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THEORETICAL CALCULATION OF THE LIQUID-VAPOR
COEXISTENCE CURVE OF WATER, CHLOROFORM AND
METHANOL WITH THECAVITY-BIASED MONTE CARLO

METHOD IN THE GIBBS ENSEMBLE

MIHALY MEZEI
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The Gibbs ensemble computer simulation method of Panagiotopoulos is combined by the cavity-biased
sampling technique used previously in the grand-canonical ensemble. The combined technique is applied to
the determination of the liquid-vapor coexistence curve of the Lennard Jones fluid as a test case, two water
models (SPC and TIP4P) as well as methanol and chloroform, both described with the OPLS model. The
application of the virial-biased sampling technique, used earlier in the isobaric ensemble is also discussed.
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INTRODUCTION

The liquid-vapor coexistence curve for any type of particles can in general be calculated if
both the free energy and the presure of the liquid and the gas is known as a function of
the density and the temperature. For the Lennard-Jones fluid, such an equation of state
has been determined using extensive data from several different authors [1]. Alternatively, a
number of free energy calculations can be performed to find out the conditions under which
the liquid and vapor free energies and pressures agree. Again, these calculations are known to
be computationally rather expensive [2]. Panagiotopoulos recently proposed what he called
the Gibbs ensemble [3,4], involving a dual simulation of two systems — one of them is the
liquid the other is the vapor — that exchange both volume and matter to reach equilibrium
between the two. The two systems are not in physical contact, thus problems that arise with
modeling the liquid-vapor interface are avoided. This technique has been verified on the
well-characterized liquid vapor coexistence curve of the Lennard-Jones fluid [3]. Subsequent
work has been reviewed by Panagiotopoulos [5]. As the method requires insertions into both
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systems, the first applications to liquid water were done above room temperature [6]. Room
temperature calculations require specialized techniques, as discussed below.

The recent success of the cavity-biased insertions in the grand-canonical ensemble [7,8] sug-
gests that an generalization of this technique to the Gibbs ensemble would extend the tem-
perature range where simulations can be done. This suggesion is tested in the present study.
As remarked in Ref.8, the success of the insertion of an anisotropic molecule can be en-
hanced by the use of an orientational bias. Cracknell, Nicholson, Parsonage and Evans
recently developed a procedure for orientationally biased insertion and tested it in the Gibbs
ensemble [9] and the success of exchanges was indeed found to improve significantly. It is
thus expected that the combination of the cavity biased insertion with the orientationally
biased insertion should prove even more powerful since they are each helpful under differ-
ent circumstances. In addition to the cavity-biased insertion technique, it is likely that
the volume change can also be made more efficient by implementing the virial-biased tech-
nique [10]. This paper describes the generalization of the cavity-biased insertion technique
and the virial-biased volume change technique to Gibbs ensemble simulations and presents
results on water, methanol and chloroform using the cavity biased technique. Comparison
with other methods as well as with experimental results will also be presented.

BACKGROUND

Gibbs ensemble simulation

Simulation in the Gibbs ensemble combines simulation techniques in the canonical, isobaric
and grand-canonical ensembles (all at constant temperature). It proposes the dual simula-
tions of the substance under consideration in two different phases. The particles in both of
the systems are moved independently of each other but the volume changes and the particle
number changes are correlated: volumes and particles are only exchanged between the two
systems, i.e., a volume change involves the change in the two volumes by the same amount
∆V but in different directions and the disappearence of a particle from one system can
only occur with an insertion of a new particle into the other system. If one combines the
probability ratios of the simultaneous changes, both the pressure and the chemical potential
cancels and one is left with acceptance expressions that involve only the volumes, particle
numbers, energies and the temperature:

Pvol = exp[(∆Ea + ∆Eb)/kT ][(V a + ∆V )/V a]N
a
[(V b −∆V )/V b]N

b
(1)

Pint = exp[(∆Ea + ∆Eb)/kT ]V b(Na + 1)/(V aNb) (2)

where k is the Boltzmann constant, T is the absolute temperature, the superscripts a and b
refer to the two systems, respectively, E is the internal energy, N is the number of particles
and V is the volume. By performing Gibbs ensemble simulations at various temperatures
the coexistence curve of the two phases can be determined.

