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with decreasing values for the fraction of Mo4+ and Mo”. From 
a comparison of parts a and b of Figure 7 it appears that both 
Mo metal and MoZ+ are active for benzene hydrogenation. 

The onset of the catalytic activity for T = 600 OC coincides 
with significant formation of Mo2+. The abrupt increase in the 
activity for T = 700 OC can be related to the formation of Mo 
metal. The catalytic activity correlates reasonably well with 
variation in the abundance of Mo metal. Figure 6 also shows taht 
for comparable abundance of Mol+ and Mo metal (ca. 43% and 
48% for catalysts reduced at 660 and 800 OC, respectively) the 
catalyst containing Mo metal is ca. 5-fold more active. This 
indicates a higher intrinsic activity of Mo metal compared to that 
of Moz+. One must note, however, that because of the high 
intrinsic activity of Mo metal for benzene hydrogenation, one 
cannot rule out the possibility that the observed activity ascribed 
to Mo2+ is due to a small amount of Mo metal which cannot be 
detected by ESCA. 

The hydrogenation of benzene is a reaction typically catalyzed 
by This is, however, in variance with recent results 
obtained in this laboratory on reduced Mo/Ti02 catalystd6 which 

(37) Chappen, J.; Brenner, A. Presented at the 9th North American 

(38) Che, M.; Bennett, C. 0. Ada Card. 1989, 36, 114. 
(39) Martin, G. A,; Dalmon, J. A. J .  Carol. 1982, 73, 233. 
(40) Bassct, J.  M.; Dalmai-lmelik, G.; Primet, M.; Mutin, R. J .  Coral. 

(41) Moss, R. L.; Pope, D.; D a h ,  B. J.; Edwards, D. H. J .  Card 1979, 

(42) Fucnta, S.; Figucras, F. J .  Carol. 1980, 61, 443. 

Meeting of the Catalysis Society, 1985, Houston, TX. 

1975, 37, 22. 
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indicate that Md+ sites are more active for benzene hydrogenation 
than Mo metal. One possible interpretation of this finding pos- 
tulated in the aforementioned study16 is that the activity of Mo 
metal obtained on reduction of Mo/TiOz is inhibited by site 
blocking. The latter is caused by migration of reduced Ti moieties 
or impurities in the TiOz support on reduction. The results of 
the present study are consistent with this interpretation since, 
unlike TiOz, Al2O3 is more resistant to reduction and therefore 
less likely to affect the surface structure of the Mo metal obtained 
at high-temperature reduction. 

Conclusions 
An ESCA study of the distribution of Mo oxidation states in 

Mo/Alz03 catalysts reduced between 500 and 900 O C  indicates 
the formation of mixed oxidation states ranging from Mo6+ to 
Mo metal. For catalysts reduced between 800 and 900 OC, Mo 
metal was the major species formed. The average Mo oxidation 
states in reduced Mo/AIzO3 catalysts estimated from ESCA 
results correlated well with those determined from O2 consumption 
measurements. 

The comparison of benzene hydrogenation activity of reduced 
Mo/AlZO3 catalysts with the distribution with Mo oxidation states 
indicates that Mo metal and (to a lesser extent) Md+ are the only 
active centers for benzene hydrogenation. 
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This paper evinces the feasibility of obtaining an effective pairwise additive intermolecular potential for liquid water at mom 
temperature by fitting a pairwise additive function to the cooperatively calculated energies and virial sums of simulated liquid 
water configurations. The procedure requires iterative refinement of the fit. The importance of trying different functional 
forms has been demonstrated as well as the importance of including the virial sum into the fitting pnxxss. The cooperative 
energies and virial sums were calculated with the Campbell-Mezei model (derived from ab initio dimer energies) which includes 
a dipole polarization term. 

