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The polynomial path is introduced for the calculation of liquid state free energies. The well-characterized
SPC, TIP4P and MCY water models were used to demonstrate its efficiency as well as its range of appli-
cability in conjunction with Monte Carlo computer simulations using thermodynamic integration based on
Gaussian quadratures. The technique employed is compared with the slow growth method (an other vari-
ant of thermodynamic integration), with the perturbation method and with the use of the grand-canonical
ensemble.

INTRODUCTION AND BACKGROUND

The calculation of the free energy, long recognized as a computationally exacting task, is of
special importance due to the role of the free energy in determininig chemical equilibria. As
reviewed recently,1−4 free energy simulation techniques are characterized by the path selected
that connects the two systems in the configuration space (e.g. the choice of the coupling
parameter, vide infra) and by the quantity chosen whose Boltzmann average is related to
the free energy — with the exception of calculations in the grand-canonical ensemble where
the chemical potential is fixed at the outset. The various choices of the coupling parameter,
described in detail in ref. 2, fall into two distinct classes:

E(λ,XN ) = f1(λ) ∗ E1(X
N ) + f0(λ) ∗ E0(X

N ) (1)

or
E(λ,C,XN ) = E[C(λ),XN ] (2)

Here E0 and E1 are the energy functions for the two systems between which the free energy
difference is to be computed and λ is the so called coupling parameter that varies from 0 to
1. The functions f1(λ) and f0(λ) are continuous functions with

f1(0) = f0(1) = 0 (3)

and
f1(1) = f0(0) = 1 (4)

so that λ = 0 or 1 in eq. (1) describes systems with energy function E0 and E1, respectively.
Moving along the path described by eq. (1) the system 0 is gradually “fading away” while
system 1 is simultaneously being “turned on” - a kind of Chesire cat approach. The symbol C
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in eq. (2) stands for the collection of potential parameters (including molecular geometries)
and their dependence on λ is such that C(0) describes system 0 and C(1) describes system
1. Thus eq. (2) describes a path in the configuration space where system 0 is continuously
deformed into system 1. A convenient choice for f1 and f0 is

f1(λ) = λk and f0(λ) = (1− λ)k (5)

Once the path is specified, the free energy difference between the two states can be
obtained in various ways. The calculations described in this paper used thermodynamic
integration (based on ideas of Kirkwood5):

∆A = A1 − A0 =
∫ 1

0
〈∂E(λ)/∂λ〉λdλ (6)

and reference will be made to the so-called perturbation method:

∆A = −kT ln〈exp[−(E1 − E0)/kT ]〉0 (7)

where k is the Boltzmann constant, T is the absolute temperature and the symbols 〈〉λ, 〈〉0
stand for the Boltzmann average of the quantity enclosed using E(λ) and E0, respectively,
as the energy in the Boltzmann factor. It is to be stressed that eq. (7) is exact and thus
its use is different from the use of thermodynamic perturbation theories that are based on a
truncated expansion.

Using eqs.(1) and (5) for the coupling parameter simplifies eq. (6) into

∆A =
∫ 1

0
k[(1− λ)k−1〈E0〉λ + λk−1〈E1〉λ]dλ (8)

It has been shown6 that for k = 1 the integrand in eq. (5) is monotonous, a desirable
quality when the use of a quadrature is anticipated. Similar arguments can show that both
〈E0〉λ and 〈E1〉λ are monotonous functions of λ, thus it is reasonable to expect that the
integrand of eq. (8) is still going to be “well behaving” (i.e., not have many unexpected
extrema). Paths described by eq. (2), however, may contain unspecified number of oscilla-
tions, although for the liquid water problem this did not appear to be the case (the integrand
was found to have only one maximum in refs. 7 and 8). Furthermore, when the reference
system is the ideal gas, eq. (1) describes a transcritical path and thus avoids any possible
numerical instability that may arise when a phase transition is encountered along the path
— a distinct possibilty with the use of eq. (2).

The need for k > 1 arises for transitions involving the creation and/or annihilation of
atoms. Such situation occurs when the number of atoms in the two systems differ or the
conformation of the two systems are different enough that atoms are moved to previously un-
occupied positions. In such cases thermodynamic integration with k = 1 leads to a so-called
improper integral [i.e., a definite integral where the integrand is singular at the endpoint(s)]
and the other methods become numerically unstable. The source of the divergence in the
integrand or the instability is the divergence of the interacion potential at r = 0. However,
for a potential of the form 1/re the asymptotic behaviour of the integrand is known to be
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λ(kd/e)−1 where d is the dimensionality of the space3 thus k can be selected high enough
that the integrand remains finite everywhere. For the three dimensional case the assymp-
totic behaviour was given earlier by Mruzik, Abraham, Schreiber and Pound9 and Swope,
Andersen, Berens and Wilson.10 The overall behaviour of the integrand is dominated by the
terms with the highest e. In particular, a 1/r12 repulsion in three dimensions requires k > 4.
Calculations on the dense Lennard Jones fluid11 and on liquid water12 have demonstrated
the efficiency of this approach. Couplings using eq. (2) generally do not encounter this
singularity problem.2,13 Notice also that the path described by eq. (1) results in the same
calculation as the integral transform suggested by Mruzik et al.9 when one of the systems is
the ideal gas.

