simulations has been
periodically reviewed in recent years [1-4] only a brief overview of the various
methodologies will be given and emphasis will be placed on the nearly linear path
and on the quadrature-based thermodynamic integration, a combination that has
this interpolation capability. Finally, examples will be shown that demonstrate the
interpolation techniques discussed.

FREE-ENERGY SIMULATION METHODOLOGY

Most free-energy simulation techniques are characterized by the path used to con-
nect in the configuration space the two systems between which the free-energy dif-
ference is calculated and by the quantity chosen whose Boltzmann average is related
to the free energy. For the understanding of the free-energy methodology it is impor-
tant to keep in mind that these two issues are conceptually independent of each other
although certain choices of paths are frequently associated with certain formalisms.

Choice of Path

As the free energy is a state function it is independent of the path over which it
is calculated. This allows considerable latitude for the selection of the path over
which the calculation is performed. The path is described by the introduction of
a coupling parameter A into the energy function. The various choices generally fall
into the following two categories [1]:

E(NXY) = N«E, (X) + (1 — N)**Eo(X") or 4]
E(\,C,X") = E(C(\), X7Y). 2

Here E, and E, are the energy functions for the two systems of N atoms and A is
chosen in such away that A = O and A\ = 1 in (1) and (2) describe systems with energy
function E, and E,, respectively. C in (2) stands for the collection of potential
parameters (including molecular geometries) that are continuous functions of A with
C(0) and C(1) representing systems O and 1, respectively. The path of (1) is opera-
tionally simpler than the path of (2) but it requires calculations on physically mean-
ingless systems that are ‘mathematical mixtures’ of chemical systems. The path of
(2) conforms better to chemical thinking since at each point along the path the
calculation corresponds to a chemically meaningful (although not necessary stable
or even existing) object.

Both choices can run into problems, though. The path of (1) has the potential
problem of possible ‘end-point catastrophe’, i.e. the possible appearance of
singularities at A = 0 or 1 when particle creation or annihilation is involved. Such
situations occur when the number of atoms in the two systems differ or an atom
is mutated into an other of significantly different size or the conformation of the
two systems are different enough that atoms are moved to positions previously
unoccupied by the solute. As discussed below, this problem can be dealt with by
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the use of k > 1 in (1) [1]. The path of (2), on the other hand, can lead through
phase transitions causing numerical instabilities.

A further improvement has been recently found for paths of type (1): the
polynomial path [5]. It generalizes (1) in such a way that different exponents will
be used for different parts of the potential. A similar formalism was introduced in
[6] and used to separate the creation of the cavity form the electrostatic charging
process necessitated by the problems of the path of type (2) mentioned above. For
a potential energy composed of terms of » different type, #(i),

E(XM) =) E,, (XY), (3)

i=1

the polynomial coupling replaces (1) by

n

E(A\XN) = DN wp ot (1 — N) KOO, (4)

i=1

where k(2(i)) is the A\ exponent to be used with the terms of type ¢(i). A natural
partiton of the energy is based on the exponent of the interatomic distances. The
use of different \ exponents incurs negligible additional computational expense. The
significance of (4) will be discussed below.

The independence of the free energy from the path over which it is calculated
also imposes a numerical constraint over free-energy differences: their sum over a
closed thermodynamic cycle has to be zero. This constraint can be used either for
checking the numerical precison of the calculation (vide infra) or it can be used to
eliminate the calculation of one step in the thermocycle. The latter choice led
McCammon to the very succesful proposition to replace the calculation of the free
energy of association with the calculation of free energies of mutations [7].

Choice of Formalism

Once the path is specified, the free-energy difference between the two states can be
obtained in various ways, by exploiting various statistical thermodynamical
identities.

Perturbation Method

The conceptually simplest formalism is the perturbation method (PM) {8-10] since
it is based on a formula that follows directly from the partition function ratios:

AA = —kT In {exp[ — (E, — E;)/kT}),, (5)

where k is the Boltzmann constant, 7 is the absolute temperature and the symbol
() stands for the Boltzmann average of the quantity enclosed using E; as the
energy in the Boltzmann factor. It is the method of choice for systems where the
change is small and it is widely used indeed. The presence of the exponential in (5)
warrants caution for larger changes since exponentiation drastically enlarges the
range of the numbers to be averaged and therefore large numerical errors can occur
[1, 11]. For example, if the energy difference E;, — E, fluctuates in a range of
10 kcal/mol, the contributions to the averageing in (5) will vary over 6 orders of



Downloaded By: [New York University] At: 18:56 16 July 2007

228 M. MEZEI

magnitude. Note, that it is the range of energy differences that has to be kept
small, not the differences themselves.