Introduction 
The description of the condensed phase of matter hinges upon 

an adequate representation of the intermolecular interactions. As 
the modeling of a condensed phase necessarily involves a large 
number of particles in a large number of configurations, the 
intermolecular energy has to be a simple exprmion of the particle 
coordinates. Such simple expressions may be obtained either by 
fitting an assumed functional form to (a neceaparily limited number 
of) experimental properties of the substance under study (empirical 
potentials) or by fitting the same function to ab initio calculations 
performed on selected configurations of pairs of molecules (ab 
initio potentials). 

The difficulty with the empirical potentials lies in the limited 
number of experimental data available and in particular in the 
hidden (or at least not well-known) correlations existing among 
them. For the ab initio potentials, the adequate sampling of the 

0022-3654191 /2095-7042S02.50/0 

configuration space and the multibody effects cause problems (vide 
infra). 

To avoid some of these difficulties, the present paper propom 
and tests a procedure that generates an effective pair potential 
(instead of an empirical potential, vide infra) using an ab initio 
route to represent condensed-phase interactions at a particular 
thermodynamic state. The procedure starts out from an initial 
approximation to the potential (to be obtained from the existing 
literature or generating one from existing potentials describing 
related substances and assuming the transferability of the pa- 
rameters) and generates a set of configurations (of the order of 
a few hundred) at that particular thermodynamic state. Next, 
the parameters of a pair potential are determined from fitting to 
the cooperatively calculated total energies and virial sums of a 
set of liquid configurations. These new parameters are next used 
to generate a new set of configurations. The procedure is iterated 
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until selfsonsistency. It is important to stress that, as is true for 
every effective pairwise potential, the parameters obtained would 
reflect the thermodynamic state(s) used for their derivation and 
their validity progressively worsens as one moves away from that 
state(s). 

The procedure proposed above was tested on room temperature 
liquid water (at its experimental density). The cooperative cal- 
culations were performed with the ab initio water model of 
Campbell and Mezei.' That model includes multibody effects 
through dipole polarizability and was shown to work well for 
various ice forms2 and was also able to reproduce3 the energy of 
the recently discovered low-energy trifurcated water dimer 
structure? The configurations used for the initial fitting were 
extracted from Monte Carlo simulations based on the ab initio 
MCY5 and the empirical TIP26 and TIP4P7 potentials. 

Background 
Classical statistical mechanical calculations required the energy 

E(XN> of the assembly of N particles with coordinates XN. For 
the calculation of E(XN) to be manageable, in general several 
approximations are made. In principle, the total energy E(XN) 
can be written as the sum of two-body, three-body, etc., terms: 

If one neglects all terms depending on more than two particles, 
then the total energy will be represented by a sum of pair energies. 
While the quantum mechanical calculation of these terms in a 
statistical mechanical computer simulation is still infeasible, the 
potential surface is usually amenable to a reasonable fit by a simple 
functional form. This approach has been pioneered by Clementi 
and his co-workers, who developed an extensive ab initio potential 
library for interactions between small  molecule^.^.^ For water- 
water interactions, the expansion has been carried out to include 
three-body and four-body terms as well.Io 

An alternative treatment of the inclusion of higher order terms 
is through the physical mechanism of polarization. Here the 
two-body terms are supplemented by an N-body term that is 
computed by determining the mutual polarization energy of the 
system (usually at the induced dipole level). The induced moments 
are computed in an iterative fashion in most cases: compute the 
moments induced by the permanent field; update the field with 
the effect of the newly induced moments; repeat until self-con- 
sistency. However, Campbell has shown1' that the induced dipoles 
can also be obtained directly by solving a system of equations-an 
approach that is particularly useful when the iteration scheme 
diverges. This formalism has been recently extended by Campbell 
and Mezei for higher order moments as we11.12 For Monte Carlo 
simulations this approach is very expensive since each step involves 
the move of only one molecule, but the cooperative energy cal- 
culations still have to involve all the others. In molecular dynamics, 
however, all molecules move at each time step and thus the ad- 
ditional work involved in calculating the cooperative contribution 
is manageable. For liquid water, the polarization approach has 
been pursued by Berendsen and Velde,I3 Campbell and Mezei,' 

(1) Campbell, E. S.; Mezei, M. J .  Chem. Phys. 1977, 67, 2338. 
(2) Campbell, E. S.; Mczci, M. Mol. Phys. 1980, 41, 883. 
(3) Mezei, M.; Dannenberg, J. J. J .  Phys. Chem. 1988,92, 5860. 
(4) Dannenberg, J. J. J .  Phys. Chem. 1988, 92,6869. 
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(6) Jornensen. W. L. J .  Chem. Phvs. 1982. 77. 4156. 
1351. 

