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with decreasing values for the fraction of Mo** and Mo®*. From
a comparison of parts a and b of Figure 7 it appears that both
Mo metal and Mo?* are active for benzene hydrogenation.

The onset of the catalytic activity for T = 600 °C coincides
with significant formation of Mo?*. The abrupt increase in the
activity for T = 700 °C can be related to the formation of Mo
metal. The catalytic activity correlates reasonably well with
variation in the abundance of Mo metal. Figure 6 also shows taht
for comparable abundance of Mo?* and Mo metal (ca. 43% and
48% for catalysts reduced at 660 and 800 °C, respectively) the
catalyst containing Mo metal is ca. 5-fold more active. This
indicates a higher intrinsic activity of Mo metal compared to that
of Mo**., One must note, however, that because of the high
intrinsic activity of Mo metal for benzene hydrogenation, one
cannot rule out the possibility that the observed activity ascribed
to Mo?* is due to a small amount of Mo metal which cannot be
detected by ESCA.

The hydrogenation of benzene is a reaction typically catalyzed
by metals.3”#2 This is, however, in variance with recent results
obtained in this laboratory on reduced Mo/TiO, catalysts!® which

(37) Chappen, J.; Brenner, A. Presented at the 9th North American
Meeting of the Catalysis Society, 1985, Houston, TX.

(38) Che, M.; Bennett, C, Q. Adv. Catal. 1989, 36, 114.

(39) Martin, G. A.; Dalmon, J. A. J. Catal. 1982, 73, 233.

(40) Basset, J. M.; Dalmai-Imelik, G.; Primet, M.; Mutin, R. J. Catal.
1978, 37, 22.

(41) Moss, R. L.; Pope, D.; Dairs, B. J.; Edwards, D. H. J. Catal. 1979,
58, 206.

(42) Fuentes, S.; Figueras, F. J. Catal. 1980, 61, 443.

indicate that Mo?* sites are more active for benzene hydrogenation
than Mo metal. One possible interpretation of this finding pos-
tulated in the aforementioned study!® is that the activity of Mo
metal obtained on reduction of Mo/TiO, is inhibited by site
blocking. The latter is caused by migration of reduced Ti moieties
or impurities in the TiO, support on reduction. The results of
the present study are consistent with this interpretation since,
unlike TiO,, Al,O; is more resistant to reduction and therefore
less likely to affect the surface structure of the Mo metal obtained
at high-temperature reduction.

Conclusions

An ESCA study of the distribution of Mo oxidation states in
Mo/Al,O; catalysts reduced between 500 and 900 °C indicates
the formation of mixed oxidation states ranging from Mof* to
Mo metal. For catalysts reduced between 800 and 900 °C, Mo
metal was the major species formed. The average Mo oxidation
states in reduced Mo/Al,0; catalysts estimated from ESCA
results correlated well with those determined from O, consumption
measurements.

The comparison of benzene hydrogenation activity of reduced
Mo/ALO, catalysts with the distribution with Mo oxidation states
indicates that Mo metal and (to a lesser extent) Mo?* are the only
active centers for benzene hydrogenation.
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This paper evinces the feasibility of obtaining an effective pairwise additive intermolecular potential for liquid water at room
temperature by fitting a pairwise additive function to the cooperatively calculated energies and virial sums of simulated liquid
water configurations. The procedure requires iterative refinement of the fit. The importance of trying different functional
forms has been demonstrated as well as the importance of including the virial sum into the fitting process. The cooperative
energies and virial sums were calculated with the Campbell-Mezei model (derived from ab initio dimer energies) which includes

a dipole polarization term.

Introduction

The description of the condensed phase of matter hinges upon
an adequate representation of the intermolecular interactions. As
the modeling of a condensed phase necessarily involves a large
number of particles in a large number of configurations, the
intermolecular energy has to be a simple expression of the particle
coordinates. Such simple expressions may be obtained either by
fitting an assumed functional form to (a necessarily limited number
of) experimental properties of the substance under study (empirical
potentials) or by fitting the same function to ab initio calculations
performed on selected configurations of pairs of molecules (ab
initio potentials).

The difficulty with the empirical potentials lies in the limited
number of experimental data available and in particular in the
hidden (or at least not well-known) correlations existing among
them. For the ab initio potentials, the adequate sampling of the

configuration space and the multibody effects cause problems (vide
infra).

To avoid some of these difficulties, the present paper proposes
and tests a procedure that generates an effective pair potential
(instead of an empirical potential, vide infra) using an ab initio
route to represent condensed-phase interactions at a particular
thermodynamic state. The procedure starts out from an initial
approximation to the potential (to be obtained from the existing
literature or generating one from existing potentials describing
related substances and assuming the transferability of the pa-
rameters) and generates a set of configurations (of the order of
a few hundred) at that particular thermodynamic state. Next,
the parameters of a pair potential are determined from fitting to
the cooperatively calculated total energies and virial sums of a
set of liquid configurations. These new parameters are next used
to generate a new set of configurations. The procedure is iterated
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until self-consistency. It is important to stress that, as is true for
every effective pairwise potential, the parameters obtained would
reflect the thermodynamic state(s) used for their derivation and
their validity progressively worsens as one moves away from that
state(s).

The procedure proposed above was tested on room temperature
liquid water (at its experimental density). The cooperative cal-
culations were performed with the ab initio water model of
Campbell and Mezei.! That model includes multibody effects
through dipole polarizability and was shown to work well for
various ice forms? and was also able to reproduce? the energy of
the recently discovered low-energy trifurcated water dimer
structure.* The configurations used for the initial fitting were
extracted from Monte Carlo simulations based on the ab initio
MCY? and the empirical TIP2% and TIP4P? potentials.