It should be pointed out that that the notion perturbation is used in several
different contexts in statistical thermodynamics, a somewhat unfortunate situation
giving rise easily to confusion. The point of departure of Zwanzig’s paper [8] is the
free-energy formula (5) but he then proceeds to an expansion into a power series
of 1/kT. For actual calculations, the expansion is truncated after a few terms. That
usage is clearly different from the direct use of (5) since (5) is an exact expression.
The perturbation notion has also been used in the free-energy literature in a general
sense, to refer to calculations where a coupling parameter changes one system into
an other in small steps, irrespective of the formalism used.

PM calculations have been enhanced in a variety of ways. For larger changes,
the calculation can be broken up into a sequence of calculations between distinct
states E(\;) over some path (usually of type (2)) [12]. Non-Boltzmann sampling
(usually called umbrella sampling), discussed below in conjunction with the pro-
bability ratio method, has been used by Torrie and Valleau [9] to enlarge the length
of path sampled in a single simulation allowing the calculation of the free-energy
difference between more different states in one step. A special case, called half-
umbrella sampling, has been introduced by Scott and Lee [13} where the free-energy
difference between states E, and E, is obtained from a run using (E()\;) +
E(\,))/2 in the Boltzmann factor. An analogue of this, where a calculation with
E( (N + \)/2) is used to obtain the free-energy difference between E(A,) and
E(\;) has been called double wide sampling. Based on a triangle inequality, it has
been argued in [14] that the first version should be provide better sampling of the
relevant part of the configurational space.

Thermodynamic Integration

Thermodynamic integration (T1) uses the expression of Kirkwood [15] that applies
the fundamental theorem of calculus to replace the partition function with an
expression that involves an additonal integration:

[}

]
AA = A, — A, 0] 3A (N)/ON d\ ©)

i

1
| @EM) 720, a0 )
where the symbol (), stands for the Boltzmann average of the quantity enclosed
using E(\) in the Boltzmann factor.
TI calculations can also provide directly the entropy change AS between the two
states [1]:
1
7as = = [ LEM) IE(N/3N), = (EQ)), (GE(N)/N),] an. ®)
For a path of type (1) substitution of (1) into (8) yields
1
TAS = —k | (N [((BD), - (EaR) + ((ED, — (EDD] +
)
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(N1 =N T (EW(EN) — ((BE) ) o

Evaluation of (8) or (9) requires negligible extra computational effort. A com-
parison between the TAS calculated with (8) or (9) and AE-AA, where AE is
either calculated from separate simulations or extrapolated from the calculated
(E (A\))s to A =0 and 1, can give a consistency check on the simulation.

The integration can be carried out with a quadrature [16,17] or using the slow-
growth method [18]. Numerical quadratures determine an integral by evaluating
the integrand at a finite number of points. Well-known examples of this are the
numerical integration with the trapezoid rule or with Simpson’s rule. When the
integral to be approximated is based on relatively few points, the best choice is
the Gaussian quadrature that is known to minimize the quadrature error. Note that
if an increase in the order of quadrature (i.e. number of quadrature points) is
required, the higher order quadrature will use a new set of points (with the exception
of A =0.5 for odd order quadratures). The work done for the lower order
quadrature is not lost, though: it can be used to quantify the quadrature error by
comparing the calculated integrand with the corresponding value of the Gaussian
quadrature’s fitting polynomial. Schlitter has introduced and tested an iterative
quadrature scheme [19] that takes into account the variation in the statistical error
of the integrand, but it has not yet been compared with the Gaussian quadrature.
An alternative to quadratures, the slow-growth method varies A (nearly) con-
tinuously during the simulation. Thus it essentially escapes quadrature error but at
the expense of having larger errors in the integrand. This error can be reduced only
by increasing the run length and varying the rate of change in A along the path.
The required lengths can be rather long. For example, Michell and McCammon
showed that for a dipeptide-tripeptide transition 200 ps runs are the minimum [20]
and the same minimum was found by Pearlman and Kollman for the methane-
neopentane transition [21]. The qualification of the error incurred with the slow
growth method is currently an active area [22-26}. Reliable estimate of the error
is made difficult by the fact that the changes in the solvent environment are not
necessarily spread out evenly over the transition: consider for example the mutation
of an ion into an other that has different coordination number: the relaxation
characteristics of the A range where the solvation shell is being rearranged would
be clearly quite different from the rest. The problem is compounded by the fact
that the location of the A-region where such transitions occur is not known
beforehand.

