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The polynomial path is introduced for the calculation of liquid state free energies. The well-characterized 
SPC, TIP4P, and MCY water models were used to demonstrate its efficiency, as well as its range of applica- 
bility in coqjunction with Monte Garlo computer simulations using thermodynamic integration based on 
Gaussian quadratures. The technique employed is compared with the slow-growth method (another variant 
of thermodynamic integration), the perturbation method, and the use of the grand-canonical ensemble. 

INTRODUCTION AND BACKGROUND 

The calculation of the free energy, long recognized 
as a computationally exacting task, is of special 
importance due to the role of the free energy in 
determining chemical equilibria. As reviewed re- 
~ent ly , ’ -~  free energy simulation techniques are 
characterized by the path selected that connects 
the two systems in the configuration space (e.g., 
the choice of the coupling parameter, wide infra) 
and by the quantity chosen whose Boltzmann aver- 
age is related to the free energy-with the excep- 
tion of calculations in the grand-canonical ensem- 
ble, where the chemical potential is fixed at the 
outset. The various choices of the coupling param- 
eter, described in detail in ref. 2,  fall into two dis- 
tinct classes: 

E(X, X N )  = fl(N * El(XN) + fo(X) * E0(XN) (1) 

E(X, c, XN) = E[C(X), XN] (2) 

or 

Here Eo and El are the energy functions for the 
two systems between which the free energy differ- 
ence is to be computed and X is the so-called coup- 
ling parameter that varies from 0 to 1. The func- 
tions fl( X) and fo( A) are continuous functions with 

fd0) = f o ( l )  = 0 (3) 

fdl) = f o ( O )  = 1 (4) 

and 

so that X = 0 or 1 in eq. (1) describes systems with 
energy function Eo and El, respectively. Moving 
along the path described by eq. (l), the system 0 is 
gradually “fading away” while system 1 is simulta- 
neously being “turned on”-a kind of Chesire cat 
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approach. The symbol C in eq. (2) stands for the 
collection of potential parameters (including mo- 
lecular geometries) and their dependence on X is 
such that C(0) describes system 0 and C(l) de- 
scribes system 1. Thus, eq. (2) describes a path in 
the configuration space where system 0 is continu- 
ously deformed into system 1. A convenient choice 
forfl andfo is 

fl(X) = hk and fo(X) = (1 - (5) 

Once the path is specified, the free energy dif- 
ference between the two states can be obtained in 
various ways. The calculations described in this ar- 
ticle used thermodynamic integration (based on 
ideas of Kirkwood5): 

AA = A1 - A0 = (dE(h)/dh)i dX (6) s: 
and reference will be made to the so-called pertur- 
bation method: 

AA = -kTln(exp[-(& - EO)/kT]) ,  (7) 

where k is the Boltzmann constant, T is the abso- 
lute temperature, and the symbols ( ( )o  stand 
for the Boltzmann average of the quantity en- 
closed using E(X) and Eo, respectively, as the en- 
ergy in the Boltzmann factor. It is to be stressed 
that eq. (7) is exact and thus its use is different 
from the use of thermodynamic perturbation theo- 
ries that are based on a truncated expansion. 

Using eqs. (1) and (5) for the coupling parameter 
simplifies eq. (6) into 

1 
AA = 1 k[(l - X ) k - l ( E ~ ) ~  + hk-l(El)~] dX (8) 

0 

It has been shown6 that for k = 1 the integrand 
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in eq. (8) is monotonous, a desirable quality when 
the use of a quadrature is anticipated. Similar ar- 
guments can show that both (Eo)x and (El)x are 
monotonous functions of A; thus, it is reasonable to 
expect that the integrand of eq. (8) is still going to 
be “well behaving” (i.e., not have many unex- 
pected extrema). Paths described by eq. (2), how- 
ever, may contain unspecified number of oscilla- 
tions, although for the liquid water problem this 
did not appear to be the case (the integrand was 
found to have only one maximum in refs. 7 and 8). 
Furthermore, when the reference system is the 
ideal gas eq. (1) describes a transcritical path and 
thus avoids any possible numerical instability that 
may arise when a phase transition is encountered 
along the path-a distinct possibility with the use 
of eq. (2). 