Background

Classical statistical mechanical calculations required the energy
E(XN) of the assembly of N particles with coordinates X¥. For
the calculation of E(XV) to be manageable, in general several
approximations are made. In principle, the total energy E(XV)
can be written as the sum of two-body, three-body, etc., terms:

N N
E(XY) = Ted(X,X) + L XX X) + ... (1)
i< i<j<k

If one neglects all terms depending on more than two particles,
then the total energy will be represented by a sum of pair energies.
While the quantum mechanical calculation of these terms in a
statistical mechanical computer simulation is still infeasible, the
potential surface is usually amenable to a reasonable fit by a simple
functional form. This approach has been pioneered by Clementi
and his co-workers, who developed an extensive ab initio potential
library for interactions between small molecules.® For water—
water interactions, the expansion has been carried out to include
three-body and four-body terms as well.!

An alternative treatment of the inclusion of higher order terms
is through the physical mechanism of polarization. Here the
two-body terms are supplemented by an N-body term that is
computed by determining the mutual polarization energy of the
system (usually at the induced dipole level). The induced moments
are computed in an iterative fashion in most cases: compute the
moments induced by the permanent field; update the field with
the effect of the newly induced moments; repeat until self-con-
sistency. However, Campbell has shown!! that the induced dipoles
can also be obtained directly by solving a system of equations—an
approach that is particularly useful when the iteration scheme
diverges. This formalism has been recently extended by Campbell
and Mezei for higher order moments as well.'?> For Monte Carlo
simulations this approach is very expensive since each step involves
the move of only one molecule, but the cooperative energy cal-
culations still have to involve all the others. In molecular dynamics,
however, all molecules move at each time step and thus the ad-
ditional work involved in calculating the cooperative contribution
is manageable. For liquid water, the polarization approach has
been pursued by Berendsen and Velde,!* Campbell and Mezei,'

(1) Campbell, E. S.; Mezei, M. J. Chem. Phys. 1977, 67, 2338.
(2) Campbell, E. S.; Mezei, M. Mol. Phys. 1980, 41, 883,
(3) Mezei, M.; Dannenberg, J. J. J. Phys. Chem. 1988, 92, 5860.
(4) Dannenberg, J. J. J. Phys. Chem. 1988, 92, 6869.
3 5(5) Matsuoka, O.; Clementi, E.; Yoshemine, M. J. Chem. Phys. 1976, 64,
1351.
(6) Jorgensen, W. L. J. Chem. Phys. 1982, 77, 4156.
(7) Jorgensen, W. L.; Chandrashekar, J.; Madura, J. D.; Impey, R.; Klein,
M. L. J. Chem. Phys. 1983, 79, 926.
% (gg 3Cllemem.i. E.; Cavallone, F.; Scordamaglia, R. J. Am. Chem. Soc. 1977,
(9) Corongiu, G.; Clementi, E. Gazz. Chim. Ital. 1978, 108, 273.
st él%ll)etrich. J.; Corongiu, G.; Clementi, E. Int. J. Quantum. Chem. 1984,
(11) Campbell, E. S. Helv. Phys. Acta 1967, 40, 388.
(12) Campbell, E. S.; Mezei, M. Mol. Phys. 1986, 57, 1201.
(13) Berendsen, H. J. C.; van der Velde, G. A. CECAM Workshop Pro-
cl-e9e7d£ngs: Centre Européen de calcul Atomique et Moléculaire: Orsay, France,
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Stillinger and David,'* Barnes et al.,'® Stillinger, Weber, and
David,!* and Campbell and Belford!” and, more recently, by
Lybrand and Kollman,!® S?rik and Klein,!” Rullman and van
Duijnen,?® Ahlstrom et al.,! and Kuwajima and Warshel. 22

Stillinger laid the theoretical foundations for an improved
two-body potential by mapping the contributions of the higher
order terms to two-body terms in an average fashion? by selecting
an (X, X;) in such a way as to minimize the quantity

S lRpl-EOX/24T] - expl-emx,) / KTIF 4XY ()

Such potentials are called effective pair potentials. Notice the
presence of T in eq 2—the calculated parameters clearly would
depend on them.

Normally, the parameters of an effective pair potential are
obtained from fitting to experimental properties of the liquid. The
first such water model (BNS) was derived by Ben Naim and
Stillinger,** modified later (ST2) by Stillinger and Rahman.?
Subsequently, several new effective pair potentials (often calied
empirical potentials) were derived for water: TIP,% SPC,?” TIP2,¢
TIP4P,” to mention the ones used most frequently. They yielded
reasonably satisfactory results when used in computer simulations.

However, a fundamental question still remains unanswered:
How well is it possible to fit a pair potential to the full N-body
energy? Comparison of the calculated liquid properties with the
experimental data can, in principle, serve only as a source of
possible negative answers since experimental data are relatively
scarce and, more importantly, there may be (possibly hidden)
correlations between them. With the development of a successful
effective pairwise additive potential based on fitting to coopera-
tively calculated energies and virial sums of liquid configurations,
this question can also be addressed quantitatively.

Calculations

The calculation of the total energy and the virial sum of each
configuration was performed with the Campbell-Mezei model.
This model contains an electrostatic term based on the field defined
by the water monomer wave function and cooperatively induced
dipoles, atom-atom repulsion terms obtained from fitting to
Hartree-Fock dimer energies, and an empirical dispersion term:

E=EP+E1+ED+ER (3)
where Ep is the pairwise additive part of the electrostatic inter-
actions of the permanent multipole moments, calculated for each
pair as the sum of interaction of multipoles of various order. Each

multipole interaction of order m and n, respectively, is calculated
in the Maxwell formalism for spherical harmonics in the form

el(nm) = p;'p}npzz;l qf;-l SV V) /ry C))

where the constants P} and P} and vectors s;;" and s{,"" are de-
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termined by the charge distribution.® The water charge density
is split into atomic contributions: spherically symmetric terms
on the hydrogen derived from the contributions of the basis
functions centered on the hydrogens only and all other contri-
butions are assigned to the oxygen, resulting in an exact sec-
ond-order multipole representation of the densities on the hy-
drogen? and by using tenth-order multipole expansion for the
oxygen.

