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The polynomial path is introduced for the calculation of liquid state free energies. The well-characterized
SPC, TIP4P, and MCY water models were used to demonstrate its efficiency, as well as its range of applica-
bility in conjunction with Monte Carlo computer simulations using thermodynamic integration based on
Gaussian quadratures. The technique employed is compared with the slow-growth method (another variant
of thermodynamic integration), the perturbation method, and the use of the grand-canonical ensemble.

INTRODUCTION AND BACKGROUND

The calculation of the free energy, long recognized
as a computationally exacting task, is of special
importance due to the role of the free energy in
determining chemical equilibria. As reviewed re-
cently,! free energy simulation techniques are
characterized by the path selected that connects
the two systems in the configuration space (e.g.,
the choice of the coupling parameter, vide infra)
and by the quantity chosen whose Boltzmann aver-
age is related to the free energy—with the excep-
tion of calculations in the grand-canonical ensem-
ble, where the chemical potential is fixed at the
outset. The various choices of the coupling param-
eter, described in detail in ref. 2, fall into two dis-
tinct classes:

E(\ XN) = iV * ExXY) + fo(N) * Eo(XY) (1)
or
E(\, C, XY) = E[C(N), X"] (2)

Here E; and E; are the energy functions for the
two systems between which the free energy differ-
ence is to be computed and A is the so-called coup-
ling parameter that varies from 0 to 1. The func-
tions fi(A) and fy(\) are continuous functions with

H(O0) =f(1) =0 3)

and

A1) =£(0) =1 4)

so that A = 0 or 1 in eq. (1) describes systems with
energy function E; and E;, respectively. Moving
along the path described by eq. (1), the system 0 is
gradually ‘‘fading away’’ while system 1 is simulta-
neously being ‘‘turned on’’—a kind of Chesire cat
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approach. The symbol C in eq. (2) stands for the
collection of potential parameters (including mo-
lecular geometries) and their dependence on A is
such that C(0) describes system 0 and C(1) de-
scribes system 1. Thus, eq. (2) describes a path in
the configuration space where system 0 is continu-
ously deformed into system 1. A convenient choice
for fi and f, is

SN =N and fo(N) = (1 - N (5)

Once the path is specified, the free energy dif-
ference between the two states can be obtained in
various ways. The calculations described in this ar-
ticle used thermodynamic integration (based on
ideas of Kirkwood®):

1
AA = A} — Ay = S COE(N/ANY, AN (6)
0

and reference will be made to the so-called pertur-
bation method:

AA = —kT In{exp[—(E, — Ep)kT]ye (7)

where k is the Boltzmann constant, 7 is the abso-
lute temperature, and the symbols (), ¢ ), stand
for the Boltzmann average of the quantity en-
closed using E(\) and E,, respectively, as the en-
ergy in the Boltzmann factor. It is to be stressed
that eq. (7) is exact and thus its use is different
from the use of thermodynamic perturbation theo-
ries that are based on a truncated expansion.

Using eqs. (1) and (5) for the coupling parameter
simplifies eq. (6) into

1
AA =S KL — NE-KCEo + M-U(E] AN (8)
0

It has been shown® that for k¥ = 1 the integrand
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in eq. (8) is monotonous, a desirable quality when
the use of a quadrature is anticipated. Similar ar-
guments can show that both (Ep), and (E,), are
monotonous functions of A; thus, it is reasonable to
expect that the integrand of eq. (8) is still going to
be ‘‘well behaving”’ (i.e., not have many unex-
pected extrema). Paths described by eq. (2), how-
ever, may contain unspecified number of oscilla-
tions, although for the liquid water problem this
did not appear to be the case (the integrand was
found to have only one maximum in refs. 7 and 8).
Furthermore, when the reference system is the
ideal gas eq. (1) describes a transcritical path and
thus avoids any possible numerical instability that
may arise when a phase transition is encountered
along the path—a distinct possibility with the use
of eq. (2).