The need for k > 1 arises for transitions involv- 
ing the creation and/or annihilation of atoms. Such 
a situation occurs when the number of atoms in the 
two systems differ or the conformation of the two 
systems are different enough that atoms are 
moved to previously unoccupied positions. In such 
cases, thermodynamic integration with k = 1 leads 
to a so-called improper integral [i.e., a definite in- 
tegral where the integrand is singular at the end- 
point(~)] and the other methods become numeri- 
cally unstable. The source of the divergence in the 
integrand or the instability is the divergence of the 
interaction potential at T = 0. However, for a po- 
tential of the form lire the asymptotic behavior of 
the integrand is known to be X(kd’e)-l, where d is 
the dimensionality of the space3; thus, k can be 
selected high enough that the integrand remains 
finite everywhere. For the three-dimensional case, 
the assymptotic behavior was given earlier by Mru- 
zik et al.’ and Swope et a1.l’ The overall behavior 
of the integrand is dominated by the terms with 
the highest e.  In particular, a 1/rL2 repulsion in 
three dimensions requires k 2 4. Calculations on 
the dense Lennard-Jones fluid” and on liquid wa- 
ter12 have demonstrated the efficiency of this ap- 
proach. Couplings using eq. (2) in general do not 
encounter this singularity p r ~ b l e m . ~ ! ~ ~  Notice also 
that the path described by eq. (1) results in the 
same calculation as the integral transform sug- 
gested by Mruzik et al.’ when one of the systems is 
the ideal gas. 

The purpose of this article is to present a gener- 
alization of eq. (I), the polynomial path, and dem- 
onstrate its efficiency and range of applicability on 
liquid water models. Liquid water was chosen for 
the test since it has been the subject of several 
studies and the results are well established. Once 
the efficiency of the proposed technique is demon- 
strated on liquid water, it can then be used for the 
calculation of the free energies of other liquids, as 
well as for the calculation of solvation free ener- 

gies. The article also presents comparisons of the 
efficiency of thermodynamic integration using 
Gaussian quadrature, thermodynamic integration 
with the slow-growth method, the perturbation 
method, and the use of grand-canonical ensemble 
for the calculation of liquid free energies. 

THEORY 

The proposed polynomial path generalizes eq. (1) 
in such a way that different exponents will be used 
for different parts of the potential. For a potential 
energy involving terms with n different powers of 
interatomic distances efi), i = 1, n: 

n 

E(XN) = c Ee(i)(XN) (9) 
i = l  

the polynomial coupling replaces eq. (1) by 

n 

E(X, XN) = c Xk[e(i)’ * El&) 
i= 1 + (1 - X)k[e(i)l * (10) 

where k [e(i)] is the X exponent to be used with the 
terms involving the e(i)th inverse distance powers. 
The idea behind this proposal is that the lower the 
exponent the more evenly will the integration sam- 
ple the [0, 11 X interval; thus, the high X exponent 
should only be used with the repulsion term. The 
use of different X exponents incurs negligible addi- 
tional computational expense. Calculations de- 
scribed in this article used integer exponents only, 
but eq. (10) can be used with fractional exponents 
as well. Hermans et al.7 used the same formalism to 
break up the calculation into individual segments 
where only one of the terms was “grown” to avoid 
collapsation of the system. 

CALCULATIONS 

The calculations reported here were run at 298 K 
temperature and at experimental density (0.997 
g/mL). Sixty-four waters were used and face-cen- 
tered cubic periodic boundary conditions were im- 
posed, allowing a 7.0-A cutoff. All simulations 
used the Metropolis algorithm14 with the force-bias 
sampling technique of Pangali et a1.15 The integra- 
tion over the coupling parameter X was performed 
using Gaussian quadratures. 

The error estimates for the calculated free ener- 
gies were derived from the error estimates on the 
integrands calculated at each quadrature point us- 
ing the method of batch based on lo5 
Monte Carlo step blocks. The estimates given rep- 
resent 2 standard deviations. 

