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The advantages of the Monte-Carlo quadrature for solving least-square approxi-
mation problems are discussed, an approximation algorithm and a probabilistic
error estimate are given.

1. Introduction

THE PROBLEM of replacing a complicated function with a simple one —
having approximately the same properties often arises both in mathematics
and physics. Let us suppose that we have an algorithm for computing the
value of the complicated function at any chosen point and we do not have a
good estimate about the number and place of points where the value of the
complicated function is to be computed in order to get the simple one which
may replace it. In this case a random point selection appears advantageous
and we give an estimate for the error of the approximation in the cases where
this kind of point selection is applied.

2. The “Goodness” Criterion of an Approximation

Let us suppose that we have a complicated function q(x),x = (x1, . . . , xn)
which is bounded in a closed finite domain B of the n dimensional Euclidean
space, with volume V and the function p(x) is regarded as an approximation
to q(x). The difference between the two functions can be characterized in
several ways. For example, we can choose some functional D(p(x)) whose
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value will be the number characterizing the difference. In this paper we will
first restrict ourself to the case when

D(p(x)) =
1

V

∫
B

(q(x)− p(x))2dv. (1)

3. The Quadrature Problem

As we chose the functional defined by equation (1), we have a numerical
quadrature problem. Quadratures other than the Monte-Carlo quadratures
have the following drawbacks: (a) In case of equidistant point selection we
have to increase the number of points at the rate kn (k is the number of points
in one direction, n is the number of variables); (b) In case of polynomial
quadratures — beside the drawback mentioned in (a) — when we want to
increase the number of points we often can not use the points used before. On
the other hand the Monte-Carlo quadrature leads to an error greater than
those mentioned above. As we are computing the integral only to obtain
an “approximating” function p(x), an error in the integral value will have
as result that p(x) will not be the best approximation to q(x) (in the least
square sense).

It is not very serious, however, because: (a) We will have a statistical
upper and lower bound for the exact integral value; (b) The error is only
second order compared with the error committed by replacing q(x) with
p(x).

Consequently, the Monte-Carlo quadrature appears to be a good choice in
the following cases: (a) A solution, not far from the best approximation, but
certainly not the best approximation is sufficient for us; (b) Because of the
unknown nature of the problem the possibility of increasing the number of
points used in the approximation several times cannot be excluded; (c) The
function q(x) to be approximated lies or nearly lies in the function space T ,
defined by the parameters of p(x), that is the scalar product of q(x) with its
projection to T is near to 1. (If the number of parameters in the function
p(x) is n and q(x) lies in T then n independent points are already sufficient.)
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4. The Error Estimate

As the function p(x)) contains some parameters which define a function
space T , the approximation problem can be formulated as a search for a
function po(x) which satisfies the following equation:

min
p(x)∈T

D(p(x)) = D(po(x)) (2)

where D is defined by equation (1).

If the values (q(xi)− p1(xj))
2 are regarded as values of a probability vari-

able, their expectation value will be D(p(x)). Let A and C be two sets of
nA and nC points, respectively, whose elements are equally distributed in B,
p1(x) be a function that

1

nA

=
∑
xi∈A

(q(xi)− p1(xi))
2 (3)

is minimal (p1(x) ∈ T ). Then we can prove the following inequalities which
can serve as an error estimate:

M(
1

nA

(q(xi)− pi(x))2) ≤ D(po(x)) ≤M(
1

nC

∑
xi∈C

(q(xi)− p1(xi))
2), (4)

where M( ) means the expectation value.

As the points xi are equally distributed in B, it follows that

M(
1

nC

∑
xi∈C

(q(xi)− p1(xi))
2) = D(p1(x)). (5)

The right-hand inequality follows from equation (5), because D(po(x)) is the
minimal value of the functional D in the function space T and p1(x) ∈ T .
Moreover, from the definition of p1(x) it follows that

1

nA

∑
xi∈A

(q(xi)− p1(xi))
2 ≤ 1

nA

∑
xi∈A

(q(xi)− po(xi))
2 (6)

and also for the expectation values:

M(
1

nA

∑
xi∈A

(q(xi)− p1(xi))
2) ≤M(

1

nA

∑
xi∈A

(q(xi)− po(xi))
2). (7)
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As the points xi are equally distributed in B:

M(
1

nA

∑
xi∈A

(q(xi)− po(xi))
2) = D(p1(x)). (8)

Putting equation (8) into equation (7) we obtain the left-hand inequality of
(4).

