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CALCULATION OF SOLVATION FREE-ENERGY 
DIFFERENCES FOR LARGE SOLUTE CHANGE 

FROM COMPUTER SIMULATIONS WITH 

THERMODYNAMIC INTEGRATION 
QUADRATURE-BASED NEARLY LINEAR 

MIHALY MEZEI 

Department of Physiology and 3iophysks, Mount Sinai School of Medicine, 
Cuny, New York, NY 10029 

(Received January 1993, accepted January 1993) 

The free-energy simulation methodology is reviewed from the point of view of calculating large free- 
energy differences. The advantages of the nearly linear thermodynamic integration based on Gaussian 
quadrature are highlighted and its performance is characterized on systems ranging from the Lennard- 
Jones fluid to  the A to B transition of DNA oligomers. A technique for optimizing the runlength at  
each quadrature point is given. Examples for the sensitivity of the calculated free energy to  the atomic 
charges used are also presented. 

KEY WORDS: Free-energy simulation, thermodynamic integration polynomial path, glycine, alanine 
dipeptide, DNA 

INTRODUCTION 

Free energy is the key quantity for the understanding of chemical equilibria, allow- 
ing the characterization of molecular associations, selectivities of associations and 
conformational preferences. Theoretical treatment of solvated macromolecules 
generally involve computer simulations, due to the multitude of effects determining 
their behaviour. The calculation of solvation free energies from computer simula- 
tions, however, has long been recognized as a computationally more demanding task 
than the calculation of structural properties or the internal energy. This critical 
status of the free energy is a consequence of its close relationship with the partition 
function as the general simulation methodologies developed over the last few 
decades owe their success to their ability to provide results without having to 
calculate the partition function. 

However, the importance of the free energy in the understanding of chemical 
equilibria led to diverse and ultimately largely succesful attempts at its calculation. 
As the various methodologies were developed and tested, it became clear that 
reliable results with generally applicable methods require the adequate sampling of 
states that lie on a path connecting the initial and final systems in the configuration 
space. This feature brings an additional increase in the necessary effort for free 
energy calculations with increasing solvent complexity: not only does one need 
longer calculations for adequate estimation of the solute-solvent properties, the 
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226 M. MEZEI 

number of such calculations will also increase as the path connecting the initial and 
final states in the configuration space becomes longer. 

The purpose of this paper is to  discuss methods that are aimed at interpolation 
over this path of ever increasing length and show that successful interpolation is 
indeed possible. As the state of the art of free energy simulations has been 
periodically reviewed in recent years [l-41 only a brief overview of the various 
methodologies will be given and emphasis will be placed on the nearly linear path 
and on the quadrature-based thermodynamic integration, a combination that has 
this interpolation capability. Finally, examples will be shown that demonstrate the 
interpolation techniques discussed. 

FREE-ENERGY SIMULATION METHODOLOGY 

Most free-energy simulation techniques are characterized by the path used to con- 
nect in the configuration space the two systems between which the free-energy dif- 
ference is calculated and by the quantity chosen whose Boltzmann average is related 
to the free energy. For the understanding of the free-energy methodology it is impor- 
tant to keep in mind that these two issues are conceptually independent of each other 
although certain choices of paths are frequently associated with certain formalisms. 

Choice of Path 
As the free energy is a state function it is independent of the path over which it 
is calculated. This allows considerable latitude for the selection of the path over 
which the calculation is performed. The path is described by the introduction of 
a coupling parameter X into the energy function. The various choices generally fall 
into the following two categories [ l ] :  

E ( h , X N )  = Xk*El (X”’) + ( 1  - h)k*E,,(X”’) or 

E (  X, c, XN) = E (  C(h)’  XN). 
Here E,, and E, are the energy functions for the two systems of N atoms and X is 
chosen in such away that A = 0 and X = 1 in (1) and (2) describe systems with energy 
function E,, and E l ,  respectively. C in (2) stands for the collection of potential 
parameters (including molecular geometries) that are continuous functions of X with 
C(0) and C( 1) representing systems 0 and 1, respectively. The path of (1) is opera- 
tionally simpler than the path of (2) but it requires calculations on physically mean- 
ingless systems that are ‘mathematical mixtures’ of chemical systems. The path of 
(2) conforms better to chemical thinking since at each point along the path the 
calculation corresponds to a chemically meaningful (although not necessary stable 
or even existing) object. 

