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INTRODUCTION

The understanding of the effect of a solvent on proton transfer requires the elucida-
tion of the solvent contribution to the free energy of solvation. Due to the high dimensionality
of the configuration space involved in the problem, the solvent effect can only be modeled via
computer simulation for a complex polyatomic solute. While simulation of rather large sys-
tems have recently become relatively routine, the methods for the calculation of free energy
from computer simulation has been still recognized as a computationally exacting task1−4.
The purpose of this paper is to give a brief overview of the free energy simulation method-
ology and demonstrate its capabilities on the study of the thermodynamics of the formation
of the glycine zwitterion in water.

FREE-ENERGY SIMULATION METHODOLOGY

Unless the calculations are performed in the grand-canonical ensemble, free energy
computer simulation techniques are characterized by the path used to connect the two sys-
tems between which the free-energy difference is to be calculated in the configuration space
and by the quantity chosen whose Boltzmann average is related to the free energy. The path
is described by the introduction of a coupling parameter λ into the energy function. The
various choices of the coupling parameter generally fall into the following two categories3:

E(λ, XN) = λk ∗ E1(X
N) + (1 − λ)k ∗ Eo(X

N) or (1)

E(λ, C, XN) = E(λ ∗ C1 + (1 − λ) ∗ Co, X
N). (2)

Here Eo and E1 are the energy functions for the two systems and λ is chosen in such
a way that λ = 0 and λ = 1 in equations (1) and (2) describe systems with energy function
EoandE1, respectively. Mathematically speaking, equations (1-2) describe a homeomorphism
between Eo and E1. The path described by equation (1) is linear for k=1 and ’nearly



linear’ for k > 1. The introduction3 of k> 1 is a generalization of the integral transform
introduced by Abrams et al.5 The symbol C in equation(2) stands for the collection of
potential parameters (including molecular geometries) whose values differentiate systems 0
and 1. Moving along the path described by equation (1) the system 0 is gradually “fading
away” while system 1 is simultaneously being “turned on” — a kind of Chesire cat approach.
Equation(2), on the other hand, describes a path where system 0 is continuously deformed
into system 1.

As the free energy is a state function, several different paths can be used to calculate
a given free-energy difference. A creative example for this is the use of a thermocycle by
McCammon and coworkers to replace the “obvious” but computationally unfavorable path
with a seemingly more complex but computationally tractable one6. The nonlinear path
defined by Equation (2) was introduced in conjunction with the perturbation method by
Jorgensen7. The possibility that a nonlinear path can be singularity-free for thermodynamic
integration was noted by Mezei and Beveridge3 and by Cross8.

Once the path is specified, the free energy difference between the two states can be
obtained in various ways. Thermodynamic integration uses the expression of Kirkwood9:

∆A = A1 − Ao =
∫ 1

0
∂A(λ)/∂λdλ (3)

=
∫ 1

0
〈∂E(λ)/∂λ〉λ (4)

where k is the Boltzmann constant, T is the absolute temperature and the symbol 〈 〉λ
stands for the Boltzmann average of the quantity enclosed using E(λ) in the Boltzmann
factor. The integration can be carried out with a quadrature5,10,11, (preferably Gaussian)
or using the slow-growth method12 where λ is continuously varied during the simulation.
The quadrature method with the exponent k in Equation (1) set to 4 was found to perform
reliably and efficiently for the calculation of the free energy of liquid water13 and for the
solvation free energy of lithium and sodium ions14. The larger than 1 value for k is required
to eliminate singularities in the integrals of equations (3,4) that would otherwise arise from
the repulsive core of the potential3. The slow growth method was used recently to obtain
the free-energy profile (i.e. to calculate the potential of mean force) of the proton transfer in
aqueous solution between formic acid and methylamine by Mavri and Hadic15. While this
latter technique ensures that all λ values will be sampled it was found that for this system
there are serious ergodic difficulties (‘large hysteresis’).

The perturbation method6,16,17 is based on the expression

∆A = −kT ln〈exp[−(E1 − Eo)/kT ]〉o (5)

where the symbol 〈 〉λ stands for the Boltzmann average of the quantity enclosed using Eo
as the energy in the Boltzmann factor. While the perturbation method is widely used, the
presence of the exponential in Equation(5) warrants caution for larger changes in λ since
exponentiation drastically enlarges statistical fluctuations and thereby can easily introduce
large numerical errors3,18. Finite difference thermodynamic integration19 combines these



two methods: the integral of equation(3) is evaluated by approximating the integrand with
a finite difference ratio over a small λ interval. The small change in the free energy, needed in
the finite difference ratio is calculated with the perturbation method. As only small changes
are required in λ, the perturbation method results will be reliable.