The outcome of a simulation with this technique will be average internal energies and the
densities of two systems at equilibrium, at the temperature specified by T . With some extra
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computational effort the pressures in the two systems can also be estimated and their differ-
ence could provide an estimate of the precision of the simulation. The extra computational
effort becomes minimal when the force-biased displacement technique of Rao, Pangali and
Berne [11] is used or for atomic fluids described by inverse distance power potentials [12].

Cavity-biased Gibbs ensemble simulation

As one of the computational steps in the Gibbs ensemble is essentially a grand-canonical
ensemble insertion and deletion, the difficulties encountered at high densities in the grand-
canonical ensemble will be encountered in the Gibbs ensemble as well. However, techniques
overcoming that difficulty should be equally applicable.

Recently, it has been shown that using a cavity-biased insertion technique [8] liquid water
can successfully be simulated in the grand-canonical ensemble. The cavity biased method
inserts only into cavities of suitable size (e.g., with radius greater than Rc). The probabilities
of the acceptance of a cavity-biased insertion is

P i
CB = V ′PNc (rN ) exp[(µ+ E(rN )− E(rN−1))/kT ]/(N + 1). (3)

Here µ is the chemical potential, V ′ = V Λ3, where Λ is the usual kinetic factor, U(rN ) is

the potential energy of a system of N particles at the configuration rN and PNc (rN ) is the

probability of finding a cavity of radius Rc or larger in the configuration rN . The particle
to be deleted is chosen randomly and the corresponding acceptance probability is

Pd
CB = N exp[(−µ+ E(rN )− E(rN−1))/kT ]/(V ′PN−1

c (rN−1)). (4)

It is easy to show (following the derivation in Reference [4]) that for a cavity biased exchange

PCB
int = PintP

Na

c /PN
b

c (5)

where the particle was transferred from system b to system a.

The probability of finding a cavity at a given point in a given configuration can be efficiently
estimated by a grid technique described in Reference [8]. It can be also applied in the Gibbs
ensemble, with a single provision, related to the accounting for the effects of the volume
changes. If one allows the grid to be scaled by the same factor as the the box edge is scaled
with the volume change and redefines the cavity definition by replacing the original Rc with
a radius that is also scaled along with the grid, then the cavity description will remain
unaffected by the volume changes.

Virial–Biased Gibbs ensemble simulation

The virial-biased constant pressure ensemble simulation biases the volume change in the
direction of the derivative, Fv, of the exponent in the constant-ensemble Boltzmann factor
as described in detail in Reference [10]. In particular, the volume change ∆V is sampled
from the distribution

exp[λ∆V Fv/kT ]/n(V ) (6)
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where
Fv = −∂(U + PV − kTN lnV )/∂V, (7)

λ is a constant usually chosen to be 1/2, and

n(V ) = 2kT sinh(λδV Fv/kT )Fv (8)

with δV being the maximum volume change allowed. For systems with pairwise additive
potentials u(r1, r2), used with a spherical cutoff of Re,

Fv =

 N∑
i<j

(ri − rj)∆iu(ri, rj)

 /3V − 2πρu(Re)g(Re)/3− V + kTN/V. (9)

If the potential is smoothly switched to zero (‘feathering’), the second term, containing
g(Re), the value of the radial distribution function at the cutoff, is omitted. Note, that the
first term was incorrectly given (but correctly used) in Reference [10].

If the volume changes were uncorrelated, the virial-biased technique would be applicable
without change in the Gibbs ensemble simulation. This correlation can be incorporated into
the biasing process if, for the purpose of the volume change, one considers the two system a
single combined system with a single, combined volume change. For this combined volume
change the appropriate Fv to be used in Equation (6) is simply

Fv = F av − F bv . (10)

The calculation of Fv, requires the derivative of the energy with respect to the volume.
For atomic fluids with inverse distance power potentials, Fv can be obtained at negligible
computational expense [12]. However, if the pressures of the two fluids are also estimated
or if the force-biased technique [11] is used for displacement then the calculation of Fv
again requires little extra effort. This technique, however, was not implemented in the work
reported here.