The purpose of this paper is to present a generalization of eq. (1), the polynomial path,
and demonstrate its efficiency and range of applicability on liquid water models. Liquid water
was chosen for the test since it has been the subject of several studies and the results are well
established. Once the efficiency of the proposed technique is demonstrated on liquid water,
it can than be used for the calculation of the free energies of other liquids as well as for the
calculation of solvation free energies. The paper also presents comparisons of the efficiency
of thermodynamic integration using Gaussian quadrature, thermodynamic integration with
the slow growth method, the perturbation method and the use of grand-canonical ensemble
for the calculation of liquid free energies.

THEORY

The proposed polynomial path generalizes eq. (1) in such a way that different exponents
will be used for different parts of the potential. For a potential energy involving terms with
n different powers of interatomic distances e(i), i = 1, n:

E(XN ) =
n∑

i=1
Ee(i)(X

N ) (9)

the polynomial coupling replaces eq. (1) by

E(λ,XN ) =
n∑

i=1
λk[e(i)] ∗ E1,e(i)

+(1− λ)k[e(i)] ∗ E0,e(i) (10)

where k[e(i)] is the λ exponent to be used with the terms involving the e(i)-th inverse
distance powers. The idea behind this proposal is that the lower the exponent, the more
evenly will the integration sample the [0,1] λ interval thus the high λ exponent should only
be used with the repulsion term. The use of different λ exponents incurs negligible additional
computational expense. Calculations described in this paper used integer exponents only, but
eq. (10) can be used with fractional exponents as well. Hermans, Pathiaseril and Anderson7

used the same formalism to break up the calculation into individual segments where only
one of the terms was ’grown’ to avoid the collapsing of the system.

CALCULATIONS
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The calulations reported in the paper were run at 298K temperature and at experimental
density (0.997 g/mL). 64 waters were used and face centered cubic periodic boundary condi-
tions were imposed, allowing a 7.0 Å cutoff. All simulations used the Metropolis algorithm14

with the force-bias sampling technique of Pangali, Rao and Berne.15 The integration over
the coupling parameter λ was performed using Gaussian quadratures. The error estimates
for the calculated free energies were derived from the error estimates on the integrands cal-
culated at each qaudrature points using the method of batch means16,17 based on 105 Monte
Carlo step blocks. The estimates given represent 2 standard deviations.

Previous calculations using the exact same setup as described above obtained the ex-
cess free energy of the SPC18 and MCY19 waters as -5.65±0.05kcal/mol and as -4.04±0.03
kcal/mol, respectively,12 using 5-point Gaussian quadratures. An 8-point quadrature gave
-5.70±0.03 kcal/mol for the SPC free energy, essentially confirming the 5-point quadrature
result. All of these calculations used the path of eq. (1) with k = 4. Their remarkable
precision indicated by the small error estimates was confirmed by the direct calculation (3-
point quadrature, k = 1) of the difference of the free energies of the SPC and MCY waters
as -1.63±0.04kcal/mol: the sum of the free energy differences over the thermodynamic cycle
IG-MCY-SPC-IG gave 0.02 kcal/mol (instead of zero). In the present paper calculations are
reported using 3-point quadratures, requiring simulations at λ=0.1125, 0.5 and 0.8875, both
using the path described above and the polynomial path of eq. (10).

RESULTS AND DISCUSSION

Using k = 4 for all terms, the excess free energies of the SPC and MCY waters were obtained
as -5.61±0.04 and 4.01±0.11kcal/mol, respectively. Table 1 gives details of the convergence.
Only for the SPC water is the difference between the 3-point and 5-point quadrature results
statistically significant.

When trying the polynomial path, several interesting results were obtained. Using k(1) =
1, k(6) = 2 and k(12) = 4 for the SPC water, the simulation at λ = 0.1125 “got stuck”,
i.e., the acceptance rate of trial moves progressively decreased near zero. This was the
result of oxygens and hydrogens being allowed to get too close as their contribution to
the acceptance decision was not scaled down as much as the repulsions. Using k(1) = 2,
k(6) = 2 and k(12) = 4 gave -5.69±0.05kcal/mol, in excellent agreement with the 5 and 8-
point quadrature results — actually closer to the 8-point quadrature result. The confidence
in the 3-point quadrature on the polynomial path is also justified by Figure 1, showing
the integrands over both paths: the polynomial path integrand is almost linear, while the
integrand of the calculation using the exponent 4 overall has a maximum and its curvature
undergoes significant variations. Clearly, a reduced curvature means that the creation of the
particle was more evenly spread over the [0,1] coupling parameter interval.