The solvation free energy can also be related to various probabilities. These methods
include the acceptance ratio method of Bennett16, the overlap ratio method developed by
Jacucci and Quirke20 (based on the ideas put forward by Bennet16 and shown to perform
well in aqueous systems21) and the probability ratio method.

The probability ratio method was originally developed for the determination of the
potential of mean force21, and first applied to the determination of free energy differences
by Mezei, Mehrotra and Beveridge23:

∆A = −kT ln[(P (λ)λ=1/V1)/(P (λ)λ=0/Vo)], (6)

where P (λ) is the Boltzmann probability of the system to be at the intermediate stage
λ when λ is also a variable during the simulation and Vo, V1 represent the configuration
space volume corresponding to the λ =0 and 1 state, respectively. A familiar example for
P (λ)/Vλ is the radial distribution function g(r) where V is the well known 4πr2 factor.
Valleau, Patey and Torrie have recognized that equation(6) translates small free energy
differences into large ratios in the probability of sampling and thus this method requires
non-Boltzmann sampling with a modified Hamiltonian, E′(XN, R(λ)) (usually referred to as
“umbrella sampling”)17,24 to sample λ values whose probability is small:

E′(XN, R(λ)) = E(XN, R(λ)) + EW(λ). (7)

The Boltzmann average 〈Q〉B of any quantity Q can be recovered as

〈Q〉B = 〈Qw(λ)〉W/〈w(λ)〉W where (8)

w(λ) = exp[EW(λ)/kT ] (9)

and 〈〉W implies configurational average using the modified Hamiltonian given by
equation(7). Most previous calculations determined EW(λ) empirically, either in tabular or
in analytical form. The fact that the best choice for EW(λ) is W (λ) suggested iterative
approaches that not only provided computational efficiency but resulted in a method that
is inherently self- checking. Paine and Scheraga25 obtained the gas-phase conformational
free energy map of the alanine dipeptide and Mezei recalculated the free energy difference
between the C7 and αR conformations of the alanine dipetide in aqueous solution26,18. For
the aqueous system several technical difficulties had to be overcome: matching of iterations
with large statistical noise, recognition of equilibration phase, guiding the simulation to
undersampled regions and others. It turned out to be important that the normalization
factors of the estimated probability distributions be continually redetermined through the
solution of a nonlinear minimization problem as the calculation proceeds (the “matching”
problem of the previous studies). This iterative scheme is called adaptive umbrella sampling.



In recent work on the dimethyl phosphate anion the adaptive umbrella sampling method
proved to be significantly more reliable than the use of the harmonic weighting function27:
on a thermodynamic cycle consisting of three distinct solute conformations the closure error
was 8 kcal/mol for the harmonic method and 0.6 kcal/mol with the adaptive method. The
potential of mean force between sodium and chloride ions in water has also been calculated
with the adaptive method28. It is thus expected to perform well also for the study of a
proton transfer free-energy profile.

GLYCINE ZWITTERION FORMATION

Glycine forms zwitterion in water at neutral pH. As described in the Appendix
the free energy of the zwitterion formation can be estimated as -11 kcal/mol, favoring the
zwitterionic form. The gas-phase energy difference has been calculated by ab initio methods
most recently by Langlet, Caillet, Evleth and Kassab29 at the 6-31G∗ level with geometry
optimization (see references therein for earlier ab initio work). As they estimated that at the
best level the neutral form is more stabile by about 20 kcal/mol, the solvation free energy
must favor the zwitterionic form by about 30 kcal/mol. In the study reported here ab initio
calculations were performed for the estimation of the gas phase contribution up to 2nd order
Moller-Plesset level and the difference between the solvation free energies was calculated by
thermodynamic integration. A major limitation of the calculations reported here is the use
of a prefixed geometry for both the neutral and the zwitterionic form. Thus the results of the
present calculation could be refined by exploring the effect of intramolecular conformations,
requiring both additional ab-initio studies and potential of mean force calculation along the
various torsion angles describing the two molecules.

Table 1
Calculated ab-initio energies

Basis set Glycine Zwitterion Difference
a.u. kcal/mol

STO-3G -279.1029 -278.9666 0.1363 85.5

6-31G -282.6697 -282.6424 0.0273 17.1

6-311G∗∗ -282.8862 -282.8515 0.0347 21.8

6-311G++ -282.7537 282.7288 0.0249 15.6

6-311G∗∗/MP2 -283.7546 -283.7182 0.0364 22.8

Ab Inito Calculations

The molecular geometries were taken form the work of Clementi and coworkers30,31.
Calculations were done at the STO-3G, 6-31G, 6-311G++ and 6-311G∗∗ levels32. The 6-
311G∗∗ calculation also included correlation contributions at the MP2 level. The calculated



energies are given in Table 1. The highest level calculations confirm the estimate of Langlet
et al. The fractional charges on the atoms obtained by Mulliken population analysis of the
ab-initio calculations are given in Table 2.