CALCULATIONS

In all calculations described here the particles were moved by the Metropolis prescription.
The calculations involving molecular fluids also calculated the center of mass CRM of each
particle. Rotations during the normal Metropolis move were performed around the center of
mass of each molecule and a volume change ∆V changed the coordinates of each molecule
Xi

Xi
new = Xi

old + CRMi(rnew − rold) (11)

where
r = (V/Vinit)

1/3. (12)

This way the CRM coordinates always refer to the initial volume, Vinit and the volume
change only affects the atomic coordinates X. The calculations related to cavity search also
use CRM to avoid the need for reinitializing the cavity grid each time the volumes are
changed.
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TABLE 1 Potential parameters used in the calculations.

σ ε Charge Re
TIP4P water O 3.1536 0.15504 -1.04 7.75
TIP4P water H
TIP4P water q 0.52

SPC water O 3.1655 0.15542 -0.82 7.75
SPC water H 0.41

methanol CH3 3.774 0.207 0.265 9.5
methanol O 3.07 0.168 -0.7
methanol H 0.435

chloroform CH 3.8 0.08 0.42 12.0
chloroform Cl 3.47 0.40 -0.14

Legend: The Lennard-Jones parameters σ and ε are in Å and kcal/mol, the charge is in electrons (ELJ(r) =
4ε[(σ/r)12 − (σ/r)6]) and the potential cutoff Re is in Å

TABLE 2 Gibbs ensemble simulation results on the Lennard Jones fluid.

T ∗ ρl ρv Ins. PXacc ∆N Eq. of state

ρl ρv

0.7 0.841±.003 0.0015±.00003 CB 0.0016 4 0.84 0.002
0.7 0.839±.0.0010.0017±.0007 0.0001 3 0.84 0.002
0.8 0.798±.003 0.0059±.0006 CB 0.0091 7 0.80 0.005
0.8 0.801±.02 0.0073±.003 0.0006 8 0.80 0.005
0.9 0.755±.005 0.014 ±.0011 CB 0.026 14 0.76 0.011
0.9 0.756±.007 0.014 ±.0022 0.0024 11 0.76 0.011
1.0 0.704±.005 0.030 ±.0011 CB 0.057 23 0.70 0.024
1.0 0.697±.010 0.028 ± 0031 0.008 22 0.70 0.024
1.1 0.639±.018 0.052 ±.0059 CB 0.116 41 0.63 0.045
1.1 0.642±.012 0.055 ± .0051 0.017 30 0.63 0.045

Legend: a) Ins. gives the insertion technique; b) PXacc is the acceptance rate of the particle exchange step;
c) ∆N is the range of fluctuations in the particle number; d) the density is the reduced density.
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TABLE 3 Gibbs ensemble simulation results on the SPC water.

T ρl ρv Ins. PXacc ∆N NMC Experimental

ρl ρv

298 1.009±.007 0.00008±0.0002 CB 0.00007 1 1000K 0.998 0.00002
350 0.952±.011 0.00025±0.0001 CB 0.0007 3 1000K 0.983 0.00015
400 0.879±.010 0.0014 ±0.0002 CB 0.0045 3 1000K 0.951 0.00088
450 0.826±.011 0.0069 ±0.0012 CB 0.014 9 1000K 0.908 0.0032
500 0.717±.020 0.0182 ±0.0026 CB 0.034 19 1000K 0.853 0.0097
550 0.604±.027 0.063 ±0.018 CB 0.050 54 1000K 0.786 0.0234
570 0.557±.056 0.152 ±0.033 CB 0.037 78 850K 0.749 0.0349
580 0.396±.147 0.324 ±0.045 R 0.050 154 1000K 0.731 0.0407

Legend: a) Ins. gives the insertion technique; b) PXacc is the acceptance rate of the particle exchange step;
c) ∆N is the range of fluctuations in the particle number; d) the density is in g/ml; e) experimental data
interpolated from Reference [25].

The Lennard-Jones calculations used 165 particles and the molecular systems contained 190
molecules. Exchange attempts were made after every displacement attempts of a randomly
selected particle in both systems, and the direction of the exchage attempts was alternated.
Volume change attempts were performed after every 100 displacement and exchange at-
tempts. No optimization of these parameters was performed. Note, that Cracknell et al.
found better results with less frequent exchange attempts [9].

As all the calculations described here deal with liquid-vapor coexistence curves, the cavity-
biased insertion was only applied to the liquid system. The generation of initial configurations
reflected this requirements: at first (T, V,N) ensemble calculations equilibrated a single liquid
system at the temperature of the calculation with the density targeted and only after this
equilibration was the Gibbs ensemble calculation started.