The induced energy E is obtained from the field of the per-
manent moments and the induced dipoles u;:

N
Ey = '[E(#'E°)]/2 (%

The calculation of induced dipoles used the polarizability values
of Liebman and Moskowitz:¥ 9.79, 10.14, and 9.66 au along the
HOH bisector, H-H line, and the normal of the molecular plane,
respectively. The dispersion energy Ep is obtained as the sum
of 1/r% terms:

N
Ep = E;C?°/(’3°)6 ®

and the repulsion energy Ej is obtained as a sum of 1//° and 1/r'?
terms:

N 3
Eg = Ejp?,:_l@“/ (rype)® + OB/ (rypg)'? 0
where the indices p and ¢ run through the water atoms.

Several extensions were made for the purpose of the present
study. First, the calculations are supplemented with the same
simple cubic periodic boundary conditions that were used in the
simulation generating these configurations. Second, the muitipole
expansion at the oxygen was further truncated as a function of
the distance between the oxygen atoms, resulting in large savings
of computer time with negligible effect on the calculated energies.
Finally, the calculation of the virial sum has also been implemented
as follows. The virial sum ¥V was used in two forms:’!

N N
V=L(RVE) = LryViey) ®)
jml i<j

The contribution of the permanent electrostatic energy terms can
be easily computed from the second form since it is already in
a form suitable for the Maxwell formalism and only requires the
application of the operator (r;,V) on each term calculated in the
form of eq 5. Similarly, the virial contributions of a 1/7* term
(from Ep or ER) are all in the form

=x(r) /Irf™ ®

where rg is the intermolecular vector between the two molecules
containing centers i and j at 7, An interesting implication of eq
9 is discussed in the Appendix. The contributions of the induced
energy E; were calculated by applying the first form of V, eq 8,
to the expression:?'

N N
ViE) = —l_Zl[ur(VkEﬂ)] - ’_ZI [5Curry) X
ik
et/ Pl = ()T = (eridiee = er)wl (3) /ral®
(10

The calculated viral sum was verified in two ways: first, by
comparing the calculated V of a dimer with the value calculated
by using finite difference approximations for the partial derivatives
in eq 8, obtained by calculating the energies Ep, E;, Ep, and Eg
at systematically varied rs; second, by a generating two con-
formations of 125 waters where the intermolecular distances were
scaled up:

= (1 + N, (11)

(28) Mezei, M.; Campbell, E. S. J. Comput. Phys. 1976, 20, 110.

(29) Mezei, M.; Campbell, E. S. Theor. Chim. Acta 1977, 43, 227.
(30) Liebman, S. P.; Moskowitz, J. W. J. Chem. Phys. 1971, 54, 3622.
(31) Barker, J. A.; Henderson, D. Rev. Mod. Phys. 1976, 48, 587.

Mezei

and using a finite difference approximation to the relation
AE/A\ =V = AE /AN (12)

to be compared with the value of V calculated from eq 8.

Once the cooperative energies of the selected configurations
were calculated, the parameters of the effective pair potential were
determined by minimizing the expression

A= WEAEZ + Wvsz (13)

where

n N
A = @[Ei(x”) - Eje"“(Xl,X;)]’}/ n (14)

n N
Ay = l%[Vi(X”) - IZ.U“"(X“XJ)]’V n (15)
<j

Here the summation over k represents the summing over the n
data points (configurations), E5(X") and V§(X¥) are the coop-
eratively calculated energy and viral sum, respectively, in the kth
configuration, and e*(X,X;) and V*T(X,X)) are the pairwise
contributions to the energy and virial sum, respectively. They
contain the potential parameters to be determined by the fitting
procedure. The minization leads to a system of linear equations
as long as the potential parameters are linear. The right-hand
side of eq 15 is a variant of the Stillinger equation, eq 2. The
exponential is not present explicitly, but since the configurations
were selected from a simulation with a waterlike potential, it is
included implicitly to a good approximation.

The quality of the fit can be coriveniently characterized by the
root mean square deviations A (a perfect fit would give zero), Ag,
and Ay as well as the correlation coefficients

cg = ((E° = (ENET - (E*M))) /
[((E° = (E=)P) (BT - (EM)H)]'/2 (16)

ov = (V= (V) - () /
[V = (T = ()2 (17)

between the cooperatively calculated energies E° and virial sums
V® considered to be “exact” and the fitted energies E*T and virial
sums V°f, respectively. A “good” fit would give not only a small
A but also large (i.e., approaching 1) correlation coefficients. Note
that the parameters that minimize A are in general different from
the ones that would maximize the analogous combination of the
correlation coefficients. The adequateness of the new potential,
however, can only be determined by applying the new potential
in simulation although it is possible that after repeated application
of the fitting procedure described here on different systems it will
be possible to establish acceptability threshold values for the As
and correlation coefficients.

Three potential types were tried in the fitting procedure: the
Lennard-Jones plus electrostatic (LJQ)

(X, X)) = CFP/RE ~ C¢°/Rbo + Eul(quiroq) (18)

a potential containing oxygen—oxygen and oxygen—hydrogen re-
pulsion plus electrostatic (RRQ) terms

(X X)) = CP/REo + ZCH'/REu + Ealquroq)  (19)

(the summation is over all four O—H distances), and the Morse
plus electrostatic (MQ) form

eM(X,.X)) = D exp[-2A4(Roo - Reg)] -
2D exp[~A(Roo ~ Req)] + Ea(quiroq) (20)

In eqs 18-20 the electrostatic term E,, is calculated between
qy electron charges placed on the hydrogens and the ~2gy charge
placed on a center placed on the HOH bisector at roq-A distance
from the oxygen atom. The subscripts O, H, and Q refer to the
interaction site oxygen, hydrogen, and charge center, rwpectizgg.