Previous calculations using the exact same setup 
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Table I. Free energy differences calculated with thermodynamic integration. 
Run length (K) 

100 300 600 1000 
SYS nq k(1) k(6) W12) A‘ A’ A‘ A‘ 

SPC 5 4 4 4 -5.66 -5.67 f 0.06 -5.66 f 0.04 -5.65 f 0.05 
-5.70 f 0.03 SPC 8 4 4 4 -5.63 -5.68 f 0.06 -5.68 f 0.05 

MCY 5 4 4 4 -4.00 -4.03 f 0.05 -4.03 f 0.04 -4.04 f 0.03 
-5.61 f 0.06 -5.61 f 0.04 SPC 3 4 4 4 -5.65 -5.61 f 0.12 

SPC 3 2 2 4 -5.71 -5.73 f 0.06 -5.71 f 0.06 -5.69 f 0.05 
MCY 3 4 4 4 -3.97 -3.97 f 0.03 -4.02 * 0.24 -4.04 f 0.16 
TP4 3 4 4 4 -5.48 -5.43 f 0.08 -5.44 f 0.07 -5.42 f 0.06 
TP4 3 3 2 4 -5.46 -5.46 f 0.07 -5.47 f 0.05 -5.45 f 0.03 

A‘ is the excess free energy of system, labeled Sys, in kcal/mol; na is the number of quadrature points; K refers to 
1000 Monte Carlo steps; SPC, MCY, and TP4 stand for SPC,’s MCY,” and TIP4P20,21 waters, respectively; results in the 
first three rows are from ref. 12. 

as described above obtained the excess free energy 
of the SPClS and MCYl9 waters as -5.65 f 0.05 
kcal/mol and as -4.04 f. 0.03 kcal/mol, respec- 
tively,12 using five-point Gaussian quadratures. An 
eight-point quadrature gave -5.70 -t 0.03 kcal/ 
mol for the SPC free energy, essentially confirming 
the five-point quadrature result. All these calcula- 
tions used the path of eq. (1) with k = 4. Their 
remarkable precision indicated by the small error 
estimates was confirmed by the direct calculation 
(three-point quadrature, k = 1) of the difference 
of the free energies of the SPC and MCY waters as 
-1.63 f 0.04 kcal/mol: The sum of the free en- 
ergy differences over the thermodynamic cycle IG- 
MCY-SPC-IG gave 0.02 kcalimol (instead of zero). 
In the present article, calculations are reported us- 
ing three-point quadratures, requiring simulations 
at X = 0.1125,0.5, and 0.8875, both using the path 
described above and the polynomial path of eq. 
(10). 

RESULTS AND DISCUSSION 

Using k = 4 for all terms, the excess free energies 
of the SPC and MCY waters were obtained as 
-5.61 -t 0.04 and 4.01 f 0.11 kcal/mol, respec- 
tively. Table I gives details of the convergence. 
Only for the SPC water is the difference between 
the three- and five-point quadrature results statis- 
tically significant. 

When trying the polynomial path, several in- 
teresting results were obtained. Using k(1) = 1, 
k(6) = 2, and k(12) = 4 for the SPC water, the 
simulation at  X = 0.1125 “got stuck,” i.e., the ac- 
ceptance rate of trial moves progressively de- 
creased to near zero. This was the result of oxy- 
gens and hydrogens being allowed to get too close 
as their contribution to the acceptance decision 
was not scaled down as much as the repulsions. 
Using k(1) = 2, k(6) = 2, and k(12) = 4 gave 

-5.69 * 0.05 kcal/mol, in excellent agreement 
with the five- and eight-point quadrature results- 
actually closer to the eight-point quadrature 
result. The confidence in the three-point quadra- 
ture on the polynomial path is also justified by Fig- 
ure 1, showing the integrands over both paths: 
The polynomial path integrand is almost linear, 
while the integrand of the calculation using the 
exponent 4 overall has a maximum and its curva- 
ture undergoes significant variations. Clearly, a 
reduced curvature means that the creation of the 
particle was more evenly spread over the (0, 11 
coupling parameter interval. 