TI with X = 1 in (1) is usually called linear TI and with k£ > 1 it has been referred
to as nearly linear Tl. The term ‘nearly linear’ has been introduced to distiguish it
from the path of (2), referred to as a non-linear path. Nearly linear TI allows the
calculation to avoid the endpoint catastrophe occurring when creation and/or
annihilation of atoms is involved. In such cases linear TI leads to a so-called
improper integral (i.e a definite integral where the integrand is singular at the end-
point(s)) for such systems and the other methods become numerically unstable.
However, for a potential of the form 1/r¢ the asymptotic behaviour of the
integrand is known:

(BE(N)/0N), « Ak -1 a5\ -0 (10)

where d is the dimensionality of the space {1] thus with a high enough & the
integrand remains finite everywhere. In particular, a 1/r'? repulsion in three
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dimensions requires k£ > 4. The special case for d = 3 was given earlier by Squire
and Hoover [27] and by Mruzik, Abraham, Schreiber and Pound {16} and an
integral transformation was derived from it to eliminate the singularity. The path
described by (1) resuits in the same calculation as this integral transform when one
of the systems is the ideal gas. However, the integral transform can not handie
simultaneous creation and annihilation.

It has been suggested (and verified) in [5] that the polynomial path, described with
(4), can partially counter the distorting effect of x > 1 in (1) by using the lowest
possible exponent for ecach type of energy contribution. As a result, the integration
will sample more evenly the [0, 1] A interval and the result will be more precise with
a given number of quadrature points or, equivalently, the same precision can be
obtained with fewer quadrature points. Note, however that Schlitter has shown [19]
that the statistical error at each quadrature point can be reduced by using higher
than the minimum k& value, indicating that there is a trade-off between quadrature
error and statistical error and thus further improvement can possibly be obtained
over the exponent-combination used in [5].

The other option for avoiding the endpoint catastrophe in TI is the use of a path
of the form (2) as noted by Mezei and Beveridge [1] and by Cross [28]. Interestingly,
Cross’ parametrization of the Lennard Jones fluid reduced it to a polynomial path
with & = 13 and 7 for the repulsion and dispersion term, respectively. The price paid
is the generally less predictable behaviour of the integrand, requiring the use of more
quadrature points.

Finite difference thermodynamic integration [29] combines Tl and PM: the
integral of (4) is evaluated by approximating the integrand at each quadrature points
with a finite difference ratio over a small A\ interval. The small change in the free
energy, needed in the finite difference ratio is calculated with the perturbation
method. As only small changes are required in A, the perturbation method results
will be reliable.

Probability Ratio Method

The solvation free energy can also be related to various distributions: the acceptance
ratio method of Bennett [10], the overlap ratio method developed by Bennett [10]
and Jacucci and Quirke [30] (shown to perform well in aqueous systems too [31])
and the probability ratio method all fall into this category. Voter introduced a
variant of the acceptance ratio method that calculates large free-energy differences
in one step, as long as the energy difference fluctuations are small (vide supra) [32].

The probability ratio method that exploits the relation between the Boltzmann
factor and probability of occurrence, was first developed for the calculation of the
free-energy profile (i.e. potential of mean force) along a given path [33], but also
applied to the determination of free-energy differences by Mezei, Mehrotra and
Beveridge [34]:

AA = —kT In [(P(M\)\o/Vi)/(P(N),_o/ Vo) ], an

where P(\) is the Boltzmann probability of the system to be at the intermediate
stage A when X is also a variable during the simulation and V,, V, represent the
configuration space volume corresponding to the A = 0 and 1 state, respectively.
Valleau, Patey and Torrie have recognized that (11) translates small free-energy
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differences into large ratios in the probability of sampling and thus this method
requires non-Boltzmann (“umbrella”) sampling (US) with a modified Hamiltonian,
E’' (XN, R(N)) [9,33] to sample A\ values whose probability is small:

E’ (X", R(N)) = E(X",R(N)) + E,(N). (12)