(7) Jorbnsen,'W. L.; Chandrashckk, J.; Maduk, J. D.; Impcy. R.; Klein, 
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99. 5531. . .... 
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( I  1) Campbell, E. S. Helu. Phys. Acru 1%7, 40, 388. 
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ceedings; Centre Europben de calcul Atomiquc et Moltculain: Orsay, France, 
1972. 
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Stillinger and David,I4 Barnes et al.,I5 Stillinger, Weber, and 
David,I6 and Campbell and BelfordI7 and, more recently, by 
Lybrand and Kollman,I8 S rik and KIein,l9 Rullman and van 
Duijnen,m Ahlstrom et al.! and Kuwajima and Warshel.22 

Stillinger laid the theoretical foundations for an improved 
two-body potential by mapping the contributions of the higher 
order terms to two-body terms in an average fashionu by selecting 
an e'"(Xi,Xj) in such a way as to minimize the quantity 

N 

i<j 
(exp[-E(X9 /2kT] - e ~ p [ - C e ' ~ ( & X ~ )  /2kT] l2 dXN 

Such potentials are called effective pair potentials. Notice the 
presence of Tin  eq 2-the calculated parameters clearly would 
depend on them. 

Normally, the parameters of an effective pair potential are 
obtained from fitting to experimental properties of the liquid. The 
first such water model (BNS) was derived by Ben Naim and 
S t i l l i ~ ~ g e r , ~ ~  modified later (ST2) by Stillinger and R a h m a ~ ~ ~  
Subsequently, several new effective pair potentials (often called 
empirical potentials) were derived for water: TIP,% SPC," TIP2,6 
TIP4P: to mention the ones used most frequently. They yielded 
reasonably satisfactory results when used in computer simulations. 

However, a fundamental question still remains unanswered: 
How well is it possible to fit a pair potential to the full N-body 
energy? Comparison of the calculated liquid properties with the 
experimental data can, in principle, serve only as a source of 
possible negative answers since experimental data are relatively 
scarce and, more importantly, there may be (possibly hidden) 
correlations between them. With the development of a successful 
effective pairwise additive potential based on fitting to coopera- 
tively calculated energies and virial sums of liquid configurations, 
this question can also be addressed quantitatively. 

Calculations 
The calculation of the total energy and the virial sum of each 

configuration was performed with the Campbell-Mezei model. 
This model contains an electrostatic term based on the field defined 
by the water monomer wave function and cooperatively induced 
dipoles, atom-atom repulsion terms obtained from fitting to 
Hartree-Fock dimer energies, and an empirical dispersion term: 

E E p  + El + ED + ER (3) 

where EP is the pairwise additive part of the electrostatic inter- 
actions of the permanent multipole moments, calculated for each 
pair as the sum of interaction of multipoles of various order. Each 
multipole interaction of order m and n, respectively, is calculated 
in the Maxwell formalism for spherical harmonics in the form 

where the constants P; and p;) and vectors sf and $" are de- 

(14) Stillinger, F. H.; David, C. w. J .  Chem. Phys. 1978,69, 1473. 
( IS )  Barnes, P.; Finney, J. L.; Nicholas, J. D.; Quinn, J. E. Nurun 1979, 
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(19) Sprik, M.; Klein, M. L. J .  Chem. Phys. 1988,89, 7556. 
(20) Rullmann, J. A. C.; van Duijnen, P. Th. Mol. Phys. 1988,63,451. 
(21) Ahlstrom, P.; Wallqvist, A,; Engstrom, S.; Jonsson, E. Mol. Phys. 
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termined by the charge distribution.% The water charge density 
is split into atomic contributions: spherically symmetric terms 
on the hydrogen derived ftom the contributions of the basis 
functions centered on the hydrogens only and all other contri- 
butions are assigned to the oxygen, resulting in an exact sec- 
ond-order multipole representation of the densities on the hy- 
d r ~ g e n ~ ~  and by using tenth-order multipole expansion for the 
oxygen. 