The total energy expressions using eqs 18-20 are linear in C32°,
C2°, CPH, D, and gy and nonlinear in Roq, Ry, and 4. In
general, when there are p linear parameters ‘()8‘,, i=1,.,p) the
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TABLE I: Characterization of the Monte Carlo Runs Used for the
Initial Fittings®

MCY TIPS2 TIP4P

no. of MC steps 34 x10° 106 1.2 X 108
no. of configurations extracted 229 68 80
av pairwise energy -8.679 -9.882 -10.053
min pairwise energy -9.035 -10.106 -10.566
max pairwise energy -8.262 -9.573 -9.485
av cooperative energy -12.053 -12,535 -12.564
min cooperative energy -12.229 -12.363 -13.252
max cooperative energy -11.572 -12.055 -12.456
correlation between the 0.690 0.769  0.538

pairwise and cooperative

energies
av pairwise virial sum 1.504
min pairwise virial sum -0.958
max pairwise virial sum 4.359
av cooperative virial sum 12.271 7.025 -0.434
min cooperative virial sum 7.582 3177 -6.936
max cooperative virial sum 16.311 10988  5.621
correlation between the 0.752

pairwise and cooperative
energies

“Energies are in kcal/mol.

approximating energy expression for the kth configuration can
be written in the condensed form

»
Eyff =Y Cay

i=]

(21
where a;;, depend on the coordinates of the atoms in the kth
configuration and the assumed values of the nonlinear parameters.

A of eq 13 is minimized when the C;'s are the solution of the system
of linear equations

P a
EEle(WEalka/k + wybuby) =

kéwEEia,k +wyWiby G =1,..p) (22)

Here the b,’s are the virial sum contributions corresponding to
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the energy terms represented by the a’s.

For the determination of the optimal values of the nonlinear
parameters ideally one would use a nonlinear minimizer search
procedure, with gradients calculated from straightforward dif-
ferentiation of eqs 18-20. However, as the likely range of R
and Roq is rather limited, a simple grid search was chosen here.
This strategy was justified a posteriori by the relative insensitivity
of A to the nonlinear parameters in eqs 18-20.

The fitting procedure started from configurations selected from
the history of Monte Carlo simulations of 125 water molecules
under simple cubic periodic boundary conditions with a 7.75-A
spherical cutoff at room temperature using the MCY,* TIP2,S and
TIP4P? potentials. Data characterizing these runs are given in
Table I.

Results

Results of Fitting the Cooperative Energies Only. In the first
series of calculations wy = 0 was used; i.e., only the energy was
fitted. The initial fittings were performed with the LJQ and RRQ
forms and for different Roq's. As the TIP2 and TIP4P potentials
used 0.15 A and the MCY potential 0.268 A, it was expected that
similar values will give the best fit. However, the cooperative
energies were best fitted by Roq values around 0. Tables I and
III give the results of the fits using the three different sets of
configurations individually as well as their combinations with
=0.15 and 0.0 A and with the best (within 0.005 A) Roq value.
The combinations of the configuration sets were prepared in two
ways: in the first version all configurations were used, and in the
second version the MCY set was reduced by taking only every
third of the 229 configurations. The two combinations were
labeled MT24A and MT24B in the tables, respectively. The fits
on these two sets were very similar, indicating that the number
of configurations sampled was adequate.

As the different sets of configurations gave different but close
to zero Roq values and the quality of the fit was not much affected
by small changes in Roq, it was set to zero. The small value found
optimal for Roq can be understood by remembering that the
charge distribution used to develop the Campbell-Mezei model
has a higher dipole moment than the experimental value. For
the MQ form, additional optimization was performed to get the

TABLE II: Results of the Fitting Potentials of the Form 1LJQ to the Total Energy Only®

data RQQ C(l,zo C?O g € qy AE Cp
MCY 0.15 722586 1438.89 2.82 0.716 0.49631 0.0779 0.857
MCY 0.00 676321 1250.09 2.85 0.578 0.41897 0.0674 0.896
MCY -0.01 672834 1246.44 2.85 0.577 0.41370 0.0674 0.896
TIPS2 0.15 866549 1130.90 3.03 0.369 0.56152 0.0973 0.867
TIPS2 0.00 807343 1065.36 3.02 0.351 0.45348 0.0755 0.923
TIPS2 -0.02 793626 1080.40 3.00 0.367 0.43896 0.0750 0.924
TIP4P 0.15 802151 1484.98 2.85 0.687 0.50566 0.1017 0.772
TIP4P 0.00 818939 1421.44 2.88 0.614 0.42033 0.0849 0.852
TIP4P -0.09 809752 1485.24 2.86 0.681 0.37010 0.0823 0.862
MT24A 0.15 777694 1364.73 2.88 0.599 0.51651 0.0886 0.951
MT24A 0.00 781596 1600.13 2.81 0.819 0.39485 0.0814 0.959
MT24A 0.05 789032 1525.34 2.83 0.737 0.43114 0.0808 0.960
MT24B 0.15 792864 1311.14 291 0.542 0.52629 0.0945 0.944
MT24B 0.00 780623 1574.31 2.81 0.794 0.39743 0.0869 0.952*
MT24B 0.04 789597 1508.80 2.84 0.721 0.42764 0.0863 0953
LIQ 0.00 702162 1489.46 2.79 0.790 0.39246 0.1084 0.845
LJQ -0.11 705524 1493.93 279 0.791 0.34087 0.1062 0.851*
RRQ 0.00 307997 889.01 2.65 0.647 0.40843 0.1041 0.733
RRQ -0.16 334032 940.13 2.66 0.661 0.33720 0.0991 0.759
MQ 0.00 732351 1612.90 2.77 0.888 0.38334 0.1220 0.791
MQ -0.09 724013 1609.75 2,77 0.895 0.34183 0.1198 0.798
LJQI 0.00 730650 1222.74 2.90 0.512 0.43851 0.1096 0.830
LJQ1 -0.05 727782 1222.53 2.90 0.513 0.40891 0.1090 0.833
RRQI 0.00 508519 1735.52 2.58 1.481 0.35001 0.1049 0.693
RRQI ~0.25 494728 1446.63 2.64 1.058 0.28118 0.0981 0.739
MQI 0.00 613696 1394.35 2.76 0.792 0.38271 0.1668 0.516
MQI -0.07 605868 1370.49 2,76 0.775 0.35080 0.1658 0.523

PP and €O are in keal/(mol-A'?) and keal/(mol-A%), respectively; o and ¢ are the Lennard-Jones parameters equivalent to CP° and C9; the
hydrogen charge gy is in electrons; Ag (defined by eq 14) is in kcal/mol; cg is the correlation defined by eq 16; and Roq is in A. An asterisk marks
the fits chosen for new simulations. Data labels refer to the potential function (see Results) that generated the dataset used in the fit.
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TABLE III: Results of Fitting Potential of the Form RRQ to the Total Energy Only’