Table 2
Fractional charges obtained by Mulliken population analysis

Glycine Glycine zwitterion

STO-3G 6-31G 6-311∗∗ STO-3G 6-31G 6-311∗∗

O(H) -0.2786 -.6935 -0.4249 O -.4850 -.7233 -0.6246
O(C) -0.2607 -.5718 -0.4741 O -.4294 -.6757 -0.5804
C(O) 0.2951 .7663 0.5230 C(O) .2406 .7269 0.4882
C(A) -0.0407 -.2001 -0.0361 C(A) -.0483 -.2775 -0.1428
N -0.3855 -.8107 -0.5242 N -.3583 -.8788 -0.3194
H(N) 0.1476 .3182 0.1940 H(N) .3326 .4789 0.3160
H(N) 0.1584 .3326 0.2038 H(N) .2901 .4325 0.2736
H(O) 0.2161 .4368 0.2761 H(N) .2901 .4325 0.2736
H(C) 0.0617 .1916 0.1188 H(C) .0837 .2422 0.1578
H(C) 0.0865 .2307 0.1434 H(C) .0837 .2422 0.1578

Free Energy Simulations

The water-water interactions were described by the TIP4P potential33 and the solute-
water interactions used the AMBER parameter set34. The atomic charges were taken from
the Mulliken population analysis described above. As the fractional charges are strongly
basis set dependent, calulations were performed with both the charges from the STO-3G
and the 6-311G∗∗ results. The glycine was surrounded by 215 waters in a cell corresponding
to the FCC close packing (truncated octahedron).

The simulations used the path described by equation(1) and evaluated the free en-
ergy differences by thermodynamic integration, i.e. using equation (4). The integrals were
approximated by Gaussian quadratures. At first, the free-energy difference between the two
glycine forms was calculated using the charges derived from the STO-3G calculations with
a 5-point quadrature and λ exponent k = 4. Next for both glycine forms the free energy
differences between the models using the STO-3G and 6-311G∗∗ charges were calculated
with 3-point quadratures and λ exponent k = 1 (as the change from one model to an other
did not involve the introduction of new repulsion centers). The diagram below gives the
calculated free energy differences calculated from the simulations as well as the free energy
differences derived form them and the ab initio calculations, in kcal/mol. The error estimates
were obtained by the method of batch means35,36 and represent 95% confidence intervals (2
S.D.).



Glycine -32.0±2.3 Glycine zwitterion
(STO-3G charges) −→ (STO-3G charges)

| |
| -3.8±0.2 | -9.2±0.2

V V
Glycine -37.4±2.3 Glycine zwitterion

(6-311G∗∗ charges) −→ (6-311G∗∗ charges)
(indirect)

Total free energy difference: -9.2±2.3 (STO-3G charges)
-14.6±2.3 (6-311G** charges)

Considering the approximations made in describing the intermolecular interactions as well
as the lack of complete geometry optimization, the final result compares rather well with the
experimental estimate of -11 kcal/mol, showing that the methods desribed here are capable
of a reasonable treatment of the thermodynamics of proton transfer.

Appendix

Estimate of the experimental free energy of the zwitterion formation

The comparison of the pKa of several amines show surprisingly little variation37:

NH+
4 ⇀↽ NH3 + H+ pKa=9.26

N+H3(CH2)2OH ⇀↽ NH2(CH2)2OH + H+ pKa=9.50

N+H3CH3 ⇀↽ NH2CH3 + H+ pKa=10.72

N+H3CH2CH3 ⇀↽ NH2CH2CH3 + H+ pKa=10.67

H3N
+CH2COO− ⇀↽ H2NCH2COO− + H+ pKa=9.6

Thus, it is reasonable to assume that

H3N
+CH2COOH ⇀↽ H2NCH2COOH + H+ pKa=9.6 .

Combining this estimate with

H3N
+CH2COOH ⇀↽ H3N

+CH2COO− + H+ pKa=2.35

gives (by dividing the two equilibrium constant expressions)



[H3N
+CH2COO−]/[H2NCH2COOH] = 10−8.2 .

Using ∆A = −kT ln K results in ∆A = -11 kcal/mol.
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