The calculations on the MCY water proved to be 
a case where the polynomial path offered no im- 
provement. For the MCY water, the repulsion term 
is represented by a sum of exponentials and also 
the electrostatic term is larger than for the SPC 
water. Calculations with k = 4 uniformly on the 
SPC water showed that the ratio of the repulsive 
and electrostatic contribution at X = 0.1125 is 400 
and for the polynomial path it was 90. However, 
for the k(1) = k(exp) = 4 MCY water calculation 
this ratio was 1/2. Varying kl  and kexp resulted in 
similarly small ratios. Furthermore, when k(1) = 3 
and k(exp) = 4 was used (i.e., near the uniform 
k = 4 case), the integrands were obtained as - 13, 
-45, and -15 kcal/mol, yielding a free energy 
way too low. Other combinations gave even lower 
values for the integrand at the first quadrature 
point, indicating an even steeper integrand. How- 
ever, with an integrand that has such steep varia- 
tion the extrapolation to the endpoint regions are 
clearly ill defined. For comparison, the uniform 
k = 4 case gave 1.6,2.3, and - 19.6 kcal/mol, simi- 
lar to the corresponding SPC integrand shown in 
Figure 1. Other exponent combinations fared even 
worse. 

Finally, calculations were also performed on the 
TIP4P20v21 water that has a 6-12 interaction on the 
oxygen but the negative charge center is offset by 
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Figure 1. 
of the SPC and TIP4P waters' free energy. TIP4P results are shifted down by 10 kcallmol. 

Polynomials fitted to the integrand as generated by the Gaussian quadrature for the calculation 

0.15 A from the oxygen, and its charge is cca 25% 
larger than the SPC oxygen. Using k( 1) = k(6) = 2 
and k(12) = 4 gave a rather large negative inte- 
grand at X1 and the acceptance rate was steadily 
decreasing, indicating an inadequate calculation. 
Using k(1) = 3, k(6) = 2, and k(12) = 4 gave the 
excess free energy of the TIP4P water as - 5.45 f 
0.05 kcal/mol. A subsequent calculation with k = 4 
overall gave -5.42 -1- 0.06 kcal/mol. Previously, 
Jorgensen et a1.* obtained -5.9 * 0.4 kcal/mol for 
a system of 216 waters using an 8-A cutoff and 
Hermans et al.7 obtained -5.3 kcal/mol with 80 
molecules and a 6-A cutoff, both under simple cu- 
bic periodic boundary conditions. Allowing for the 
differences in the system size, cutoffs, and bound- 
ary conditions, our results are thus supported by 
the previous work. The ratio of the repulsive and 
the electrostatic contributions at the smallest A run 
was 220 and 400 for the two calculations, respec- 
tively. Comparison of the integrands of these two 
calculations, also displayed in Figure 1, shows that 
the polynomial path was again able to reduce sig- 
nificantly the curvature of the integrand, making 
the numerical quadrature more reliable. 

Thus, it is concluded that for the polynomial 

path to be of advantage (in fact, of use) the contri- 
bution of the llr terms at the small X end must be 
significantly smaller than the repulsive contribu- 
tion. A good guide is the minimum ratio of k(1)l 
k(rep)/Xk(reP)-k(l) [see eq. (S)] since this assures that 
the repulsive term dominates the calculated inte- 
grand. 

COMPARISON OF LIQUID FREE ENERGY 
SIMULATION TECHNIQUES 

Hermans et al. calculated the excess free energy of 
several water models, including the SPC and TIP4P 
waters, using a nonlinear path and a variant of the 
thermodynamic integration called slow g r ~ w t h . ~  
Jorgensen et al. showed that the excess free en- 
ergy of the liquid can be approached as a problem 
of solvating a water molecule in liquid water and 
used the perturbation method to calculate this 
solvation free energys for the TIP4P water. Also, 
simulation of water in the grand-canonical ensem- 
ble was shown to be feasible at liquid densities us- 
ing the cavity-biased techniqueZ2J3 with the SPC 
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and ST224 models and by the Grand Molecular Dy- 
namics method of Pettit.26 

Comparison of the thermodynamic integration 
(even without the polynomial path) and perturba- 
tion method results conforms to earlier statements 
about the relative merits of the thermodynamic in- 
tegration and the perturbation method4J3 and 
shows unequivocally the superiority of the ther- 
modynamic integration for calculating liquid free 
energies, both in terms of cost and in terms of ac- 
curacy: In the calculations performed by Jorgen- 
sen et a1.8 for the TIP4P water, even when 10 sepa- 
rate runs (in each directions) were used the 
statistical uncertainty of the result was estimated 
to be 0.4 kcal/mol. The SPC and MCY results 
quoted above were obtained in only five separate 
calculations (each) using thermodynamic integra- 
tion, with an uncertainty of about 0.05 kcal/mol. 
The thermodynamic integration calculations of 
Hermans were similarly very economical, vide in- 
fra. The difference between the efficiencies of the 
two techniques is particularly large for the calcula- 
tion of pure liquid free energies since the use of the 
perturbation method is only feasible when a single 
molecule is mutated into water (as opposed to the 
whole system when using thermodynamic integra- 
tion) with a concomitant increase in the statistical 
error by an approximate factor of N-1’2. For solva- 
tion free energy calculations, the comparison de- 
pends on the extent of the mutation involved. 