Mezei

data ROQ C?zo C%H qu AE Cg
MCY 0.15 100933 7248.82 0.63155 0.0656 0911
MCY 0.00 132228 3178.85 0.50905 0.0504 0.950
MCY 0.00 132228 3178.85 0.50905 0.0504 0.950
TIPS2 0.15 205228 4883.23 0.63511 0.0955 0.900
TIPS2 0.00 4422.69 3180.10 0.49498 0.0631 0.950
TIPS2 -0.02 464.061 3032.98 0.48789 0.0628 0.950
TIP4P 0.15 109400 4691.63 0.61803 0.1085 0.785
TIP4P 0.00 70172.1 2616.59 0.49497 0.0849 0.855
TIP4P 0.00 70172.1 2616.59 0.49497 0.0849 0.855
MT24A 0.15 366095 2900.09 0.63846 0.1040 0.936
MT24A 0.00 114361 2612.40 0.50077 0.0658 0.974
MT24A -0.02 91305.3 2486.98 0.48671 0.0655 0.975
MT24B 0.15 382010 2858.24 0.64062 0.1096 0.928
MT24B 0.00 79154.6 2678.55 0.49722 0.0722 0.968*
MT24B -0.01 65993.2 2615.69 0.48997 0.0721 0.969
LiQ 0.00 -82819 3405.12 0.49123 0.0946 0.876
LJQ -0.01 -75573 3188.28 0.48469 0.0946 0.876
RRQ 0.00 75143.5 2778.64 0.49324 0.0727 0.883
RRQ -0.08 108038 1708.73 0.45069 0.0708 0.889*
MQ 0.00 -80224 2371.81 0.48544 0.1078 0.838
MQ -0.04 ~78279 1877.91 0.45957 0.1071 0.841
LIQ1 0.00 45136.9 2624.55 0.50373 0.1025 0.848
LJQI -0.07 80893.7 1659.37 0.45955 0.1008 0.854
RRQI1 0.00 731144 2212.17 0.49289 0.0894 0.789
RRQ1 -0.04 95002.7 1675.70 0.46704 0.0887 0.793
MQt 0.00 82176.7 817.25 0.46023 0.1657 0.569
MQt 0.02 68562.4 964.67 0.47798 0.1655 0.569

2P and COH are in keal/(mol-A!2); the hydrogen charge gy is in electrons; Ag (defined by eq 14) is in kcal/mol; cg is the correlation defined by
eq 16; and Royq is in A. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential function (see Results) that generated

the dataset used in the fit.

TABLE IV: Results of Fitting Potentials of the Form MQ to the Total Energy Only’

data ROQ R.q A D 4 Ag 4]
MT24B 0.15 3.1 2.1 1.0788 0.4435 0.0975 0.942
MT24B 0.05 31 2.1 1.0873 0.4254 0.0886 0.951
MT24B 0.04 31 2.1 1.0897 0.4196 0.0886 0.951
MT24B 0.03 31 2.1 1.0919 0.4141 0.0886 0.951
MT24B 0.02 31 2.1 1.0958 0.4086 0.0890 0.950
MT24B 0.00 31 20 1.1557 0.3879 0.0907 0.948*
MT24B 0.00 31 22 1.0327 0.4079 0.0897 0.950
MT24B 0.00 3.0 2.1 1.0561 0.3581 0.0971 0.941
MT24B 0.00 32 2.1 0.7588 0.4319 0.0924 0.949
MT24B 0.00 32 22 0.6889 0.4409 0.0961 0.948
MT24B 0.00 3.2 2.0 0.8283 0.4218 0.0902 0.950
MT24B 0.00 3.0 22 1.5236 0.3670 0.0902 0.950
MT24B 0.00 3.0 20 1.5856 0.3492 0.1011 0.936
MQ -0.05 29 2.9 1.3279 0.3561 0.1242 0.782
MQ -0.05 3.0 29 0.8551 0.3947 0.1125 0.819
MQ -0.05 31 29 0.4584 0.4281 0.1210 0.788
MQ -0.05 29 30 1.2917 0.3607 0.1221 0.790
MQ -0.05 3.0 3.0 0.7908 0.4003 0.1123 0.820
MQ -0.05 3l 3.0 0.4075 0.4316 0.1219 0.786
MQ -0.05 29 31 1.2505 0.3654 0.1203 0.796
MQ -0.05 3.0 31 0.7280 0.4053 0.1126 0.819
MQ -0.05 3.1 31 0.3618 0.4346 0.1229 0.783
MQ -0.01 30 3.0 0.7935 0.4208 0.1139 0.814
MQ -0.07 3.0 3.0 0.7902 0.3907 0.1121 0.821
MQ -0.08 3.0 30 0.7900 0.3861 0.1121 0.821¢
MQ -0.09 3.0 30 0.7900 0.3815 0.1121 0.821

9Roq and R, and A are in A; D is in keal/mol; the hydrogen charge gy is in electrons; Ag (defined by eq 14) is in kcal/mol; and cg is the
correlation defined by eq 16. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential function (sec Results) that
generated the dataset used in the fit.

best value of 4 and R, Tables II-1V contain the results of the
fits.