The Boltzmann average (Q), of any quantity Q can be recovered as
(Q)s = (@ w(N)./(w(N)),, where 13)
w(\) = exp (E,(N)/kT] (14)

and (), implies configurational average using the modified Hamiltonian given by
(12). Notice that here the use of US is essential for the calculation, not just a perfor-
mance enhancer, as with the PM. The determination of E,(A\) proved to be a
serious obstacle, though. This obstacle was reduced significantly by the introduction
of adaptive techniques, based on the fact that the best choice for E,(\) is W(\).
This adaptive umbrella sampling was used by Paine and Scheraga [35] to obtain
the gas-phase conformational free-energy map of the alanine dipeptide and Mezei
recalculated the free-energy difference between the C, and o, conformations of
the alanine dipetide in aqueous solution [11, 36]. The adaptive umbrella sampling
method proved to be significantly more reliable than the use of the harmonic
weighting function on the dimethyl phosphate anion [37]: the closure error over a
thermodynamic cycle consisting of three distinct solute conformations was
8 kcal/mol with empirically determined weighting functions and 0.6 kcal/mol with
the adaptive method. For the aqueous system several additional problems have to
be dealt with: matching of iterations with large statistical noise, recognition of
equilibration phase, guiding the simulation to undersampled regions and others. The
method not only provides improved computational efficiency but is inherently
self-checking.

Methods Without Coupling Parameter

The free energy can also be obtained from grand-canonical ensemble simulations
[38, 39]. Here the chemical potential is kept fixed and the density is obtained at the
end of the calculation as an ensemble average. It has been successful in obtaining
the excess free energy of liquid water with a cavity-biased insertion technique
[40, 41]. For systems involving larger molecules the modeling of the fluctuating
number of molecules becomes increasingly difficult as the liquid will not contain
molecular size cavities. It has been recently proposed in the context of the related
Gibbs ensemble simulations [42] that “growing” the molecule fragment by fragment
could overcome this.difficulty [43], aithough this approach is a tacit reintroduction
of the coupling parameter idea. Widom’s particle insertion method [44] is closely
related to the use of the grand-canonical ensemble and it faces similar difficulties
at higher densities.

Jayaram and Beveridge have recently introduced an approximate formula that
relates the solvation free energy to the energy range sampled during the simulation
and obtained quite good resuits [45].
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Digression

An analysis of the methods described above reveals that both the perturbation
method and the probability ratio method intrinsicly require the complete sampling
of the path connecting the two systems in the configuration space and the
same is true for the slow-growth variant of thermodynamic integration while the
quadrature-based thermodynamic integration requires knowledge only about states
lying at the quadrature points. The difficulty in obtaining adequate assessment of
the error of free energies culculated with PM or slow-growth TI has been com-
pounded by the fact that the agreement between two calculations performed in the
opposite direction (i.e. low hysteresis) is not enough to ensure that the error is
actually low. Newer techniques [22-26] for estimating the error of free energies
calculated with slow-growth TI require simplifying assumptions that are not
necessarily met. On the other hand, the error estimates on the individual quadrature
points provide a reliable error estimate on the free energy calculated. Thus the
crucial question for the success of quadratures is the magnitude of the quadrature
error. It has been shown [46] that using the path of (1) with k = 1 the integrand
in (5) is monotonous. Similar arguments can show that for k>1 both (E;), and
(E,), are monotonous functions of A, thus it is reasonable to expect that the
integrand of (7) is still going to be “well behaved” (i.e. not have many unexpected
extrema). Paths described by (2), however, may contain an unspecified number of
oscillations and inflexions. The difficulty of adequate sampling over the path of (2)
has been recently highlighted by Peariman and Kollman {21] who showed that free-
energy differences over transitions including bond-streching can incur unexpectedly
large errors (although they showed how to correct for them with additional calcuia-
tions). An additional advantage of the path of (1) is that when the reference system
is the ideal gas it describes a transcritical path and thus avoids any possible
numerical instability that may arise when a phase transition is encountered along
the path - a distinct possibility with the use of (2).

The arguments presented above - interpolation capability, reliable error estimates,
nearly monotonous transcritical path - lead to the conclusion that Gaussian
quadrature based TI over the path of (1) or (4) is the method of choice for large
changes and that its advantage increases with the system size. Calculations described
below will illustrate some of these points.