The comparison between the slow-growth tech- 
nique and the Gaussian quadrature in general is 
less clear cut. The calculations of Hermans et al. 
required a total of 100,000 molecular dynamics 
time steps, which is about the same computational 
effort as the separate equilibrations and the 3QQK 
long runs using five-point quadratures or 500K 
long runs and three-point quadratures (adequate 
when the polynomial path is applicable). The data 
in Table I shows that for each system studied the 
free energy difference was well converged after 
300K, even though the final results reported are 
based on lOOOK long runs. However, the slow- 
growth technique, despite its impressive perform- 
ance on the liquid water problem, is inherently 
“dangerous” since it is relying on “almost con- 
verged” data. As long-range correlations have 
been shown to exist in liquid they may 
manifest themselves in unexpected ways. This res- 
ervation is also supported by the recent results of 
Mitchell and M~Cammon,~~  who found that to ob- 
tain precise results for a dipeptide-tripeptide mu- 
tation several hundred ps-long slow-growth runs 
are required, and by the calculations of Mavri and 
Hadic, where large hysteresis error was found for 

the free energy profile of the proton transfer be- 
tween carboxylic acid and methylamine in water.28 
Furthermore, the customary estimate of the error 
by calculating the free energy difference along the 
same path in two directions, used both in refs. 7 
and 8, is not a strong enough test: There is an ex- 
ample where it underestimated the error by sev- 
eral k~al/mol,~’ although better ways of estimating 
the error of the slow-growth result are also appear- 
ing.30p31 This factor, combined with the consist- 
ently high precision of our calculations, led us to 
prefer the Gaussian quadrature technique. 

The calculation of the excess free energy of the 
SPC and ST2 water in the grand-canonical ensem- 
ble using the cavity-biased method were based on 
two 6000K long calculations for both models.23 As 
the insertion and deletion attempts increased the 
computation time by a factor of 2.5 for each itera- 
tion, as far as the calculation of the free energy is 
concerned these calculations are significantly less 
economical than thermodynamic integration. Cal- 
culations with the Grand Molecular Dynamics 
method proved to be similarly very computing in- 
tensive. 

The good agreement between the SPC water free 
energy calculated directly and from the MCY water 
suggests that the calculation of the free energy of a 
new model could very economically be obtained, 
even when the polynomial path offers no improve- 
ment, by calculating the free energy difference be- 
tween the new model and one of the older ones for 
which the free energy is already known since this 
path does not involve the creation or annihilation 
of atoms and a three-point Gaussian quadrature 
with k = 1 overall is adequate. 

SUMMARY 

The results presented show that the introduction 
of the polynomial path was able to improve the 
precision of the calculated liquid free energy for 
the SPC and TIP4P waters, both a 1-6-12 type of 
potential, by significantly reducing the curvature 
of the integrand, especially for the SPC water, 
where the integrand became nearly linear. How- 
ever, it was of no use for the MCY water, which 
has an exponential repulsion that is nonsingular. 
Thus, the method should only be applied to the 
truly singular potentials and even there care must 
be taken in the choice of the exponents: For the 
run with the smallest coupling parameter value, 
the acceptance rate is to be monitored carefully 
and the dominance of the repulsion contribution 
must be ensured. It is not unreasonable to expect 
that similar improvements can be obtained for 
solvation free energy calculation when the solute 
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is described with a singular repulsion term. Also, 
the results confirm the robustness of the thermo- 
dynamic integration based on Gaussian quadra- 
tures: For the two water models studied, even 
without the polynomial path the error of a three- 
point quadrature was found to be of the order of a 
tenth of a kcal/mol. 
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