The induced energy El is obtained from the field of the per- 
manent moments and the induced dipoles p; 

Mezei 

The calculation of induced dipoles used the polarizability values 
of Liebman and Moskowitz:30 9.79, 10.14, and 9.66 au along the 
HOH bisector, H-H line, and the normal of the molecular plane, 
respectively. The dispersion energy ED is obtained as the sum 
of I / #  terms: 

N 
ED = C p / ( p ) 6  (6) 

I<]  

and the repulsion energy ER is obtained as a sum of 1 / P  and 1 /rI2 
terms: 

where the indices p and q run through the water atoms. 
Several extensions were made for the purpose of the present 

study. First, the calculations are supplemented with the same 
simple cubic periodic boundary conditions that were used in the 
simulation generating these configurations. Second, the multipole 
expansion at the oxygen was further truncated as a function of 
the distance between the oxygen atoms, resulting in large savings 
of computer time with negligible effect on the calculated energies. 
Finally, the calculation of the virial sum has also been implemented 
as follows. The virial sum V was used in two forms:" 

N N 

I -  I i<j 
V = C(RrViE) = C ( r i ~ V ~ , )  (8) 

The contribution of the permanent electrostatic energy terms can 
be easily computed from the second form since it is already in 
a form suitable for the Maxwell formalism and only requires the 
application of the operator (r,,V) on each term calculated in the 
form of eq 5 .  Similarly, the virial contributions of a l / F  term 
(from ED or ER) are all in the form 

-x(Pfij)/lrijl"2 (9) 
where is the intermolecular vector between the two molecules 
containing centers i and j at rP An interesting implication of eq 
9 is discussed in the Appendix. The contributions of the induced 
energy E, were calculated by applying the first form of V, eq 8, 
to the expression:21 

N N 
VkEl -C[k(r(VkE'i)I - [5(C(frik) 

I -  I i= I 
i # k  

( w r d r l d 1 r d 2  - (wHk)rlk - ( w h k  - (ra.rik)cc,I(3)/Irik15 
(10) 

The calculated viral sum was verified in two ways: first, by 
comparing the calculated V of a dimer with the value calculated 
by using finite difference approximations for the partial derivatives 
in eq 8, obtained by calculating the energies Ep, E,, ED, and ER 
at systematically varied 4 ; second, by a generating two con- 

scaled up: 
formations of 125 waters w R ere the intermolecular distances were 

3- ( 1  + (11) 

(28) Mezei, M.; Campbell, E. S. J .  Compur. Phys. 1976, 20, 110. 
(29) Mezei, M.; Cam bell, E. S. Theor. Chlm. Aera 1977.13, 227. 
(30) Liebman, S. P.; Rolrkowitz, J. W. J .  Chem. Phys. 1971, 51. 3622. 
(31) Barker, J .  A.; Henderson, D. Rev. Mod. Phys. 1976,18, 587. 

and using a finite difference approximation to the relation 
aE/aX = v -  AE/AX (12) 

to be compared with the value of V calculated from eq 8. 
Once the cooperative energies of the selected configurations 

were calculated, the parameters of the effective pair potential were 
determined by minimizing the expression 

A* = wEAE2 + wvAv2 (13) 
where 

N 

k I<]  
~~2 = I ? [ v z ( x N )  - c ~ o ~ ~ c x ~ , x ~ ) I ~ I / ~  (15) 

Here the summation over k represents the summing over the n 
data points (configurations), E ; ( X N )  and Y(X9 are the coop 
eratively calculated energy and viral sum, respectively, in the kth 
configuration, and e"ff(X,,Xj) and YN(XI,X,) are the pairwise 
contributions to the energy and virial sum, respectively. They 
contain the potential parameters to be determined by the fitting 
procedure. The minizption leads to a system of linear equations 
as long as the potential parameters are linear. The right-hand 
side of eq 15 is a variant of the Stillinger equation, eq 2. The 
exponential is not present explicitly, but since the configurations 
were selected from a simulation with a waterlike potential, it is 
included implicitly to a good approximation. 