Both choices can run into problems, though. The path of (1) has the potential 
problem of possible ‘end-point catastrophe’, i.e. the possible appearance of 
singularities at X = 0 or 1 when particle creation or annihilation is involved. Such 
situations occur when the number of atoms in the two systems differ or an atom 
is mutated into an other of significantly different size or the conformation of the 
two systems are different enough that atoms are moved to positions previously 
unoccupied by the solute. As discussed below, this problem can be dealt with by 
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SOLVATION FREE ENERGY 221 

the use of k > 1 in (1) [l]. The path of (2), on the other hand, can lead through 
phase transitions causing numerical instabilities. 

A further improvement has been recently found for paths of type (1): the 
polynomial path [5]. It generalizes (1) in such a way that different exponents will 
be used for different parts of the potential. A similar formalism was introduced in 
[6] and used to separate the creation of the cavity form the electrostatic charging 
process necessitated by the problems of the path of type (2) mentioned above. For 
a potential energy composed of terms of n different type, t ( i ) ,  

the polynomial coupling replaces (1) by 
n 

E(  X, x”) = c h k ( l ( i ) )  *El, l( i)  + ( I  - A )  k ( ‘ ( 0 )  *Eo,t(i) * (4)  

where k ( t ( i ) )  is the X exponent to be used with the terms of type t ( i ) .  A natural 
partiton of the energy is based on the exponent of the interatomic distances. The 
use of different X exponents incurs negligible additional computational expense. The 
significance of (4) will be discussed below. 

The independence of the free energy from the path over which it is calculated 
also imposes a numerical constraint over free-energy differences: their sum over a 
closed thermodynamic cycle has to be zero. This constraint can be used either for 
checking the numerical precison of the calculation (vide infru) or it can be used to 
eliminate the calculation of one step in the thermocycle. The latter choice led 
McCammon to the very succesful proposition to  replace the calculation of the free 
energy of association with the calculation of free energies of mutations [7]. 

i =  I 

Choice of Formalism 
Once the path is specified, the free-energy difference between the two states can be 
obtained in various ways, by exploiting various statistical thermodynamical 
identities. 

Perturbation Method 
The conceptually simplest formalism is the perturbation method (PM) [8- 101 since 
it is based on a formula that follows directly from the partition function ratios: 

( 5 )  

where k is the Boltzmann constant, T is the absolute temperature and the symbol 
(), stands for the Boltzmann average of the quantity enclosed using E,, as the 
energy in the Boltzmann factor. It is the method of choice for systems where the 
change is small and it is widely used indeed. The presence of the exponential in ( 5 )  
warrants caution for larger changes since exponentiation drastically enlarges the 
range of the numbers to be averaged and therefore large numerical errors can occur 
[ l ,  111. For example, if the energy difference El - E, fluctuates in a range of 
10 kcal/mol, the contributions to the averageing in ( 5 )  will vary over 6 orders of 

M = -kT In (exp[ - ( E l  - E,,) /kT]) , ,  
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228 M. MEZEI 

magnitude. Note, that it is the range of energy differences that has to be kept 
small, not the differences themselves. 

It should be pointed out that that the notion perturbation is used in several 
different contexts in statistical thermodynamics, a somewhat unfortunate situation 
giving rise easily to confusion. The point of departure of Zwanzig's paper [8] is the 
free-energy formula ( 5 )  but he then proceeds to an expansion into a power series 
of l/kT. For actual calculations, the expansion is truncated after a few terms. That 
usage is clearly different from the direct use of ( 5 )  since ( 5 )  is an exact expression. 
The perturbation notion has also been used in the free-energy literature in a general 
sense, to refer to  calculations where a coupling parameter changes one system into 
an other in small steps, irrespective of the formalism used. 

PM calculations have been enhanced in a variety of ways. For larger changes, 
the calculation can be broken up into a sequence of calculations between distinct 
states E ( & )  over some path (usually of type (2)) [12]. Non-Boltzmann sampling 
(usually called umbrella sampling), discussed below in conjunction with the pro- 
bability ratio method, has been used by Torrie and Valleau [9] to enlarge the length 
of path sampled in a single simulation allowing the calculation of the free-energy 
difference between more different states in one step. A special case, called half- 
umbrella sampling, has been introduced by Scott and Lee [ 13) where the free-energy 
difference between states Eo and El is obtained from a run using ( E ( & )  + 
E ( h l ) ) / 2  in the Boltzmann factor. An analogue of this, where a calculation with 
E (  (X, + X,)/2) is used to obtain the free-energy difference between E ( X , )  and 
E ( X , )  has been called double wide sampling. Based on a triangle inequality, it has 
been argued in [14] that the first version should be provide better sampling of the 
relevant part of the configurational space. 