4.1. Remarks

(i) From the proof of the left-hand inequality it follows that if pi(x) min-
imizes D then the equality holds in the left-hand inequality of (4).

(ii) From the definition of po(x) and pi(x) it follows that p1(x) minimizes
D if and only if the equality holds in the right-hand inequality of (4).

(iii) From the first two remarks and from the inequalities (4) it follows
that p1(x) minimizes D if and only if

M(
1

nA

∑
xi∈A

(q(xi)− p1(xi))
2) ≤M(

1

nC

∑
xi∈C

(q(xi)− p1(xi))
2). (9)

(iv) As the choice of the points of A and C did not depend on the function(s)
minimizing D, the distributions of the values (q(xi) − po(xi))

2 will be the
same over both sets.

According to remark (iii), if equation (9) holds, then pi(x)) is identical
with one of the functions minimizing D (for example po(x)) and therefore
also the distributions of the values (q(xi)−p1(xi))

2 must agree over both sets,
that is the identity of the two distributions is also a necessary and sufficient
condition for p1(x) to minimize D.

(v) An inclusion theorem for the Tschebyscheff approximation, showing
some similarity to our error estimate was proven by Collatz (Garabedian,
1965). This theorem provided the points xi satisfy a system of inequalities
gives upper and lower bounds toD(po(x)) which can be analytically expressed
from the p1(x).
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5. The Extension of the Functional D(p(x))

As can be seen in the proof of inequalities (4), any functional D′(p(x)) having
the form

D′(p(x)) =
1

V

∫
B
f(p(x))dv. (10)

where f(u) is an integrable function in B, satisfies them. Thus our esti-
mate can be used for several other “goodness criterions” too. An interesting
example is when the functional to be minimized is

D′(p(x)) =
1

V

∫
B
ρ(x)(q(x)− p(x))2dv (11)

where ρ(x) satisfies the following equations:

ρ(x) > 0 (12)∫
B
ρ(x)dv = 1 (13)

that is ρ(x) is a weighting function.

This function can be handled in a very simple way: It is known from the
theory of Monte-Carlo integration (Shreider, 1966) that if the points xi are
distributed according to a probability distribution having ρ(x)) as its density
function, then

lim
n→∞

1

n

n∑
i=1

f(xi)

ρ(xi)
=

∫
B
f(x)dv. (14)

When replacing f(x)i) by ρ(xi)(q(xi)−p(xi))
2 we can see that if the points of

the sets A and C are distributed according to ρ(x) (which is possible because
the equations (12) and (13) ensure that ρ(x) can be a density function), the
expression to be minimized will have similar form as in the case when only
(q(x)−p(x))2 was to be integrated so the same approximation algorithm (see
Section 7) can be applied for both cases.

6. The Use of the Inequalities (4)

These inequalities can serve the following aims: (i) They give a statistical
estimate to the upper and lower bounds of the error of the best approxima-
tion; (ii) Since equation (9) is a necessary and sufficient condition for p1(x) to
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minimize D, we also have a criterion to decide the refinement of the approx-
imation. As equation (9) contains expectational values, whose exact value is
not known, only their statistical estimates, the validity of equation (9) can
be checked only by statistical methods.

The Student t-test, for example, is appropriate for this reason, because, ac-
cording to remark (iv), if a function p(x)) minimizes D then not only the
expectational values of (q(xj) − p(xi))

2, but their distributions too must
agree in A and C, so the applicability of the Student t-test (the equality of
variances) is ensured. It must be pointed out, however, that the equality of
variances is only a necessary condition for p(x) to minimize D.