In the first iteration, three force-biased’? Metropolis®> Monte
Carlo simulations (1.8 X 105 MC steps each after equilibration)
were performed by using the parameters from the initial fits in

(32) Metropolis, M.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
H.; Teller, E. J. Chem. Phys. 1953, 21, 1087.
(33) Rao, M.; Pangali, C.; Berne, B. J. Mol. Phys. 1979, 37, 1773.

the LJQ, RRQ, and MQ forms. One hundred twenty configu-
rations were extracted from each of the simulations, and their
cooperative energies were calculated. These sets will be referred
to as LJQ, RRQ, and MQ. As the calculations of the cooperative
energies and the fitting procedure used the minimum image
convention (i.e., no cutoffs), while the Monte Carlo calculations
used a spherical cutoff, the calculation with the LJQ fit was
repeated under the minimum image convention (labeled LIQM)
to assess the possible effect of this inconsistency.
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TABLE V: Results of Simulations with the Effective Potentials Fitted to the Energies Only*
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data -E )4 Ch K R 8m1 a7 &Mz ~E* g
LIQ 13.18 -3969 13.1 6.3 2.80 3,70 5.50 1.30 13.04 0.79
LIQM 13.82 -5897 12.1 6.2 2.80 3.64 5.50 1.29 14.89 0.79
RRQ 14.30 3530 9.6 4.7 2,70 4.20 4,90 1.18 13.02 0.82
MQ 14.49 -3780 17.3 7.1 2.80 3.97 5.50 1.37 14.23 0.67
LIQ1 13.33 6530 11.5 6.7 2.80 4.15 5.30 1.67 13.36 0.78
RRQ! 16.06 ~3592 12.2 4.6 2.65 4.44 4.80 1.20 14.63 0.73
MQl 17.47 -3835 11.2 6.4 2.60 4,03 5.60 1.21 14.40 0.45

¢« B and E° are the calculated average internal energy and the calculated cooperative energy of 120 configurations generated by the new effective
potential in kcal/mol, respectively; p is the liquid pressure in atm; C*, is the configurational contribution to the constant-volume heat capacity; X is
the coordination number defined as the average number of neighbors within 3.3 A; rf;, and r;; are the locations of the first and second peaks in the
water~-water radial distribution function g(r), respectively; and cg is the correlation between E*f and E°. Data labels refer to the potential function

(see Results) that generated the dataset used in the fit.

In the second iteration, the three different functional forms were
again fitted to the various datasets. Three new simulations were
run, using the parameters fitted to the corresponding datasets.
As at this stage the optimal value of Roq seemed to differ more
from zero than at the initial stage, the optimal value was used.
The datasets generated in the second iteration are referred to as
LJQ1, RRQI, and MQL.

Tables IT1-1V also contain the results of the fits in the first and
second iterations. The simulations performed in the first and
second iterations are described in Table V for the LJQ, RRQ,
and MQ forms. The table gives the calculated energy, pressure,
the configurational contribution to the constant-volume heat ca-
pacity, the coordination number, and the locations and heights
of the first two peaks of the water—-water radial distribution
function g(r). “Waterlike” behavior requires a coordination
number between 4 and 5 as well as a weak second peak that is
located at about 1.4 times the first peak’s distance. The average
of the cooperatively calculated energies of the configurations
selected and its correlation with the effective potential energies
calculated during the simulation is also given to assess the con-
vergence of the potential generation process. The LIQM calcu-
lation using the minimum image convention instead of the spherical
cutoff showed no significant difference in the calculated structural
properties although the waters outside the cutoff spheres con-
tributed significantly to the energy and pressure—this is not
surprising since the cutoff radius used was relatively small (dictated
by the number of molecules).

Following the best fit parameters for the LJQ and RRQ forms
from the initial stage through the two iterations, the calculated
parameters show a tendency toward convergence although they
cannot be called converged yet when the Roq = 0 fits are com-
pared. (For the MQ form the three nonlinear parameters make
such comparison more difficult.)

Comparing the simulation resuits, the two MC simulations using
the LJQ form gave reasonably similar structural and energetic
results except that the pressures from the two simulations are very
different. The RRQ simulations show some drift toward lower
energy and shorter water-water distances but no drastic jump in
the pressure. Additionally, it gives the most waterlike structure
among the three in terms of coordination number and g(r) second
peak position. However, the first peak’s gosition is significantly
smaller than the experimental value, 2.8 A.* The MQ simulations
also show a drift toward lower energies, but the pressure and the
structural indicators show reasonable convergence. The significant
differences between the simulated liquids using the different
functional forms are also highlighted by the large differences in
the fitting parameters obtained for a given functional form from
the fits on the datasets of the simulations with the different
functional forms.

An unexpected result from the fitting procedure was the near
singularity of the linear equation system’s matrix. For the LJQ
form, the rows corresponding to the ¢ and to the ! terms were
close to being linearly dependent, indicating that the inclusion of
the 776 term is very nearly superfluous. For the RRQ form, the
rows corresponding to the O-O and O-H repulsions behaved

(34) Soper, A. K.; Philips, M. G. Chem. Phys. 1986, 107, 47.

similarly, giving rise to analogous conclusions.

Thus the results suggest that the proposed procedure is likely
to converge, even though it may take more than the two iterations
performed here. The energies are consistently fitted with ca. 1%
error, irrespective of the functional form used. The ranking of
the functional forms varied from iteration to iteration; thus, on
this basis no clear winner emerged. However, the deep sensitivity
of the calculated structure to the functional form chosen indicates
that fitting the energies only is insufficient.

The correlation between the energies calculated with the ef-
fective potential and the cooperative potential (calculated after
the MC run on the selected configurations) is consistently lower
than the corresponding correlations on the set of configurations
where the fitting was done (calculated during the fitting). This
indicates that the effective potential allows the simulation to sample
regions of the configuration space that differ significantly from
the regions sampled in the previous iteration, decreasing the
confidence in the result. This is true even for the L.JQ fits where
the cooperatively calculated energies are remarkably close to the
effective energies used to generate the configurations.

The apparent tendency of the simulation with a newly fitted
effective potential based on the cooperative energies alone to move
into newer regions of the configuration space may hold the clue
to the strong dependence of the simulated structure on the
functional form used since the energies of the “newer” configu-
rations are obtained essentially by extrapolation, which is clearly
more sensitive to the functional form. Inclusion of the virial sum
into the fitting thus can be expected to help “localize” the iteration
process since the virial sum, eq 8, depends on the derivatives of
the energy.