Thermodynamic Integration 

Thermodynamic integration (TI) uses the expression of Kirkwood [ 151 that applies 
the fundamental theorem of calculus to replace the partition function with an 
expression that involves an additonal integration: 

= 1' (dE(h)/dh)AdX (7) 

where the symbol Ox stands for the Boltzmann average of the quantity enclosed 
using E(h) in the Boltzmann factor. 

TI calculations can also provide directly the entropy change AS between the two 
states [l]: 

TAS = - 0 j I [ ( E ( h )  aE(h)/dh)A - (E(X)),(dE(h)/dh),] A. (8) 

For a path of type (1) substitution of (1) into (8) yields 

TAS = - k ! ' { A z k - *  [ ( (E& - (EJt)  -I- ( (E% - (EJ:)I -I- 
0 

(9) 
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SOLVATION FREE ENERGY 229 

[ ~ ( l  - x > I ~ - ~ ( ( K J A ( E ~ ) A )  - ( ( ~ o ~ i ) A ) l  A 

Evaluation of (8) or (9) requires negligible extra computational effort. A com- 
parison between the TAS calculated with (8) or (9) and AE-AA, where AE is 
either calculated from separate simulations or extrapolated from the calculated 
( E  (X))’s to X = 0 and 1 ,  can give a consistency check on the simulation. 

The integration can be carried out with a quadrature [16,17] or using the slow- 
growth method [ 181. Numerical quadratures determine an integral by evaluating 
the integrand at a finite number of points. Well-known examples of this are the 
numerical integration with the trapezoid rule or with Simpson’s rule. When the 
integral to be approximated is based on relatively few points, the best choice is 
the Gaussian quadrature that is known to minimize the quadrature error. Note that 
if an increase in the order of quadrature (i.e. number of quadrature points) is 
required, the higher order quadrature will use a new set of points (with the exception 
of X = 0.5 for odd order quadratures). The work done for the lower order 
quadrature is not lost, though: it can be used to quantify the quadrature error by 
comparing the calculated integrand with the corresponding value of the Gaussian 
quadrature’s fitting polynomial. Schlitter has introduced and tested an iterative 
quadrature scheme [19] that takes into account the variation in the statistical error 
of the integrand, but it has not yet been compared with the Gaussian quadrature. 
An alternative to quadratures, the slow-growth method varies X (nearly) con- 
tinuously during the simulation. Thus it essentially escapes quadrature error but at 
the expense of having larger errors in the integrand. This error can be reduced only 
by increasing the run length and varying the rate of change in X along the path. 
The required lengths can be rather long. For example, Michell and McCammon 
showed that for a dipeptide-tripeptide transition 200 ps runs are the minimum [20] 
and the same minimum was found by Pearlman and Kollman for the methane- 
neopentane transition [21]. The qualification of the error incurred with the slow 
growth method is currently an active area [22-261. Reliable estimate of the error 
is made difficult by the fact that the changes in the solvent environment are not 
necessarily spread out evenly over the transition: consider for example the mutation 
of an ion into an other that has different coordination number: the relaxation 
characteristics of the X range where the solvation shell is being rearranged would 
be clearly quite different from the rest. The problem is compounded by the fact 
that the location of the X-region where such transitions occur is not known 
beforehand. 

TI with k = 1 in (1) is usually called linear TI and with k > 1 it has been referred 
to as nearly linear TI. The term ‘nearly linear’ has been introduced to distiguish it 
from the path of (2), referred to as a non-linear path. Nearly linear TI allows the 
calculation to avoid the endpoint catastrophe occurring when creation and/or 
annihilation of atoms is involved. In such cases linear TI leads to  a so-called 
improper integral (i.e a definite integral where the integrand is singular at the end- 
point(s)) for such systems and the other methods become numerically unstable. 
However, for a potential of the form l/r‘ the asymptotic behaviour of the 
integrand is known: 

(dE( X)/dX), a! X(kd’e) - ’ as X + O  (10) 

where d is the dimensionality of the space [l]  thus with a high enough k the 
integrand remains finite everywhere. In particular, a l/r’* repulsion in three 
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230 M. MEZEl 

dimensions requires k 2 4. The special case for d = 3 was given earlier by Squire 
and Hoover [27] and by Mruzik, Abraham, Schreiber and Pound [16] and an 
integral transformation was derived from it to eliminate the singularity. The path 
described by (1) results in the same calculation as this integral transform when one 
of the systems is the ideal gas. However, the integral transform can not handle 
simultaneous creation and annihilation. 