CALCULATIONS USING NEARLY LINEAR TI

Lennard-Jones Fluid

Calculation of the free energy of the Lennard-Jones fluid near its triple point over
the path of (1) showed that 5-point Gaussian quadratures can give the excess free
energy of the fluid to good precision and largely independently of the & value (as long
as k = 4) [14]. The estimated errors (2 S.D.) were 0.004% or less.

Liquid Water

The nearly linear T1 with &k = 4 was applied to the SPC [47] and MCY [48] water
models using 64 waters under face-centered cubic periodic boundary conditions at
room-temperature experimental density [46, erratum]. The integration was based on
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Table 1 Free-energy differences calculated for liquid water.

Runlength: 300K 1000K
Sys; Sysg n, k(1) k(6) k(12) AA AA

SPC IG 5 4 4 4 —5.67 = 0.06 —5.65 + 0.05
SPC IG 8 4 4 4 —5.68 + 0.06 —~5.70 + 0.03
MCY 1G 5 4 4 4 —~4.03 £ 0.05 —4.04 + 0.03
SPC MCY 3 1 | i —1.66 + 0.04 —1.63 + 0.04
SPC 1G 3 4 4 4 —5.61 +0.12 —5.61 + 0.04
SPC IG 3 2 2 4 —5.73 + 0.06 —5.69 + 0.05
MCY 1G 3 4 4 4 —3.97 + 0.03 —4.04 + 0.16
TIP4P 1G 3 4 4 4 —5.43 @ 0.08 —5.42 = 0.06
TIP4P 1G 3 3 2 4 -5.46 = 0.07 —5.45 + 0.03

Legend: a. The symbol K refers to 1000 force-biased [63] Metropolis Monte Carlo [64] steps; b. AA4 represents the free-energy difference
between Sys, and Sys, in kcal/mol; c. n, is the number of quadrature points; d. & (/) are the X exponents used with terms involving 1/7';
e. The results in the top half are from Reference 46 and in the bottom half from Reference 5; f. Energies are in kcal/mol; g. The SPC-MCY
run was only 600K long.

5-point quadratures. An independent calculation of the MCY-SPC free-energy
difference using linear TI based on a 3-point quadrature allowed a consistency check
on a thermodynamic cycle. The results, given in Table 1, show that the calculations
converge very quickly and the error estimates from the individual runs are confirmed
by the small closure error on the IG-MCY-SPC-IG cycle: under 0.1 kcal/
mol. The error estimates on individual free energies were obtained by the method of
batch means [49, 50] and represent 95% confidence intervals (2 S.D.).

These systems were also used recently to demonstrate the improvements possible
with the polynomial path [5]. Table 1 also shows the results of 3-point quadrature
calculations with the polynomial path and with the path of (1) on the SPC and TIP4P
[51] water: the polynomial path results agreed with the 8-point quadrature results
showing that precise results can be obtained with 3-point quadrature. The curvature
of the integrand was also significantly reduced with the polynomial path for both
models, explaining the success of the low-order quadrature.

Methane Solvation in Water

Fleischman and Zichi have studied the perfomance of the nearly linear TI on the
solvation of methane in water [52, 53]. Several exponents were tried but the result was
found insensitive to the choice of exponents (as long as it was at least 4). The
feasibility of using only a small number of quadrature points has been verified: a
5-point Gaussian quadrature reproduced the TI integrand calculated over 40 points.
As the calculated solvation free energy is rather small (1.23 kcal/mol calculated,
2.00 kcal/mol experimental) rather long runs were required to reduce the statistical
noise below the calculate value. An increase in the statistical error of the integrand
was noted around A = 0.6.