The quality of the fit can be corlveniently characterized by the 
root mean square deviations A (a perfect fit would give zero), AE, 
and Av as well as the correlation coefficients 

CE = ((p - (p))(p" - (p")))/ 
[((E - (W)2)((pN - (p"))2)11/2 (16) 

[((F - (V))2)((p" - (pN))2)11/2 (17) 

between the cooperatively calculated energies Ec and virial sums 
P considered to be "exact" and the fitted energies Ee" and virial 
sums Pff, respectively. A "good" fit would give not only a small 
A but also large (Le., approaching 1) correlation coefficients. Note 
that the parameters that minimize A are in general different from 
the ones that would maximize the analogous combination of the 
correlation coefficients. The adequateness of the new potential, 
however, can only be determined by applying the new potential 
in simulation although it is possible that after repeated application 
of the fitting procedure described here on different systems it will 
be possible to establish acceptability threshold values for the As 
and correlation coefficients. 

Three potential types were tried in the fitting procedure: the 
Lennard-Jones plus electrostatic (LJQ) 

CY = ((F - (F)Wff - (")/ 

@"(X$j) m/R& - p/& + E,(qH,rOQ) (18) 

a potential containing oxygen-oxygen and oxygen-hydrogen re- 
pulsion plus electrostatic (RRQ) terms 

@"(xiJj) = m/R& + Ee?/R#H + E,(qH,'Oq) (19) 

(the summation is over all four 0-H distances), and the Morse 
plus electrostatic (MQ) form 

e'"(X,J,) = D exp[-2A(Rm - R,)] - 
2 0  exp[-A(RW - R,)1 + E,(qH,%Q) (20) 

In eqs 18-20 the electrostatic term E, is calculated between 
qH electron charges placed on the hydrogens and the -2qH charge 
placed on a center placed on the HOH bisector at rw-A distance 
from the oxygen atom. The subscripts 0, H, and Q refer to the 
interaction site oxygen, hydrogen, and charge center, respective1 . 

The total energy expressions using eqs 18-20 are linear in C$, e, e'', D, and qH2 and nonlinear in R R,, and A. In 
general, when there are p linear parameters 3, i = 1, .,., p), the 
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the energy terms represented by the alk(s. 
For the determination of the optimal values of the nonlinear 

parameters ideally one would use a nonlinear minimizer search 
procedure, with gradients calculated from straightforward dif- 
ferentiation of eqs 18-20. However, as the likely range of Rq 
and Roq is rather limited, a simple grid search was chosen here. 
This strategy was justified a posteriori by the relative insensitivity 
of A to the nonlinear parameters in eqs 18-20. 

The fitting procedure started from configurations selected from 
the history of Monte Carlo simulations of 125 water molecules 
under simple cubic periodic boundary conditions with a 7.75-A 
spherical cutoff at room temperature using the MCY? TIP2,6 and 
TIP4P’ potentials. Data characterizing these runs are given in 
Table I. 

Results 
Results of Fitting the Cooperative Energies Only. In the first 

series of calculations wv = 0 was used; i.e., only the energy was 
fitted. The initial fittings were performed with the W Q  and RRQ 
forms and for different ws. As the TIP2 and TIP4P potentials 
used 0.15 A and the MCY potential 0.268 A, it was expected that 
similar values will give the best fit. However, the cooperative 
energies were best fitted by & values around 0. Tables I1 and 
I11 give the results of the fits using the three different sets of 
configurations individually as well as their combinations with & 
= 0.1 5 and 0.0 A and with the best (within 0.005 A) Rw value. 
The combinations of the configuration sets were prepared in two 
ways: in the first version all configurations were used, and in the 
second version the MCY set was reduced by taking only every 
third of the 229 configurations. The two combinations were 
labeled MT24A and MT24B in the tables, respectively. The fits 
on these two sets were very similar, indicating that the number 
of configurations sampled was adequate. 