Results of Fitting the Cooperative Energies and Virial Sums.
The fitting of the energy and virial sum combination again started
from the original three sets of configurations. The weight factors
wg and wy were selected empirically in a two-step process. At
first

Wg = W’E/ (-Eﬂ) (23)
wy = w'y/max (IV‘n‘I’ Venﬁx - V;ﬁn (29)

was used with both w’g and w'y set to 1.0 in an attempt to factor
out the difference in magnitude between the energy and virial sum.
This consistently yielded much better correlations for the virial
sum than for the energies. It was found that raising wf to 5.0
yielded much better correlations for the energies without sig-
nificantly deteriorating the virial fit, and these w values were kept
for the subsequent fits. The fit indicators showed little change
once w’g was set above 5. For the combined dataset MT24B this
gave wg = 0.9465 and wy = 0.0535. The near singularity men-
tioned in the previous section showed up less frequently (only for
fits using near-zero Rog).

Following the pattern established at the calculations using the
energy fit only, two iterations were performed by using each of
the three functional forms. The resulting sets of configurations
were labeled LIQV, RRQV, and MQYV for the first iteration and
LJQVI1, RRQV1, and MQV1 in the second. In each iteration,
the optimal Roq value was established first for the LJQ and RRQ
forms (they consistently came out to be the same in any given
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TABLE VI: Results of Fitting Potentials of the Form LIQ to the Energies and Virial Sums®

data ROQ C?zo C?o [T} A Ap Cp Ay Cy
MT24B 0.21 827343 1914.73 0.49429 0.312 0.147 0.92 1.173 0.98*
LIQV -0.10 850960 2380.63 0.22474 0.515 0.167 0.59 2.572 0.56*
RRQV -0.10 731224 1471.03 0.36536 0.291 0.118 0.83 1.905 0.76
LIQVI -0.11 584771 1598.28 0.28754 0.704 0.328 0.50 10.91 0.09*
RRQVI -0.25 552379 873.017 0.34063 0.830 0.163 0.79 1.576 0.76

«C% and €29 are in kcal/(mol-A!2) and keal/(mol-A%), respectively; the hydrogen charge gy is in electrons; A, Ag, and Ay, defined by eqs 13-15,
are in keal/mol; cg and cy are the correlations defined by eqs 16 and 17; and Rqq is in A. An asterisk marks the fits chosen for new simulations.
Data labels refer to the potential function (see Results) that generated the dataset used in the fit.

TABLE VII: Results of Fitting Potentials of the Form RRQ to the Energies and Virial Sums®

data EoQ 61020 C%H qu A AE g AV Cy
MT24A 0.21 75266.0 1469.01 0.64751 0.364 0.208 0.85 0.208 0.98*
LIQvV 0.05 47975.3 1974.50 0.53227 0.582 0.157 0.68 2.956 0.53
RRQV -0.10 197498 1244.89 0.42733 0.218 0.096 0.89 1.406 0.86*
LIQV1 -0.10 -281127 6777.09 0.43401 0.687 0.306 0.57 10.76 0.23
RRQVi -0.10 127690 1239.79 0.42167 0.647 0.132 0.88 1.227 0.85*
RRQV2 -0.10 149200 1073.48 0.42090 0.645 0.115 0.78 1.532 0.76
RRQV2 0.00 135994 1103.67 0.47855 0.642 0.115 0.78 1.524 0.76
RRQV3 -0.10 138800 1118.65 0.41964 0.625 0.110 0.82 1.504 0.82
RRQV3 0.06 119351 1153.37 0.52001 0.613 0.127 0.75 1.478 0.82

4P and ¢! are in keal/(mol-A!?); the hydrogen charge gy is in electrons; A, Ag, and Ay, defined by eqs 13-15, are in kcal/mol; cg and ¢y are
the correlations defined by eqs 16 and 17; and Roq is in A. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential
function (see Results) that generated the dataset used in the fit.

TABLE VIII: Results of Fitting Potentials of the Form MQ to the Energies and Virial Sums®

data ROQ Req A D qu A AE Cg Ay Cy
MT24B 0.21 3.1 23 0.7408 0.5740 0.384 0.132 0.91 1.565 097
MT24B 0.21 31 2.1 1.0254 0.5436 0.342 0.113 0.93 1.401 0.98
MT24B 0.00 31 21 1.1099 0.3978 0.384 0.132 0.91 1.565 0.97
MT24B 0.00 3.1 20 1.3108 0.3794 0.304 0.111 0.94 1.227 0.98*
MQV 0.00 3.1 20 0.9048 0.3959 0.803 0.167 0.71 1.822 0.76
MQV -0.10 31 20 0.8281 0.3487 0.780 0.147 0.73 1.768 0.78*
MQV1 0.00 3.0 1.8 1.4143 0.3419 0.814 0.193 0.68 2.139 0.68
MQV1 -0.55 3.1 1.8 1.4062 0.1933 0.796 0.190 0.68 2.092 0.70
MQV! -0.55 31 1.7 1.7077 0.1722 0.792 0.201 0.63 2,073 0.69

?Roq» Reg, and A are in A; D is in keal/mol; the hydrogen charge gy is in electrons; A, Ag, and Ay, defined by egs 13-15, are in kcal/mol; and
cg and ¢y are the correlations defined by eqs 16 and 17. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential
function (see Results) that generated the dataset used in the fit.

TABLE IX: Results of Simulations with the Effective Potentials Fitted to the Energies and Virial Sums?