It has been suggested (and verified) in [5 ]  that the polynomial path, described with 
(4), can partially counter the distorting effect of k > 1 in (1) by using the lowest 
possible exponent for each type of energy contribution. As a result, the integration 
will sample more evenly the [0, 11 X interval and the result will be more precise with 
a given number of quadrature points or, equivalently, the same precision can be 
obtained with fewer quadrature points. Note, however that Schlitter has shown [ 191 
that the statistical error at each quadrature point can be reduced by using higher 
than the minimum k value, indicating that there is a trade-off between quadrature 
error and statistical error and thus further improvement can possibly be obtained 
over the exponent-combination used in [5]. 

The other option for avoiding the endpoint catastrophe in TI is the use of a path 
of the form (2) as noted by Mezei and Beveridge [l] and by Cross [28]. Interestingly, 
Cross’ parametrization of the Lennard Jones fluid reduced it to a polynomial path 
with k = 13 and 7 for the repulsion and dispersion term, respectively. The price paid 
is the generally less predictable behaviour of the integrand, requiring the use of more 
quadrature points. 

Finite difference thermodynamic integration [29] combines TI and PM: the 
integral of (4) is evaluated by approximating the integrand at each quadrature points 
with a finite difference ratio over a small A interval. The small change in the free 
energy, needed in the finite difference ratio is calculated with the perturbation 
method. As only small changes are required in A, the perturbation method results 
will be reliable. 

Probability Ratio Method 

The solvation free energy can also be related to various distributions: the acceptance 
ratio method of Bennett [lo], the overlap ratio method developed by Bennett [lo] 
and Jacucci and Quirke [30] (shown to perform well in aqueous systems too [31]) 
and the probability ratio method all fall into this category. Voter introduced a 
variant of the acceptance ratio method that calculates large free-energy differences 
in one step, as long as the energy difference fluctuations are small (vide supra) [32]. 

The probability ratio method that exploits the relation between the Boltzmann 
factor and probability of occurrence, was first developed for the calculation of the 
free-energy profile (i.e. potential of mean force) along a given path [33], but also 
applied to the determination of free-energy differences by Mezei, Mehrotra and 
Beveridge [34]: 

(1 1) 

where P(X) is the Boltzmann probability of the system to be at the intermediate 
stage A when X is also a variable during the simulation and V,, V,  represent the 
configuration space volume corresponding to  the X = 0 and 1 state, respectively. 
Valleau, Patey and Torrie have recognized that ( 1  1) translates small free-energy 

= - k T h  [ (p(~)A=~~~l)~(p(~)~=O~~O)], 
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SOLVATION FREE ENERGY 23 1 

differences into large ratios in the probability of sampling and thus this method 
requires non-Boltzmann (“umbrella”) sampling (US) with a modified Hamiltonian, 
E’ (XN, R ( X ) )  [9,33] to sample X values whose probability is small: 

E‘ (X”,R(X)) = E ( X ” , R ( h ) )  + E , ( h ) .  

(Q)B = (Q w ( X > ) w / ( w ( X > > w  where 

(12) 

The Boltzmann average (Q)B of any quantity Q can be recovered as 

(13) 

w ( X )  = exp ( E , ( h ) / k T ]  (14) 
and ( ) w  implies configurational average using the modified Hamiltonian given by 
(12). Notice that here the use of US is essential for the calculation, not just a perfor- 
mance enhancer, as with the PM. The determination of E,(X) proved to be a 
serious obstacle, though. This obstacle was reduced significantly by the introduction 
of adaptive techniques, based on the fact that the best choice for E,,,(X) is W(X).  
This adaptive umbrella sampling was used by Paine and Scheraga [35] to obtain 
the gas-phase conformational free-energy map of the aIanine dipeptide and Mezei 
recalculated the free-energy difference between the C, and aR conformations of 
the alanine dipetide in aqueous solution [ l l ,  361. The adaptive umbrella sampling 
method proved to be significantly more reliable than the use of the harmonic 
weighting function on the dimethyl phosphate anion [37]: the closure error over a 
thermodynamic cycle consisting of three distinct solute conformations was 
8 kcal/mol with empirically determined weighting functions and 0.6 kcal/mol with 
the adaptive method. For the aqueous system several additional problems have to 
be dealt with: matching of iterations with large statistical noise, recognition of 
equilibration phase, guiding the simulation to undersampled regions and others. The 
method not only provides improved computational efficiency but is inherently 
self-checking. 