The calculations on the MCY water proved to be a case where the polynomial path offered
no improvement. For the MCY water, the repulsion term is represented by a sum of expo-
nentials and also the electrostatic term is larger than for the SPC water. Calculations with
k = 4 uniformly on the SPC water showed that the ratio of the repulsive and electrostatic
contribution at λ=0.1125 is 400 and for the polynomial path it was 90. However, for the
k(1) = k(exp) = 4 MCY water calculation this ratio was 1/2. Varying k1 and kexp resulted
in similarly small ratios. Furthermore, when k(1) = 3 and k(exp) = 4 was used (i.e., near
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Table I. Free energy differences calculated with thermodynamic integration.

Runlength (K)

100 300 600 1000

Sys nq k(1) k(6) k(12) A′ A′ A′ A′

SPC 5 4 4 4 -5.66 -5.67±0.06 -5.66±0.04 -5.65±0.05
SPC 8 4 4 4 -5.63 -5.68±0.06 -5.68±0.05 -5.70±0.03
MCY 5 4 4 4 -4.00 -4.03±0.05 -4.03±0.04 -4.04±0.03

SPC 3 4 4 4 -5.65 -5.61±0.12 -5.61±0.06 -5.61±0.04
SPC 3 2 2 4 -5.71 -5.73±0.06 -5.71±0.06 -5.69±0.05
MCY 3 4 4 4 -3.97 -3.97±0.03 -4.02±0.24 -4.04±0.16
TP4 3 4 4 4 -5.48 -5.43±0.08 -5.44±0.07 -5.42±0.06
TP4 3 3 2 4 -5.46 -5.46±0.07 -5.47±0.05 -5.45±0.03

A′ is the excess free energy of system labeled Sys in kcal/mol; nq is the number of quadrature points;
K refers to 1000 Monte Carlo steps; SPC, MCY and TP4 stand for SPC,18 MCY19 and TIP4P20,21 waters,
respectively; results in the first three rows are from ref. 12.

the uniform k = 4 case), the integrands were obtained as -13, -45 and -15 kcal/mole, yielding
a free energy that is way too low. Other combinations gave even lower values for the inte-
grand at the first quadrature point, indicating an even steeper integrand. However, with an
integrand that has such steep variation, the extrapolation to the endpoint regions are clearly
ill defined. For comparison, the uniform k = 4 case gave 1.6, 2.3, and -19.6, similar to the
corresponding SPC integrand shown on Figure 1. Other exponent combinations fared even
worse.

Finally, calculations were also performed on the TIP4P20,21 water that has a 6-12 inter-
action on the oxygen but the negative charge center is offset by 0.15 Å form the oxygen,
and its charge is cca 25% larger than the SPC oxygen. Using k(1) = k(6) = 2 and k(12)=4
gave a rather large negative integrand at λ1 and the acceptance rate was steadily decreasing,
indicating an inadequate calculation. Using k(1) = 3, k(6) = 2 and k(12) = 4 gave the
excess free energy of the TIP4P water as -5.45±0.05 kcal/mol. A subsequent calculation
with k = 4 overall gave -5.42±0.06 kcal/mol. Previously, Jorgensen, Blake and Buckner8

obtained -5.9±0.4 kcal/mol for a system of 216 waters using an 8 Å cutoff and Hermans
et al.7 obtained -5.3 kcal/mol with 80 molecules and a 6 Å cutoff, both under simple cubic
periodic boundary conditions. Allowing for the differences in the system size, cutoffs and
boundary conditions, our results are thus supported by the previous work. The ratio of the
repulsive and the electrostatic contributions at the smallest λ run was 220 and 400 for the two
calculations, respectively. The comparison of the integrands of these two calculations, also
displayed on Figure 1, show that the polynomial path was again able to reduce significantly
the curvature of the integrand, making the numerical quadrature more reliable.

Thus it is concluded that in order for the polynomial path to be of advantage (in fact, of
use), the contribution of the 1/r terms at the small λ end must be significantly smaller than
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the repulsive contribution. A good guide is the minimum ratio of k(1)/k(rep)/λk(rep)−k(1)

[see eq. (8)] since this assures that the repulsive term dominates the calculated integrand.