The need for k > 1 arises for transitions involv-
ing the creation and/or annihilation of atoms. Such
a situation occurs when the number of atoms in the
two systems differ or the conformation of the two
systems are different enough that atoms are
moved to previously unoccupied positions. In such
cases, thermodynamic integration with k = 1 leads
to a so-called improper integral [i.e., a definite in-
tegral where the integrand is singular at the end-
point(s)] and the other methods become numeri-
cally unstable. The source of the divergence in the
integrand or the instability is the divergence of the
interaction potential at » = 0. However, for a po-
tential of the form 1/7¢ the asymptotic behavior of
the integrand is known to be N*¢9)-1  where d is
the dimensionality of the space®; thus, k can be
selected high enough that the integrand remains
finite everywhere. For the three-dimensional case,
the assymptotic behavior was given earlier by Mru-
zik et al.? and Swope et al.!° The overall behavior
of the integrand is dominated by the terms with
the highest e. In particular, a 1/7'2 repulsion in
three dimensions requires k = 4. Calculations on
the dense Lennard-Jones fluid!! and on liquid wa-
ter'? have demonstrated the efficiency of this ap-
proach. Couplings using eq. (2) in general do not
encounter this singularity problem.?!® Notice also
that the path described by eq. (1) results in the
same calculation as the integral transform sug-
gested by Mruzik et al.? when one of the systems is
the ideal gas.

The purpose of this article is to present a gener-
alization of eq. (1), the polynomial path, and dem-
onstrate its efficiency and range of applicability on
liquid water models. Liquid water was chosen for
the test since it has been the subject of several
studies and the results are well established. Once
the efficiency of the proposed technique is demon-
strated on liquid water, it can then be used for the
calculation of the free energies of other liquids, as
well as for the calculation of solvation free ener-
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gies. The article also presents comparisons of the
efficiency of thermodynamic integration using
Gaussian quadrature, thermodynamic integration
with the slow-growth method, the perturbation
method, and the use of grand-canonical ensemble
for the calculation of liquid free energies.

THEORY

The proposed polynomial path generalizes eq. (1)
in such a way that different exponents will be used
for different parts of the potential. For a potential
energy involving terms with n different powers of
interatomic distances e(é), 1 = 1, n:

EXNY = D) EfXN) 9
i=1

the polynomial coupling replaces eq. (1) by

E(\, XY) = 25 N+ By
i=1

+ (1 = MO+ By oy (10)

where k[e(?)] is the A exponent to be used with the
terms involving the e(7)th inverse distance powers.
The idea behind this proposal is that the lower the
exponent the more evenly will the integration sam-
ple the [0, 1] X interval; thus, the high A exponent
should only be used with the repulsion term. The
use of different A exponents incurs negligible addi-
tional computational expense. Calculations de-
scribed in this article used integer exponents only,
but eq. (10) can be used with fractional exponents
as well. Hermans et al.” used the same formalism to
break up the calculation into individual segments
where only one of the terms was ‘‘grown’’ to avoid
collapsation of the system.

CALCULATIONS

The calculations reported here were run at 298 K
temperature and at experimental density (0.997
g/mL). Sixty-four waters were used and face-cen-
tered cubic periodic boundary conditions were im-
posed, allowing a 7.0-A cutoff. All simulations
used the Metropolis algorithm* with the force-bias
sampling technique of Pangali et al.!® The integra-
tion over the coupling parameter A was performed
using Gaussian quadratures.

The error estimates for the calculated free ener-
gies were derived from the error estimates on the
integrands calculated at each quadrature point us-
ing the method of batch means'®!” based on 105
Monte Carlo step blocks. The estimates given rep-
resent 2 standard deviations.

Previous calculations using the exact same setup
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Table I. Free energy differences calculated with thermodynamic integration.