Methods Without Coupling Parameter 
The free energy can also be obtained from grand-canonical ensemble simulations 
[38,39]. Here the chemical potential is kept fixed and the density is obtained at the 
end of the calculation as an ensemble average. It has been successful in obtaining 
the excess free energy of liquid water with a cavity-biased insertion technique 
[40,41]. For systems involving larger molecules the modeling of the fluctuating 
number of molecules becomes increasingly difficult as the liquid will not contain 
molecular size cavities. It has been recently proposed in the context of the related 
Gibbs ensemble simulations [42] that “growing” the molecule fragment by fragment 
could overcome this.difficulty [43], although this approach is a tacit reintroduction 
of the coupling parameter idea. Widom’s particle insertion method [44] is closely 
related to the use of the grand-canonical ensemble and it faces similar difficulties 
at higher densities. 

Jayaram and Beveridge have recently introduced an approximate formula that 
relates the solvation free energy to the energy range sampled during the simulation 
and obtained quite good results [45]. 
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Digression 

An analysis of the methods described above reveals that both the perturbation 
method and the probability ratio method intrinsicly require the complete sampling 
of the path connecting the two systems in the configuration space and the 
same is true for the slow-growth variant of thermodynamic integration while the 
quadrature-based thermodynamic integration requires knowledge only about states 
lying at the quadrature points. The difficulty in obtaining adequate assessment of 
the error of free energies culculated with PM or slow-growth TI has been com- 
pounded by the fact that the agreement between two calculations performed in the 
opposite direction (i.e. low hysteresis) is not enough to ensure that the error is 
actually low. Newer techniques [22-261 for estimating the error of free energies 
calculated with slow-growth TI require simplifying assumptions that are not 
necessarily met. On the other hand, the error estimates on the individual quadrature 
points provide a reliable error estimate on the free energy calculated. Thus the 
crucial question for the success of quadratures is the magnitude of the quadrature 
error. It has been shown [46] that using the path of (1) with k = 1 the integrand 
in ( 5 )  is monotonous. Similar arguments can show that for k> 1 both (E& and 

are monotonous functions of A, thus it is reasonable to expect that the 
integrand of (7) is still going to be “well behaved” (i.e. not have many unexpected 
extrema). Paths described by (2), however, may contain an unspecified number of 
oscillations and inflexions. The difficulty of adequate sampling over the path of (2) 
has been recently highlighted by Pearlman and Kollman 1211 who showed that free- 
energy differences over transitions including bond-streching can incur unexpectedly 
large errors (although they showed how to correct for them with additional calcula- 
tions). An additional advantage of the path of (1) is that when the reference system 
is the ideal gas it describes a transcritical path and thus avoids any possible 
numerical instability that may arise when a phase transition is encountered along 
the path - a distinct possibility with the use of (2). 

The arguments presented above - interpolation capability, reliable error estimates, 
nearly monotonous transcritical path - lead to  the conclusion that Gaussian 
quadrature based TI over the path of (1) or (4) is the method of choice for large 
changes and that its advantage increases with the system size. Calculations described 
below will illustrate some of these points. 

CALCULATIONS USING NEARLY LINEAR TI 

Lennard-Jones Fiuid 

Calculation of the free energy of the Lennard-Jones fluid near its triple point over 
the path of (1) showed that 5-point Gaussian quadratures can give the excess free 
energy of the fluid to good precision and largely independently of the k value (as long 
as k 2 4) [14]. The estimated errors (2 S.D.) were 0.004% or less. 

Liquid Water 
The nearly linear TI with k = 4 was applied to the SPC 1471 and MCY I481 water 
models using 64 waters under face-centered cubic periodic boundary conditions at 
room-temperature experimental density [46, erratum]. The integration was based on 
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SOLVATION FREE ENERGY 233 

Table 1 Free-energy differences calculated for liquid water. 