Each calculation used a spherical cutoff on the interactions (based on the distances of the
center of masses), given in Table 1. Unlike the cavity radius, the cutoff radius was not
scaled with the volume change. This introduced the possibility that the volume of a system
could drop below the minimum volume required to contain the cutoff sphere. Clearly, this
should be avoided since it would bias uncontrollably the volume sampling. In the present
implementation the calculation was stopped if that occurred and additional particles were
added.

The calculations on the Lennard Jones fluid, run with a 2.5σ cutoff, used a correction for the
contributions beyond the cutoff distance to allow comparison with published results. The
correction is based on the assumption that the radial distribution function is constant beyond
the cutoff distance Re. This procedure is less involved than the one used in Reference [3],
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but it was found to be adequate earlier for the Lennard Jones fluid [13]. The contribution
(in reduced units) is

(N/2)
∫ ∞

0
(4πr2ρ)[4(r−12 − r−6)]dr = (R−9

e /9−R−3
e /3)8πN2/V. (13)

The value of this expression changes both on the interchage of particles and on the exchange
of volumes and therefore the acceptance probabilities of both of those steps have to be
modified accordingly.

The errors on the calculated average volumes 〈V 〉 and number of particles 〈N〉 were calcu-
lated by the method of batch means [14,15] and the errors on the densities were obtained by
assuming that the relative error on the density is the sum of the relative errors of 〈V 〉 and
of 〈N〉. The numbers given are the doubles of the standard deviations and thus represent
95% confidence interval.

The location of the critical point was estimated by fitting a third order polynomial to the
nearest 5 (two sets) and 6 points to the critical point and averaging the estimates from these
fits.

The calculations on liquid water were based on the TIP4P [16] and the SPC [17] water
models. The OPLS parameters for methanol are given in References [18] and [19] while the
chloroform parameters are in Reference [20]. Table 1 collects the potential parameter values
used.

RESULTS AND DISCUSSION

Table 2 shows the results of calculations on Lennard-Jones particles run at various tem-
peratures and their comparison with previous results. The calculations were run both with
random insertions and with the cavity bias insertions. The cavity-biased technique increased
the acceptance rate of the exchange step by an order of magnitude and, with the exception of
the T ∗ = 1.1 run (where the random insertion was already producing nearly 2% acceptance
rate), the error on the calculated density was also significantly reduced.

The calculations on the SPC water, using a 7.75 Å spherical cutoff (SC) are described in Table
3. Figure 1 gives a comparison with the calculations of de Pablo et al. [21] where the Ewald
summation (ES) was employed instead of SC and with the exmerimental liquid and vapor
densities. The liquid densities calculated with the SC boundary conditions are closer to the
experimental values than the ES results under the critical point but the calculated critical
temperature is similar for both boundary conditions, 587 K for ES and 582 K for SC (and thus
both significantly under the experimental value, 647.3 K) and the calculated critical densities,
0.38 g/ml for SC and 0.27 g/ml for ES, differ from the experimental value, 0.32 g/ml by the
same amount although in different directions. The better behaviour of the SC calculation
near room temperature is not surprising since the SPC potential was parametrized with
SC. Reparametrization with ES based on room temperature data, however, would likely
to worsen the calculated critical density although the calculated critical temperature might
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improve. In hindsight, one might also argue that unless it is ensured that the simulation cell
sizes are (nearly) constant over the temperature range studied, using ES in Gibbs ensemble
simulations introduces an inconsistency and that is manifested in the weaker comparison
with experiment. Clearly, more studies are required on this point.

The results of the methanol and chloroform calculations are given in Tables 3 and 4, respec-
tively. The agreement with experiment for methanol is rather good until 450 K and again at
the critical point calculated to be at 0.25 g/ml and 493 K, close to the experimental result,
0.2722 g/ml and 513.2 K [22]. The comparison for chloroform shows similar behaviour. Its
critical point was found to be at 0.63 g/ml and 504 K. This differs somewhat more from the
experimental value, 0.516 g/ml and 536.1 K [22] or 0.491 g/ml and 536.7 K [23].

TABLE 4 Gibbs ensemble simulation results on the OPLS methanol.