Run length (K)
100 300 600 1000

Sys 1y k(1) k(6) k(12) A A A A

SPC 5 4 4 4 —5.66 ~5.67 = 0.06 —5.66 = 0.04 —5.65 * 0.05
SPC 8 4 4 4 —-5.63 -5.68 = 0.06 -5.68 * 0.05 —-5.70 = 0.03
MCY 5 4 4 4 —4.00 -~4.03 = 0.05 —4.03 = 0.04 —-4.04 = 0.03
SpPC 3 4 4 4 —5.65 -5.61 = 0.12 -5.61 * 0.06 —5.61 = 0.04
SPC 3 2 2 4 -5.71 —-5.73 = 0.06 —-5.71 = 0.06 -5.69 = 0.05
MCY 3 4 4 4 -3.97 —-3.97 = 0.03 —-4.02 +0.24 —-4.04 + 0.16
TP4 3 4 4 4 —5.48 -5.43 = 0.08 —5.44 * 0.07 —5.42 * 0.06
TP4 3 3 2 4 —5.46 -5.46 = 0.07 -5.47 * 0.05 ~5.45 = 0.03

A’ is the excess free energy of system, labeled Sys, in kcal/mol; », is the number of quadrature points; K refers to
1000 Monte Carlo steps; SPC, MCY, and TP4 stand for SPC,'8 MCY,'® and TIP4P?*2! waters, respectively; results in the

first three rows are from ref. 12.

as described above obtained the excess free energy
of the SPC!8 and MCY!® waters as —5.65 * 0.05
kcal/mol and as —4.04 = 0.03 kcal/mol, respec-
tively,'? using five-point Gaussian quadratures. An
eight-point quadrature gave —5.70 = (.03 kcal/
mol for the SPC free energy, essentially confirming
the five-point quadrature result. All these calcula-
tions used the path of eq. (1) with k = 4. Their
remarkable precision indicated by the small error
estimates was confirmed by the direct calculation
(three-point quadrature, k£ = 1) of the difference
of the free energies of the SPC and MCY waters as
—1.63 = 0.04 kcal/mol: The sum of the free en-
ergy differences over the thermodynamic cycle 1G-
MCY-SPC-IG gave 0.02 kcal/mol (instead of zero).
In the present article, calculations are reported us-
ing three-point quadratures, requiring simulations
at A\ = 0.1125, 0.5, and 0.8875, both using the path
described above and the polynomial path of eq.
(10).

RESULTS AND DISCUSSION

Using k = 4 for all terms, the excess free energies
of the SPC and MCY waters were obtained as
—5.61 = 0.04 and 4.01 = 0.11 kcal/mol, respec-
tively. Table I gives details of the convergence.
Only for the SPC water is the difference between
the three- and five-point quadrature results statis-
tically significant.

When trying the polynomial path, several in-
teresting resulis were obtained. Using k(1) = 1,
k(8} = 2, and k€12) = 4 for the SPC water, the
simulation at A = 0.1125 ‘‘got stuck,’ i.e., the ac-
ceptance rate of trial moves progressively de-
creased to near zero. This was the result of oxy-
gens and hydrogens being allowed to get too close
as their contribution to the acceptance decision
was not scaled down as much as the repulsions.
Using k(1) = 2, k(6) = 2, and k(12) = 4 gave

—5.69 = 0.05 kcal/mol, in excellent agreement
with the five- and eight-point quadrature results—
actually closer to the eight-point quadrature
result. The confidence in the three-point quadra-
ture on the polynomial path is also justified by Fig-
ure 1, showing the integrands over both paths:
The polynomial path integrand is almost linear,
while the integrand of the calculation using the
exponent 4 overall has a maximum and its curva-
ture undergoes significant variations. Clearly, a
reduced curvature means that the creation of the
particle was more evenly spread over the {0, 1]
coupling parameter interval.