SPC 
SPC 
MCY 
SPC 
SPC 
SPC 
MCY 
TIP4P 
TIP4P 

IG 
IG 
1G 
MCY 
IG 
IG 
IG 
IG 
IG 

-5.67 f 0.06 
-5.68 f 0.06 
-4.03 f 0.05 
- 1.66 f 0.04 
-5.61 f 0.12 
-5.73 * 0.06 
-3.97 f 0.03 
-5.43 0.08 
-5.46 f 0.07 

-5.65 f 0.05 
-5.70 f 0.03 
-4.04 f 0.03 
- 1.63 f 0.04 
-5.61 f 0.04 
-5.69 f 0.05 
-4.04 f 0.16 
-5.42 f 0.06 
-5.45 f 0.03 

~~ ~ 

Legend: a. The symbol K refers to loo0 force-biased 1631 Metropolis Monte Carlo [64] sleps; b. M represents the free-energy difference 
between Sys, and Sys, in kcal/rnol; c. R is the number of quadrature poinis; d. k ( i )  are the X exponents used with terms involving t / r ' ;  
e. The results in the top half are from ReTerence 46 and in the bottom half from Reference 5 :  f .  Energies are in kcal/mol; 8. The SPC-MCY 
run was only 600K long. 

5-point quadratures. An independent calculation of the MCY-SPC free-energy 
difference using linear TI based on a 3-point quadrature allowed a consistency check 
on a thermodynamic cycle. The results, given in Table 1, show that the calculations 
converge very quickly and the error estimates from the individual runs are confirmed 
by the small closure error on the IG-MCY-SPC-IG cycle: under 0.1 kcal/ 
mol. The error estimates on individual free energies were obtained by the method of 
batch means [49,50] and represent 95% confidence intervals (2 S.D.). 

These systems were also used recently to demonstrate the improvements possible 
with the polynomial path [5 ] .  Table 1 also shows the results of 3-point quadrature 
calculations with the polynomial path and with the path of (1) on the SPC and TIP4P 
[51 J water: the polynomial path results agreed with the 8-point quadrature results 
showing that precise results can be obtained with 3-point quadrature. The curvature 
of the integrand was also significantly reduced with the polynomial path for both 
models, explaining the success of the low-order quadrature. 

Methane Solvation in Water 

Fleischman and Zichi have studied the perfomance of the nearly linear TI on the 
solvation of methane in water [52,53]. Several exponents were tried but the result was 
found insensitive to the choice of exponents (as long as it was at least 4). The 
feasibility of using only a small number of quadrature points has been verified: a 
5-point Gaussian quadrature reproduced the TI integrand calculated over 40 points. 
As the calculated solvation free energy is rather small (1.23 kcal/mol calculated, 
2.00 kcal/mol experimental) rather long runs were required to reduce the statistical 
noise below the calculate value. An increase in the statistical error of the integrand 
was noted around h = 0.6. 

Glycine Zwitterion Formation 
Glycine forms zwitterion in water at neutral pH. In a recent work this free energy 
of the zwitterion formation was decomposed into two principal contributions: the 
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difference between the energy of formation of the two molecules and the difference 
between the free-energy contribution of the solvent in solution [54]. The calculations 
used prefixed geometries for both the neutral and the zwitterionic form. The gas- 
phase energy difference has been estimated by ab initio calculations up to 2nd order 
Moller-Plesset level as 22.8 kcal/mol, favoring the neutral species, in good agreement 
with eariler work of Langlet, Caillet, Evleth and Kassab [55 ]  at the 6-31G* level with 
geometry optimization (about 20 kcal/mol). Next the difference between the solva- 
tion free energies was calculated by thermodynamic integration over the path of (1). 
The solute-solvent interactions were described by the AMBER force field [56] and 
the TIP4P water model [51] was used for the water-water interactions and atomic 
(partial) charges were derived from STO-3G population analysis. A 5-point quadra- 
ture and h exponent k = 4, was used, resulting in a solvation free-energy differ- 
ence of 32.0 f 2.3 kcal/mol, favoring the zwitterion. Table 2 gives the calculated 
quadrature point results. Combined with the ab-initio calculations, this yields 
-9.2 f 2.3 kcal/mol for the free energy of zwitterion formation. To test the effect 
of the atomic charge selection procedure, a new set was also calculated, this time 
based on 6-31 1G** population analyis and for both forms the solvation free-energy 
differences of between the two different charge models were calculated with linear 
TI using 3-point quadratures. The new charge sets reduced the free energy of solva- 
tion of both species, by, 3.8 f 0.2 kcal/mol and by 9.2 f 0.2 kcal/mol for the 
neutral and zwitterionic form, respectively. Thus the 6-31 1G** charge set gives 
- 14.6 f 2.3 kcal/mol for the free energy of zwitterion formation. While it is 
encouraging that the final results with the two charge sets encompass the experimen- 
tal estimate of - 11 kcal/mol [54] the 5.4 kcal/mol difference beteen the two charge 
sets is surprisingly large, given the fact that the charges were obtained with a 
‘reasonable’ procedure and the comparison of neutral and zwitterionic forms could 
have been expected to provide better cancellation of errors. 