7. The Algorithm

Let us suppose that the p1(x) minimizing the expression (3) is calculated by
the conditions that the partial derivatives of (3) with respect to the param-
eters of p1(x) must vanish. As the derivation is a linear operator, we can see
at once that the equations determining the wanted parameter values will be
of the form:

1

nA

=
∑
xi∈A

(q(xi)− p1(xi))2 (15)

where ( )′ denotes the derivate of the expression ( ) with respect to one
parameter. (It can be noticed that every member of the sum depends only
on one point xi.)

The algorithm will then consist of the following steps:

(i) Select from B the points for A, calculate the corresponding q(xi) values
and prepare the derivatives appearing in equation (15) for xi ∈ A.

(ii) Select from B the points for C, calculate the corresponding q(xi) values
and prepare the derivatives appearing in equation (15) for xi ∈ C.

(iii) Solve the equation (15) corresponding to A. If the last test (step vi)
permits to finish the computation then stop.
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(iv) Compute the deviations (q(xi)− p1(xi))
2 for xi ∈ A and xi ∈ C, respec-

tively, and compute the values of the statistical functions t and F .

(v) Form a “new” set A by merging the points xi ∈ C into the former set
A, and form a new equation (15) according to the new A (in case of linear
parameters simply add the equation (15) resp. C to the equation (15) resp.
former A).

(vi) If both the t and F test do not show significant difference (the level of
significance will be characteristic to the exactness of the approximation) then
go to step (iii) otherwise go to step (ii).

7.1. Remarks on the Algorithm

(i) It must be pointed out that we have to solve our equation (15) exactly in
every iteration to be sure that the inequalities (4) on which the end criterion
is based, hold. This is not very serious in general, because (at least from the
second iteration) we have a good starting solution (i.e. the solution obtained
in step (iii) of the previous iteration).

(ii) In the algorithm, beside the solving of equation (15) we have to check the
equality of two expectational values and/or the identity of two distributions.
The present algorithm uses the t and F test for this purpose. It must be
pointed out, however, that at this point other statistical methods can be
used as well.

8. Numerical Example

To show an example, we approximated the function e−x in the [0,1] interval
by polynomials of different degrees. The results are collected in Tables 1-3.
DA and DC are

1

nA

=
∑
xi∈A

(q(xi)− p1(xi))2 and
1

nC

=
∑
xi∈C

(q(xi)− p1(xi))2

respectively, n is the degree of the approximating polynomial.
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TABLE 1
n = 1

D(po(x)) = 5.310−4
nA nC DA DC t F
20 20 4.5104 6.5104 1.1 1.6
40 20 5.3104 6.8104 14 .1.2
60 20 5.6104 6.2104 0.33 1.6
80 20 5.7104 4.5104 0.70 2.6

TABLE 2
n = 2

D(po(x)) = 3.710−6
nA nC DA DC t F
20 20 3.3106 4.4106 0.74 2.2
40 20 3.6106 4.3106 0.65 2.3
60 20 3.810-6 5.2i06 1.3 2.2
80 20 4.1106 2.9106 1.3 2.8

TABLE 3
n = 3

D(po(x)) = 1.410−8
nA nC DA DC t F
20 20 1.1108 1.4108 0.6 2.2
40 20 1.2108 1.5108 0.6 5.1
60 20 1.2108 1.4108 0.39 5.2
80 20 1.3108 1.41a8 0.45 1.7

The degrees of freedom corresponding to a t and an F value can be obtained
from the corresponding nA and nC values: that for the t value is nA +nC − 1
while those for the F value are nA and nC themselves, nA corresponding to
the denominator and nC to the numerator.

From the results it seems that:

(i) The DA and DC values are not very different and in most of the cases
the D(po(x))) value is bounded by them. The “anomalies” occur in the
cases where the number of elements in A and C are very different and the
approximation is poorer. In any case, however, their values are not far from
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the D(po(x))) value.

(ii) The value of t becomes small much easier and does not show as large
oscillations as the F value. As the t test requires a small F value, it seems
very advisable to study other statistical tests as well.

In addition to this simple example it must be remarked that the approxima-
tion algorithm described in Section 7 was previously applied with success in
a quantum chemical approximation problem (Mezei, 1972).

Thanks are due to Katalin Bencsath for her important remarks on the manuscript.
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