The calculations on the MCY water proved to be
a case where the polynomial path offered no im-
provement. For the MCY water, the repulsion term
is represented by a sum of exponentials and also
the electrostatic term is larger than for the SPC
water. Calculations with ¥ = 4 uniformly on the
SPC water showed that the ratio of the repulsive
and electrostatic contribution at A = 0.1125 is 400
and for the polynomial path it was 90. However,
for the k(1) = k(exp) = 4 MCY water calculation
this ratio was 1/2. Varying k, and k., resulted in
similarly small ratios. Furthermore, when k(1) = 3
and k(exp) = 4 was used (i.e., near the uniform
k = 4 case), the integrands were obtained as — 13,
—45, and —15 kcal/mol, yielding a free energy
way too low. Other combinations gave even lower
values for the integrand at the first quadrature
point, indicating an even steeper integrand. How-
ever, with an integrand that has such steep varia-
tion the extrapolation to the endpoint regions are
clearly ill defined. For comparison, the uniform
k = 4 case gave 1.6, 2.3, and - 19.6 kcal/mol, simi-
lar to the corresponding SPC integrand shown in
Figure 1. Other exponent combinations fared even
worse.

Finally, calculations were also performed on the
TIP4P?°2! water that has a 6-12 interaction on the
oxygen but the negative charge center is offset by
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Figure 1. Polynomials fitted to the integrand as generated by the Gaussian quadrature for the calculation

of the SPC and TIP4P waters’ free energy. TIP4P results are shifted down by 10 kcal/mol.

0.15 A from the oxygen, and its charge is cca 25%
larger than the SPC oxygen. Using k(1) = k(6) = 2
and k(12) = 4 gave a rather large negative inte-
grand at A\; and the acceptance rate was steadily
decreasing, indicating an inadequate calculation.
Using k(1) = 3, k(6) = 2, and k(12) = 4 gave the
excess free energy of the TIP4P water as —5.45 =
0.05 kcal/mol. A subsequent calculation with k = 4
overall gave —5.42 * 0.06 kcal/mol. Previously,
Jorgensen et al.® obtained —5.9 = 0.4 kcal/mol for
a system of 216 waters using an 8-A cutoff and
Hermans et al.” obtained —5.3 kcal/mol with 80
molecules and a 6-A cutoff, both under simple cu-
bic periodic boundary conditions. Allowing for the
differences in the system size, cutoffs, and bound-
ary conditions, our results are thus supported by
the previous work. The ratio of the repulsive and
the electrostatic contributions at the smallest A run
was 220 and 400 for the two calculations, respec-
tively. Comparison of the integrands of these two
calculations, also displayed in Figure 1, shows that
the polynomial path was again able to reduce sig-
nificantly the curvature of the integrand, making
the numerical quadrature more reliable.

Thus, it is concluded that for the polynomial

path to be of advantage (in fact, of use) the contri-
bution of the 1/r terms at the small A end must be
significantly smaller than the repulsive contribu-
tion. A good guide is the minimum ratio of k(1)/
k(rep)/\rep)—k(1) [see eq, (8)] since this assures that
the repulsive term dominates the calculated inte-
grand.

COMPARISON OF LIQUID FREE ENERGY
SIMULATION TECHNIQUES

Hermans et al. calculated the excess free energy of
several water models, including the SPC and TIP4P
waters, using a nonlinear path and a variant of the
thermodynamic integration called slow growth.”
Jorgensen et al. showed that the excess free en-
ergy of the liquid can be approached as a problem
of solvating a water molecule in liquid water and
used the perturbation method to calculate this
solvation free energy® for the TIPAP water. Also,
simulation of water in the grand-canonical ensem-
ble was shown to be feasible at liquid densities us-
ing the cavity-biased technique®??? with the SPC
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and ST22% models and by the Grand Molecular Dy-
namics method of Pettit.25

Comparison of the thermodynamic integration
(even without the polynomial path) and perturba-
tion method results conforms to earlier statements
about the relative merits of the thermodynamic in-
tegration and the perturbation method*!® and
shows unequivocally the superiority of the ther-
modynamic integration for calculating liquid free
energies, both in terms of cost and in terms of ac-
curacy: In the calculations performed by Jorgen-
sen et al.® for the TIP4P water, even when 10 sepa-
rate runs (in each directions) were used the
statistical uncertainty of the result was estimated
to be 0.4 kecal/mol. The SPC and MCY results
quoted above were obtained in only five separate
calculations (each) using thermodynamic integra-
tion, with an uncertainty of about 0.05 kcal/mol.
The thermodynamic integration calculations of
Hermans were similarly very economical, vide in-
Jra. The difference between the efficiencies of the
two techniques is particularly large for the calcula-
tion of pure liquid free energies since the use of the
perturbation method is only feasible when a single
molecule is mutated into water (as opposed to the
whole system when using thermodynamic integra-
tion) with a concomitant increase in the statistical
error by an approximate factor of N~2, For solva-
tion free energy calculations, the comparison de-
pends on the extent of the mutation involved.