Alanine Dipeptide Con formational Free Energies 

The C, and aR conformations of the alanine dipeptide were used to compare the 
nearly linear TI, finite difference TI and the probability ratio method with adaptive 
umbrella sampling [ I  11, the latter two over a path of type (2) involving the linear 
movement of the dipeptide atoms. The dipeptide was modeled with the OPLS poten- 
tial [57] surrounded by 215 TIP4P water [51] in a FCC simulation cell, at 298K and 
experimental density. The free-energy differences, all favoring aR, were obtained as 
11.5 f 3.0 kcal/mol with a 5-point nearly linear TI (the 12.6 kcal/mol quoted in 11 11 
was the result after only 3000K long runs), 8.9 f 4.6 kcal/mol with a 5-point finite 
difference TI and 12.8 f ( - 1.5) kcal/mol with the probability ratio method. Table 
2 gives the calculated quadrature point results for the nearly linear TI. The finite dif- 
ference TI shows the largest statistical error and its deviation from the other two 
indicates that the quadrature error is also likely to be large - a demonstration of the 
‘unpredictable’ behaviour of the integrand over paths of type (2). 

These free-energy differences are much larger than what is expected experimentally 
and what was calculated earlier [34,36] using the potential library of Clementi and 
coworkers [58] and the MCY water model [48]. In the Clementi model the charges 
are separately calculated for each conformation while the OPLS-based calculations 
described above used conformation independent charges. To test the importance of 
changing the charges with conformation, the Clementi-based calculations were 
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Table 2 TI integrands over the path of (1)  with k = 4 

h c(N Glycine Dipeptide DNA (GGCC) DNA (AA m) 
N -ti-/- c7 (yR A - + B  A + B  

0.04691 0.118463 
0.23076 0.239314 
0.5 0.284444 
0.76924 0.239314 
0.95309 0.118463 
AA: 
Number of waters: 
Runlength per h: 

40.2 f 1.6 
14.0 f 0.4 

-2.5 f 0.6 
-52.7 zt 1.9 
-52.6 f 1.4 
-32.0 f 3.2 

215 
3000K 

-205.0 f I. 
-62.5 f 3. 
-0.9 f 2. 
48.1 f 3.  

134.1 f 4. 
- 1 1 . 5  * 3 

215 
4000K 

-5809 f 63 
-2640 f 33 
-105 zk 10 
2417 f 31 
5523 f 33 

-118 f 35 
793 

4000K 

1542 f 20 
483 f 15 

12 f 6 
-404f 14 
- 1486 * 30 

29 f 16 
793 

4000K 

Legend: a. c(A) is the quadrature coefficient for the quadrature point A; b. energies are in kcalhol; c. errors represent 
95% confidence interval (2 S.D.); d. M is the calculated free-energy difference. 

repeated with the charges fixed at the C Y ~  values. The new calculations (adaptive US 
in two steps, 6000K total runlength) increased the free-energy difference from 
1.8 kcal/mol to 7.4 kcal/mol, showing that keeping the charges fixed can indeed 
change the result significantly. The size of the increase is all the more remarkable 
since charge differences averaged only 0.01 1 e and the largest change in the charges 
was 0.033 e.  The difference in the change of the dipole moments when the c, struc- 
ture is transformed into the C Y ~  structure is not large enough to eFplain these dif- 
ferences either: the dipole moment of the c, structure was 0.1 16 eA and the dipole 
moment of the C Y ~  structure was 1.74 eA and 2.44 e A, using the C Y ~  and C, charges, 
respectively. 

Nucleic Acid Con formational Free Energies 
The solvation free-energy differences between the canonical A and B conformations 
of two nucleic acid tetramers have been also calculated using the nearly linear TI with 
five-point quadratures [59]. 