Glycine Zwitterion Formation

Glycine forms zwitterion in water at neutral pH. In a recent work this free energy
of the zwitterion formation was decomposed into two principal contributions: the
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difference between the energy of formation of the two molecules and the difference
between the free-energy contribution of the solvent in solution [54]. The calcuiations
used prefixed geometries for both the neutral and the zwitterionic form. The gas-
phase energy difference has been estimated by ab initio calculations up to 2nd order
Moller-Plesset level as 22.8 kcal/mol, favoring the neutral species, in good agreement
with eariler work of Langlet, Caillet, Evleth and Kassab {55] at the 6-31G* level with
geometry optimization (about 20 kcal/mol). Next the difference between the solva-
tion free energies was calculated by thermodynamic integration over the path of (1).
The solute-solvent interactions were described by the AMBER force field [56]) and
the TIP4P water model [51] was used for the water-water interactions and atomic
(partial) charges were derived from STO-3G population analysis. A 5-point quadra-
ture and A exponent k = 4, was used, resulting in a solvation free-energy differ-
ence of 32,0 + 2.3 kcal/mol, favoring the zwitterion. Table 2 gives the calculated
quadrature point results. Combined with the ab-initio calculations, this yields
—9.2 + 2.3 kcal/mol for the free energy of zwitterion formation. To test the effect
of the atomic charge selection procedure, a new set was also calculated, this time
based on 6-311G** population analyis and for both forms the solvation free-energy
differences of between the two different charge models were calculated with linear
T1 using 3-point quadratures. The new charge sets reduced the free energy of solva-
tion of both species, by, 3.8 + 0.2kcal/mol and by 9.2 + 0.2 kcal/mol for the
neutral and zwitterionic form, respectively. Thus the 6-311G** charge set gives
—14.6 + 2.3 kcal/mol for the free energy of zwitterion formation. While it is
encouraging that the final results with the two charge sets encompass the experimen-
tal estimate of — 11 kcal/mol [54] the 5.4 kcal/mol difference beteen the two charge
sets is surprisingly large, given the fact that the charges were obtained with a
‘reasonable’ procedure and the comparison of neutral and zwitterionic forms could
have been expected to provide better cancellation of errors.

Alanine Dipeptide Conformational Free Energies

The C, and «, conformations of the alanine dipeptide were used to compare the
nearly linear TI, finite difference TI and the probability ratio method with adaptive
umbrella sampling [11], the latter two over a path of type (2) involving the linear
movement of the dipeptide atoms. The dipeptide was modeled with the OPLS poten-
tial [57] surrounded by 215 TIP4P water [51] in a FCC simulation cell, at 298K and
experimental density. The free-energy differences, all favoring ay, were obtained as
11.5 + 3.0 kcal/mol with a 5-point nearly linear TI (the 12.6 kcal/mol quoted in [11]
was the result after only 3000K long runs), 8.9 + 4.6 kcal/mol with a S-point finite
difference TI and 12.8 £ ( ~1.5) kcal/mol with the probability ratio method. Table
2 gives the calculated quadrature point results for the nearly linear TI. The finite dif-
ference T1 shows the largest statistical error and its deviation from the other two
indicates that the quadrature error is also likely to be large - a demonstration of the
‘unpredictable’ behaviour of the integrand over paths of type (2).

These free-energy differences are much larger than what is expected experimentally
and what was calculated earlier [34, 36] using the potential library of Clementi and
coworkers [58] and the MCY water model [48]. In the Clementi model the charges
are separately calculated for each conformation while the OPLS-based calculations
described above used conformation independent charges. To test the importance of
changing the charges with conformation, the Clementi-based calculations were
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Table 2 TI integrands over the path of (1) with k = 4

A (N Glycine Dipeptide DNA (GGCC) DNA (AATT)
N-—>+/- C; = ag A—B A~ B
0.04691 0.118463 402 x 1.6 —~205.0 £ 7. —~5809 + 63 1542 + 20
0.23076  0.239314 140 = 0.4 —62.5 = 3. —2640 + 33 483 + 15
0.5 0.284444 -25x0.6 —0.9 + 2. —105 + 10 12+6
0.76924  0.239314 —527 +1.9 48.1 + 3. 2417 x 31 —404 + 14
0.95309 0.118463 52614 134.1 + 4. 5523 + 33 —1486 + 30
AA: -320+3.2 ~-11.5+3 —118 + 35 29 £ 16
Number of waters: 215 215 793 793
Runlength per A: 3000K 4000K 4000K 4000K

Legend: a. c()) is the quadrature coefficient for the quadrature point ); b. energies are in kcal/mol; c. errors represent
95% confidence interval (2 S.D.); d. AA is the calculated free-energy difference.

repeated with the charges fixed at the o, values. The new calculations (adaptive US
in two steps, 6000K total runlength) increased the free-energy difference from
1.8 kcal/mol to 7.4 kcal/mol, showing that keeping the charges fixed can indeed
change the result significantly. The size of the increase is all the more remarkable
since charge differences averaged only 0.011 e and the largest change in the charges
was 0.033 e. The difference in the change of the dipole moments when the ¢, struc-
ture is transformed into the ay structure is not large enough to explain these dif-
ferences either: the dipole moment of the ¢, structure was 0.116 e A and the dipole
moment of the ay structure was 1.74 e A and 2.44 e A, using the a, and C, charges,
respectively.