As the different sets of configurations gave different but close 
to zero Roq values and the quality of the fit was not much affected 
by small changes in Roq, it was set to zero. The small value found 
optimal for RW can be understood by remembering that the 
charge distribution used to develop the Campbell-Mezei model 
has a higher dipole moment than the experimental value. For 
the MQ form, additional optimization was performed to get the 

TABLE 1: Cbancteriution of the Monte Carlo Runs Used for the 

MCY TIPS2 TIP4P 
Initial Fitti.01. 

no. of MC steps 3.4 x lo6 lo6 1.2 x lo6 
no. of configurations extracted 229 68 80 

max pairwise energy -8.262 -9.573 -9.485 

av pairwise energy -8.679 -9.882 -10.053 
min pairwise energy -9.035 -10.106 -10.566 

av cooperative energy -12.053 -12.535 -12.564 
min cooperative energy -12.229 -12.363 -13.252 
max cooperative energy -1 1.572 -12.055 -12.456 
correlation between the 0.690 0.769 0.538 

pairwise and cooperative 
energies 

av pairwise virial sum 1.504 
min pairwise virial sum -0.958 
max pairwise virial sum 4.359 
av cooperative virial sum 12.27 1 7.025 -0.434 
min cooperative virial sum 1.582 3.177 -6.936 
max cooperative virial sum 16.31 1 10.988 5.621 
correlation between the 0.752 

pairwise and cooperative 
energies 
Energies are in kcal/mol. 

approximating energy expression for the kth configuration can 
be written in the condensed form 

where (Ilk depend on the coordinates of the atoms in the kth 
configuration and the assumed values of the nonlinear parameters. 
A of eq 13 is minimized when the C,‘s are the solution of the system 
of linear equations 

?wE@jk  + W V W j k  0’ 1, .-*, p )  (22) 
k= I 

Here the b,is are the virial sum contributions corresponding to 

TABLE 11: R d t s  of the Fitting Potentiab of tbe Form U Q  to tbe Total Energy Only’ 
data RQQ e @ 0 € 4H AE CE 

MCY 0.15 722586 1438.89 2.82 0.7 16 0.4963 1 0.0779 0.857 
MCY 0.00 676321 1250.09 2.85 0.578 0.41 897 0.0674 0.896 
MCY -0.01 672834 1246.44 2.85 0.577 0.41370 0.0674 0.896 
TIPS2 0.15 866549 1 130.90 3.03 0.369 0.56152 0.0973 0.867 
TIPS2 0.00 807343 1065.36 3.02 0.351 0.45348 0.0755 0.923 
TIPS2 -0.02 793626 1080.40 3.00 0.367 0.43896 0.0750 0.924 
TIP4P 0.15 802151 1484.98 2.85 0.687 0.50566 0.1017 0.772 
TIP4P 0.00 8 18939 1421.44 2.88 0.6 14 0.42033 0.0849 0.852 
TIP4P -0.09 809752 1485.24 2.86 0.68 1 0.37010 0.0823 0.862 
MT24A 0.15 777694 1364.73 2.88 0.599 0.5 165 1 0.0886 0.95 1 
MT24A 0.00 78 1596 1600.13 2.8 1 0.819 0.39485 0.08 14 0.959 
MT24A 0.05 789032 1525.34 2.83 0.737 0.431 14 0.0808 0.960 
MT24B 0.15 792864 1311.14 2.9 1 0.542 0.52629 0.0945 0.944 
MT24B 0.00 780623 1574.3 1 2.8 1 0.794 0.39743 0.0869 0.952’ 
MT24B 0.04 789597 1508.80 2.84 0.721 0.42764 0.0863 0.953 