The first calculation involved the DNA duplex 5 '-GGCC-3 ' described with the 
potential library of Clementi et al. [58] and the MCY water model [48] while the 
second calculation was done on the 5 '-AATT-3 ' tetramer described by the AMBER 
force field [56] in TIP3P water [51]. For both calculations the charge on the 
phosphate group was decreased by 0.75e, to represent the effect of condensed 
counterions according to the theory of Manning [60] and no explicit counterions were 
modeled. The simuIations used periodic boundary conditions in a hexagonal prizm 
containing 800 waters at experimental density and 298K temperature. The solute- 
water interactions were calculated with the minimu? image convention while the 
water-water interactions were truncated with a 7.00 A spherical cutoff. The results 
are shown in Table 2. As the calculated free-energy differences are too large it is clear 
that both models require further refinements. It is interesting to note that on this 
system the model that used different charges for the two conformations gave the 
larger free-energy difference, contrary to  the dipeptide case. 

Discussion of the Precision 

These calculations show that nearIy linear TI is capable of treating changes that 
are significantly larger than the ones currently being attempted. As the run lengths 
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were kept about the same the calculated error estimates increased with the size and 
complexity of the system. The DNA calculations have especially large errors but these 
calculations were really quite short in view of the systems involved (the computa- 
tional effort spent at each quadrature point is roughly equivalent to 5 ps molecular 
dynamics runs each). The particularly large error of the Clementi-based calculation 
can be partially attributed to the excessive ( - 7000 atm) pressure of the MCY water 
[61] since that results in more solute-solvent overlap during the creation phase. Also, 
it should be kept in mind that these errors are only a few percent of the solute-solvent 
interaction energies, thus they basically represent the precision of a simulation 
involving such a large solute and such a large number of solvent molecules. 

However, as TI is based on the ensemble average of energies at a given state, the 
error can be expected to decrease at the usual 1/N"' with the length of the run N. 
This behaviour of the error has recently been confirmed on the IG - [Na+Iaq - 
[Li+] aq - IG thermocycle [62] where both the calculated error estimate and the 
closure error decreased steadily with the increase of the length of the calculations. 

The error estimates at the quadrature points, shown in Table 2, are consistently 
larger at X regions where creation/annihilation is occurring, in accord with Schlitter's 
result [ 191. Thus improved precision with a given computational effort can be 
obtained if the runlengths at each quadrature point are optimized - see the Appendix. 

The precision of the nearly linear TI can also be increased without significant 
increase in the computational effort by the use of the polynomial path, as shown on 
liquid water. 

CONCLUSIONS 

It has been demonstrated that the nearly linear TI with Gaussian quadratures is a 
robust method for the calculation of large solvation free energies with reliable error 
estimates. Its efficiency can be further improved by the use of polynomial path and 
by a new runlength optimization technique at each quadrature point, as described in 
the Appendix. The calculations discussed have also provided two examples where the 
calculated free energy differences have shown large dependence on the atomic 
chaerges used. These results underscore the importance of the proper selection of the 
atomic charges in the potential. 
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Note added in Proof: 
Recent calculations showed that the polynomial TI works equally well for solvation 
free energy calculations (H. Resat and M. Mezei, in preparation). 
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APPENDIX 

Optimization of the runlength at the quadrature points 

If the standard deviation A; of each quadrature contribution depends on the 
runlength Nj  as 

A; = pi/Nfl2 (15) 

then the error of the free energy A can be obtained from 

A* = ~ c ( X , ) * ~ ~ / N ; .  
i 

where c( X i )  is the quadrature coefficient for the i-th point since standard deviation 
squares are additive. The proportionality constant pi  can be inferred from initial 
data or, near the creationlannihilation region, as 

(y h!kd/2e)  - I 

(17) follows from the assymptotic formula of Schlitter [19] according to which the 
divergence of A: is one order stronger than the divergence of the TI integrand. 
Using the Lagrange multiplier method, minimization of (16), subject to the 
constraint 

(17) 

i 

leads to the optimal condition 

Nl ac(Xi) l”*pi  

An important feature of this approach is that it allows the retention of the Gaussian 
quadrature, resulting in a procedure that minimizes the statistical error and the 
quadrature error at the same time. Its performance, however, has to be assessed with 
actual calculations and compared with other approaches, such as in [19]. 