COMPARISON OF LIQUID FREE-ENERGY SIMULATION TECHNIQUES

Hermans et al. calculated the excess free energy of the several water models, including
the SPC and TIP4P waters, using a nonlinear path and a variant of the thermodynamic
integration called slow growth.7 Jorgensen et al. showed that the excess free energy of the
liquid can be approached as a problem of solvating a water molecule in liquid water and
used the perturbation method to calculate this solvation free energy8 for the TIP4P water.
Also, simulation of water in the grand canonical ensemble was shown to be feasible at liquid
densities using the cavity-biased technique,22,23 used with the SPC and ST224 models and
by the Grand Molecular Dynamics method of Pettit.25

Comparison of the thermodynamic integration (even without the polynomial path) and
perturbation method results conforms to earlier statements about the relative merits of
the thermodynamic integration and the perturbation method4,13 and shows unequivocally
the superiority of the thermodynamic integration for calculating liquid free energies, both in
terms of cost and in terms of accuracy: in the calculations performed by Jorgensen et al.8 for
the TIP4P water even when 10 separate runs (in each directions) were used, the statistical
uncertainty of the result was estimated to be 0.4 kcal/mol. The SPC and MCY results
quoted above were obtained in only 5 separate calculations (each) using thermodynamic
integration, with an uncertainty of about 0.05 kcal/mol. The thermodynamic integration
calculations of Hermans were similarly very economical, vide infra. The difference between
the the efficiencies of the two techniques is particularly large for the calculation of pure
liquid free energies since the use of the perturbation method is only feasible when a single
molecule is mutated into water (as opposed to the whole system when using thermodynamic
integeration) with a concomittant increase in the statistical error by an approximate factor

of N−1/2. For solvation free energy calculations, the comparison depends on the extent of
the mutation involved.

The comparison between the slow-growth technique and the Gaussian quadrature in gen-
eral is less clear cut. The calculations of Hermans et al. required a total of 100,000 molecular
dynamics time steps that is about the same computational effort as the separate equilibra-
tions and the 300K long runs using 5-point quadratures or 500K long runs and 3-point
quadratures (adequate when the polynomial path is applicable). The data in Table 1 shows
that for each system studied the free energy difference was well converged after 300K, even
though the final results reported are based on 1000K long runs. However, the slow growth
technique, in spite of its impressive performance on the liquid water problem, is inherently
“dangerous” since it is relying on “almost converged” data. As long-range correlations have
been shown to exist in liquid water,15,26 they may manifest themselves in unexpected ways.
This reservation is also supported by the recent results of Mitchell and McCammon27 who
found that to obtain precise results for a dipeptide-tripeptide mutation several hundred pi-
cosecond long slow growth runs are required and by the calculations of Mavri and Hadic
where large hysteresis error was found for the free energy profile of the proton transfer be-
tween carboxylic acid and methylamine in water.28 Furthermore, the customary estimate of
the error by calculating the free energy difference along the same path in two directions,
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used both in Refs.7 and 8, is not a strong enough test: there is an example where it un-
derestimated the error by several kcal/mol,29 although better ways of estimating the error
of the slow-growth result are also appearing.30 This factor, combined with the consistently
high precision of our calculations lead us to prefer the Gaussian quadrature technique.

The calculation of the excess free energy of the SPC and ST2 water in the grand-canonical
ensemble using the cavity-biased method were based on two 6000K long calculations for
both models23. As the insertion and deletion attempts increased the computation time by a
factor of 2.5 for each iteration, as far as the calculation of the free energy is concerned, these
calculations are significantly less economical than thermodynamic integration. Calculations
with the Grand Molecular Dynamics method proved to be similarly very computing intensive.

The good agreement between the SPC water free energy calculated directly and from the
MCY water suggests that the calculation of the free energy of a new model could very eco-
nomically be obtained, even when the polynomial path offers no improvement, by calculating
the free energy difference between the new model and one of the older ones for which the
free energy is already known since this path does not involve the creation or annihilation of
atoms and a three-point Gaussian quadrature with k = 1 overall is adequate.

SUMMARY

The results presented show that the introduction of the polynomial path was able to improve
the precision of the calculated liquid free energy for the SPC and TIP4P waters, both a 1-
6-12 type of potential, by significantly reducing the curvature of the integrand, especially
for the SPC water where the integrand became nearly linear. However, it was of no use for
the MCY water that has an exponential repulsion that is nonsingular. Thus, the method
should only be applied to the truly singular potentials and even there care must be taken
in the choice of the exponents: for the run with the smallest coupling parameter value the
acceptance rate is to be monitored carefully and the dominance of the repulsion contribution
must be ensured. It is not unreasonable to expect that similar improvements can be obtained
for solvation free energy calculation when the solute is described with a singular repulsion
term. Also, the results confirm the robustness of the thermodynamic integration based on
Gaussian quadratures: for the two water models studied, even without the polynomial path
the error of a 3-point quadrature was found to be of the order of a tenth of a kcal/mol.
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Figure 1. The polynom fitted to the integrand as generated by the Gaussian

quadrature for the calculation of the SPC and TIP4P water’s free energy