The comparison between the slow-growth tech-
nique and the Gaussian quadrature in general is
less clear cut. The calculations of Hermans et al.
required a total of 100,000 molecular dynamics
time steps, which is about the same computational
effort as the separate equilibrations and the 300K
long runs using five-point quadratures or 500K
long runs and three-point quadratures (adequate
when the polynomial path is applicable). The data
in Table I shows that for each system studied the
free energy difference was well converged after
300K, even though the final results reported are
based on 1000K long runs. However, the slow-
growth technique, despite its impressive perform-
ance on the liquid water problem, is inherently
‘‘dangerous’’ since it is relying on ‘‘almost con-
verged'’ data. As long-range correlations have
been shown to exist in liquid water'®2% they may
manifest themselves in unexpected ways. This res-
ervation is also supported by the recent results of
Mitchell and McCammon,?” who found that to ob-
tain precise results for a dipeptide-tripeptide mu-
tation several hundred ps-long slow-growth runs
are required, and by the calculations of Mavri and
Hadic, where large hysteresis error was found for
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the free energy profile of the proton transfer be-
tween carboxylic acid and methylamine in water.28
Furthermore, the customary estimate of the error
by calculating the free energy difference along the
same path in two directions, used both in refs. 7
and 8, is not a strong enough test: There is an ex-
ample where it underestimated the error by sev-
eral kcal/mol,?® although better ways of estimating
the error of the slow-growth result are also appear-
ing.30:3! This factor, combined with the consist-
ently high precision of our calculations, led us to
prefer the Gaussian quadrature technique.

The calculation of the excess free energy of the
SPC and ST2 water in the grand-canonical ensem-
ble using the cavity-biased method were based on
two 6000K long calculations for both models.?? As
the insertion and deletion attempts increased the
computation time by a factor of 2.5 for each itera-
tion, as far as the calculation of the free energy is
concerned these calculations are significantly less
economical than thermodynamic integration. Cal-
culations with the Grand Molecular Dynamics
method proved to be similarly very computing in-
tensive.

The good agreement between the SPC water free
energy calculated directly and from the MCY water
suggests that the calculation of the free energy of a
new model could very economically be obtained,
even when the polynomial path offers no improve-
ment, by calculating the free energy difference be-
tween the new model and one of the older ones for
which the free energy is already known since this
path does not involve the creation or annihilation
of atoms and a three-point Gaussian quadrature
with k = 1 overall is adequate.

SUMMARY

The results presented show that the introduction
of the polynomial path was able to improve the
precision of the calculated liquid free energy for
the SPC and TIP4P waters, both a 1-6-12 type of
potential, by significantly reducing the curvature
of the integrand, especially for the SPC water,
where the integrand became nearly linear. How-
ever, it was of no use for the MCY water, which
has an exponential repulsion that is nonsingular.
Thus, the method should only be applied to the
truly singular potentials and even there care must
be taken in the choice of the exponents: For the
run with the smallest coupling parameter value,
the acceptance rate is to be monitored carefully
and the dominance of the repulsion contribution
must be ensured. It is not unreasonable to expect
that similar improvements can be obtained for
solvation free energy calculation when the solute
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is described with a singular repulsion term. Also,
the results confirm the robustness of the thermo-
dynamic integration based on Gaussian quadra-
tures: For the two water models studied, even
without the polynomial path the error of a three-
point quadrature was found to be of the order of a
tenth of a kcal/mol.
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