Nucleic Acid Conformational Free Energies

The solvation free-energy differences between the canonical A and B conformations
of two nucleic acid tetramers have been also calculated using the nearly linear TI with
five-point quadratures [59].

The first calculation involved the DNA duplex 5'-GGCC-3’ described with the
potential library of Clementi et al. [58] and the MCY water model [48] while the
second calculation was done on the 5'-AATT-3’ tetramer described by the AMBER
force field [56] in TIP3P water [51]. For both calculations the charge on the
phosphate group was decreased by 0.75e, to represent the effect of condensed
counterions according to the theory of Manning [60] and no explicit counterions were
modeled. The simulations used periodic boundary conditions in a hexagonal prizm
containing 800 waters at experimental density and 298K temperature. The solute-
water interactions were calculated with the minimum image convention while the
water-water interactions were truncated with a 7.00 A spherical cutoff. The results
are shown in Table 2. As the calculated free-energy differences are too large it is clear
that both models require further refinements. It is interesting to note that on this
system the model that used different charges for the two conformations gave the
larger free-energy difference, contrary to the dipeptide case.

Discussion of the Precision

These calculations show that nearly linear TI is capable of treating changes that
are significantly larger than the ones currently being attempted. As the run lengths
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were kept about the same the calculated error estimates increased with the size and
complexity of the system. The DNA calculations have especially large errors but these
calculations were really quite short in view of the systems involved (the computa-
tional effort spent at each quadrature point is roughly equivalent to 5 ps molecular
dynamics runs each). The particularly large error of the Clementi-based calculation
can be partially attributed to the excessive (~ 7000 atm) pressure of the MCY water
[61] since that results in more solute-solvent overlap during the creation phase. Also,
it should be kept in mind that these errors are only a few percent of the solute-solvent
interaction energies, thus they basically represent the precision of a simulation
involving such a large solute and such a large number of solvent molecules.

However, as TI is based on the ensemble average of energies at a given state, the
error can be expected to decrease at the usual 1/N"? with the length of the run N.
This behaviour of the error has recently been confirmed on the I1G — [Na*],, —
[Li*] ,, — IG thermocycle [62] where both the calculated error estimate and the
closure error decreased steadily with the increase of the length of the calculations.

The error estimates at the quadrature points, shown in Table 2, are consistently
larger at A regions where creation/annihilation is occurring, in accord with Schlitter’s
result [19]. Thus improved precision with a given computational effort can be
obtained if the runlengths at each quadrature point are optimized - see the Appendix.

The precision of the nearly linear TI can also be increased without significant
increase in the computational effort by the use of the polynomial path, as shown on
liquid water.

CONCLUSIONS

It has been demonstrated that the nearly linear TI with Gaussian quadratures is a
robust method for the calculation of large solvation free energies with reliable error
estimates. Its efficiency can be further improved by the use of polynomial path and
by a new runlength optimization technique at each quadrature point, as described in
the Appendix. The calculations discussed have also provided two examples where the
calculated free energy differences have shown large dependence on the atomic
chaerges used. These results underscore the importance of the proper selection of the
atomic charges in the potential.
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Note added in Proof:

Recent calculations showed that the polynomial T1 works equally well for solvation
free energy calculations (H. Resat and M. Mezei, in preparation).
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APPENDIX

Optimization of the runlength at the quadrature points

If the standard deviation A; of each quadrature contribution depends on the
runlength N, as

A, = p,/N}? (15)

then the error of the free energy A can be obtained from

A= 2ic(N)*pl/N, (16)

B

where ¢(}),) is the quadrature coefficient for the i-th point since standard deviation
squares are additive. The proportionality constant p; can be inferred from initial
data or, near the creation/annihilation region, as

piaxi(kd/h’)— l. (17)

(17) follows from the assymptotic formula of Schlitter [19] according to which the
divergence of A? is one order stronger than the divergence of the TI integrand.
Using the Lagrange multiplier method, minimization of (16), subject to the
constraint

N, = )N, (18)
leads to the optimal condition
Nyac(N)**p,. (19)

An important feature of this approach is that it allows the retention of the Gaussian
quadrature, resulting in a procedure that minimizes the statistical error and the
quadrature error at the same time. Its performance, however, has to be assessed with
actual calculations and compared with other approaches, such as in [19].