T ρl ρv Ins. PXacc ∆N NMC Experimental

ρl ρv

275 0.777±.006 0.00908±0.0006 CB 0.00002 2 1000K 0.808 0.00007
298 0.744±.013 0.00238±0.0024 CB 0.0009 9 1000K 0.787 0.00022
350 0.693±.011 0.0055 ±0.0024 CB 0.0052 12 1000K 0.739 0.0019
400 0.630±.022 0.0208 ±0.0045 CB 0.015 23 1000K 0.681 0.0087
450 0.537±.067 0.111 ±0.021 CB 0.023 71 1000K 0.604 0.0297
480 0.313±.067 0.181 ±0.075 R 0.043 165 1000K 0.534 0.0605
490 0.291±.059 0.238 ±0.029 R 0.039 90 1000K 0.501 0.0795
500 0.254±.039 0.261 ±0.060 R 0.046 65 1000K 0.478 0.107

Legend: a) Ins. gives the insertion technique; b) PXacc is the acceptance rate of the particle
exchange step; c) ∆N is the range of fluctuations in the particle number; d) the density is
in g/ml. Experimental data interpolated from References [22] and [25].

For the comparison with experimental thermodynamic properties, however, it should be
borne in mind that the potentials used in this work are all effective pairwise additive poten-
tials that have been parametrized to data near room-temperature. The range of applicability
of such potentials is in general limited to thermodynamic states that sample the same region
of the configuration space. It is clearly unreasonable to expect that this would be the case
for the triple point and the critical point of a liquid. Thus extending the use of an effective
pair potential derived around room temperature to the critical point means ‘pushing’ it be-
yond its range of applicability and thus significant degradation in performance is likely to
occur. If better modeling of liquids near the critical point is required, there are two options:
reparametrize the potential as a function of temperature or turn to the use of cooperative
potentials. Recent calculations of Strauch and Cummings, that used different dipole mon-
ents in different phases and obtained improved agreement with experiment [24], fall into the
first category.
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The introduction of the cavity-biased insertion increased the computer time by 35% for
the Lennard-Jones system. In exchange, it increased the acceptance rate by an order of
magnitude for the Lennard Jones fluid, and concomittantly reduced the error on the densities
by a factor of two or more. Such reduction of error is approximately equivalent to lengthening
the run to four times longer or more.

TABLE 5 Gibbs ensemble simulation results on the OPLS chloroform..

T ρl ρv Ins. PXacc ∆N NMC Experimental

ρl ρv

298 1.452±.014 0.00060±0.00087CB 0.00001 1 1000K 1.481
350 1.349±.021 0.0162 ±0.0068 CB 0.00029 6 1000K 1.417 0.0046
400 1.240±.013 0.0292 ±0.0046 CB 0.0032 10 1000K 1.375 0.0197
450 1.105±.023 0.0794 ±0.011 R 0.0049 32 1000K 1.254 0.0503
500 0.860±.101 0.632 ±0.142 R 0.015 90 1000K 1.097 0.117
510 0.796±.134 0.742 ±0.134 R 0.015 94 1500K 1.057 0.138
520 0.772±.154 0.772 ±0.156 R 0.016 109 1500K 1.014 0.165

Legend: a) Ins. gives the insertion technique; b) PXacc is the acceptance rate of the particle exchange step;
c) ∆N is the range of fluctuations in the particle number; d) the density is in g/ml; e) experimental data
interpolated from Reference [23].

To estimate the effect of the cavity-biased insertions, calculations were also done on the
molecular systems at room temperature using random insertion attempts. The acceptance
of the exchange steps at 298K increased by a factor of 4, 8, 5, and 2.5 for the TIP4P water,
SPC water, methanol and chloroform, respectively, while the computer time increase by 21%
for the SPC water, 16% for the TIP4P water, 10% for methanol, and 9% for chloroform.
Thus the suggestion of Cracknell et al. [9] that cavity biasing would be of little importance
for water is not supported by this work.

The fluctuation in the liquid volumes resulted in samll fluctuation on the cavity radius Rc.
The average cavity radius differed from the cavity radius at the initial configuration by at
most 1%, 2%, and 8% for the water, chloroform and methanol systems, respectively. As the
calculation is relatively insensitive to the precise value of Rc, the decision to allow Rc to
fluctuate with V is justified.
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