data ~Ee" e P K a &M e M2 -E° CE Ve Oy
LIQV 13.43 8.23 —4883 7.2 2.80 4,16 5.60 1.42 12.46 0.64 6.83
RRQV 15.45 4.16 -1811 44 2.65 5.12 4.45 1.33 12.53 0.48 ~-39.6
MQV 14,53 7.18 -4106 7.3 2.80 3.96 5.50 1.41 14.10 0.61 6.27
LIQV1 12.54 9.50 -5873 8.3 2.85 5.32 5.10 1.59 11.56 0.45 12.87 0.13
RRQV!1 14.44 1.01 535 4.5 2.65 4.26 4,75 1.17 14.56 0.79 -7.85 0.83
MQV1 14,82 0.00 -3552 6.9 2.70 31.57 5.40 1.32 14.09 0.69 13.31 0.61
RRQV2 14.95 3.90 -1614 4.5 2.65 4.47 4,75 1.21 14.42 0.82 4.39 0.77
2SD 0.1 240 0.4 0.1 0.2
RRQV3 14.86 341 -1243 4.6 2.65 447 4.75 1.17 14,30 0.78 14.59 0.83
2SD 0.1 533 0.04 0.05 0.01

o Bo and E° are the calculated average internal energy and the calculated cooperative energy of 120 configurations generated by the new effective
potential in kcal/mol, respectively; p is the liquid pressure in atm; V*T and J* are the calculated average virial sum and the calculated cooperative
virial sum of the 120 configurations generated by the new effective potential in kcal/mol, respectively; X is the coordination number defined as the
average number of neighbors within 3.3 A; rf;, and rf;; are the locations of the first and second peaks in the water-water radial distribution function
8(r), respectively; cg is the correlation between E*T and E¥; ¢y is the correlation between VT and F*; and 2SD is the 95% confidence interval estimated
from the Monte Carlo simulation block averages. Data labels refer to the potential function (see Results) that generated the dataset used in the fit.

iteration, although there is no guarantee for it in general). For
the MQ form, the other nonlinear parameters were optimized with
this Roq value, and Roq was reoptimized afterward. The salient
characteristics of the fits are collected in Tables VI-VIII, and
the simulation results are given in Table IX.

At the end of the second iteration, there were significant dif-
ferences in the performance of the three functional forms. The
best fit to the LIQV1 dataset showed a marked deterioration from
the previous iterations and was much worse than the other two.
Similarly, the MQ fit worsened after the second iteration and gave
significantly larger A values than the RRQ fit. On these grounds,

the LJQ and MQ forms were eliminated from further consider-
ations, and a third iteration was performed by using the RRQ
form (to establish the level of convergence). This simulation was
twice as long as the previous ones, and the resulting set of con-
figuration was analyzed in two halves, labeled RRQV2 and
RRQV3. These results are also shown in Table VII.
Comparison of the RRQV2 and RRQV3 results and their
calculated errors show the adequateness of the 1800K long runs.
Comparison of the RRQV2 and RRQV3 results with the previous
iterations shows that the coordination number, the location of the
first and second peak of g(r), the height of the second peak of
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the g(r), and the energy and virial correlations between the co-
operative and effective values converged. While the fluctuations
from iteration to iteration in the energy, pressure, and first peak
height of the g(r) are significantly larger then their error, the
RRQV2 and RRQV3 values are always between the first and
second iteration values. Furthermore, unlike the fits using the
energy only, the correlations between effective and cooperative
energies and virials calculated during the fit were close to the
corresponding correlations calculated on the newly generated
configuration set.

Comparison of the calculated liquid properties (based on the
final fit) with experiment shows that the basic water characteristics
are present: the coordination number is around 4, and the second
peak of the O-O radial distribution function is closer than the
double of the first peak distance (although not as close as it should
be) and is very small. However, the first peak of the O-O radial
distribution function is about 0.15 A closer than the experimental
value and is too high, the calculated energy is more negative than
the experimental (by 5 kcal/mol if quantum corrections are ne-
glected), and the pressure is somewhat off (by ca. 0.5 kcal/mol
in terms of pV). Altogether, these results are not too bad for a
water model that was developed essentially completely ab initio.

Conclusions

The calculations described demonstrate the difficulty of pro-
viding a robust pairwise approximation to a cooperative model
for water. Unless both the energies and the virial sums are fitted,
different functional forms yielding equally good fits can result
in simulated liquids that are qualitatively different. However,
when the virial sum was also included into the fitting procedure,
the functional forms under study showed significant differences,
allowing a meaningful choice of best fit. Also, the fit parameters
and the calculated liquid properties showed reasonable conver-
gence.

The study described here focused on the fitting aspect of the
problem. The fitting procedure was independent of the special
features of the cooperative potential used. Therefore, it is expected
that similar procedure would be applicable to different cooperative
models, including semiempirical or, ultimately, ab initio calcu-
lations.

The fit can also be analyzed for the significance of the difference
between the pairwise and cooperative energies. On the 120
configurations of the RRQV1 calculation the root mean square
between the cooperative and fitted energies was 0.132 kcal/mol,
and the largest deviation was 0.38 kcal/mol. As there were 125
molecules in the system, these values translate into a 1012 and 10%
correction factor, respectively, to the Boltzmann factor of the
configuration involved. Thus it is safe to conclude that the

The Journal of Physical Chemistry, Vol. 95, No. 18, 1991 7049

configurations sampled by the two different potentials would be
different. To quantify this difference, the energy changes resulted
from random molecular displacements were calculated with center
of mass displacement limited to 0.1 A and angular displacment
limited to 20°. It was found that with these displacements (av-
eraging 0.05 A and 10°) the average energy change is 1 kcal/mol.
Thus it is reasonable to conclude that the cooperative energies
can be reproduced by small perturbations of the configuration (well
under 0.1-A translational and 10° rotational displacement for each
molecule).
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Appendix. Efficient Calculation of the Pressure in the
Canonical Ensemble Monte Carlo for Inverse Power Central
Force Models

The pressure in the canonical ensemble is obtained as a function
of the virial sum V33!

P =kT(N-V/3kT) /v (A1)

where k is the Boltzmann factor, T is the absolute temperature,
v is the volume, and Vis the virial sum given by eq 8. In general,
calculation of the virial sum requires the calculation of the forces
on the particles, a nonnegligible amount of extra work (unless the
force-biased displacement scheme? is used where the forces are
also needed anyway), and is thus rarely done. However, if ¢;
depends only on |r,] (i.e., there is only one interaction center per
particle) and the interaction follows an inverse power law (or is
a sum of inverse power terms), then the contribution of particles
i and j to the virial sum can be obtained with negligible extra work,
since in this case eq 9 reduces to

®VIr™) = —xjr™ (A2)

Thus the calculation of the virial sum in this case requires only
the separate accumulation of the contributions to the total energy
from the various distance powers during the simulation and their
multiplication with the corresponding exponent x after the sim-
ulation.
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