0.00 702 162 1489.46 2.79 0.790 0.39246 0.1084 0.845 
-0.1 1 705524 1493.93 2.79 0.791 0.34087 0. IO62 0.851 * 

LJQ 

0.00 307997 889.01 2.65 0.647 0.40843 0.1041 0.733 
LJQ 

-0.16 334032 940.13 2.66 0.661 0.33720 0.0991 0.759 
RRQ 

0.00 73235 I 1612.90 2.77 0.888 0.38334 0.1220 0.791 
RRQ 
MQ 
MQ -0.09 724013 1609.75 2.77 0.895 0.34183 0.1198 0.798 
LJQl 0.00 730650 1222.74 2.90 0.512 0.43851 0.1096 0.830 
LJQl -0.05 727782 1222.53 2.90 0.513 0.40891 0.1O90 0.833 
RRQl 0.00 508519 1735.52 2.58 1.481 0.35001 0.1049 0.693 
RRQl -0.25 494728 1446.63 2.64 1.058 0.28118 0.0981 0.739 

0.00 61 3696 1394.35 2.76 0.792 0.38271 0.1668 0.516 
-0.07 605868 1370.49 2.76 0.775 0.35080 0.1658 0.523 

MQ I 
MQ 1 

‘e and @ are in kcal/(moCAI2) and kcal/(molA6), respectively; u and c are the Lennard-Jones parameters equivalent to and @, the 
hydrogen charge 4~ is in electrons; be (defined by eq 14) is in kcal/mol; cE is the correlation defined by eq 16; and Rw is in A. An asterisk marks 
the fits chosen for new simulations. Data labels refer to the potential function (see Results) that generated the dataset used in the fit. 
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TABLE 111: Results of Fitting Potcatial of the Form RRQ to the Total Energy Only 
data ROQ cpp e," qH Ae CE 

MCY 0.15 100933 7248.82 0.63155 0.0656 0.91 1 
MCY 0.00 132228 3 178.85 0.50905 0.0504 0.950 
MCY 0.00 132228 3178.85 0.50905 0.0504 0.950 
TIPS2 0.15 205228 4883.23 0.635 1 1 0.0955 0.900 
TIPS2 0.00 4422.69 3 180.10 0.49498 0.0631 0.950 
TIPS2 -0.02 464.06 1 3032.98 0.48789 0.0628 0.950 
TIP4P 0.15 109400 4691.63 0.61 803 0.1085 0.785 
TIP4P 0.00 70172.1 2616.59 0.49497 0.0849 0.855 
TIP4P 0.00 70172.1 2616.59 0.49497 0.0849 0.855 
MT24A 0.15 366095 2900.09 0.63846 0.1040 0.936 
MT24A 0.00 114361 2612.40 0.50077 0.0658 0.974 
MT24A -0.02 91305.3 2486.98 0.48671 0.0655 0.975 
MT24B 0.15 382010 2858.24 0.64062 0.1096 0.928 
MT24B 0.00 791 54.6 2678.55 0.49722 0.0722 0.968* 
MT24B -0.01 65993.2 2615.69 0.48997 0.0721 0.969 

0.00 -828 19 3405.12 0.49123 0.0946 0.876 
-0.01 -75573 3188.28 0.48469 0.0946 0.876 
0.00 75 143.5 2778.64 0.49324 0.0727 0.883 

-0.08 108038 1708.73 0.45069 0.0708 0.889, 
0.00 -80224 2371.81 0.48544 0.1078 0.838 

-0.04 -78279 1877.91 0.45957 0.1071 0.841 
LJQl 0.00 45 136.9 2624.55 0.50373 0.1025 0.848 
LJQl -0.07 80893.7 1659.37 0.45955 0.1008 0.854 
RRQl 0.00 73114.4 221 2.1 7 0.49289 0.0894 0.789 
RRQl -0.04 95002.7 1675.70 0.46704 0.0887 0.793 

0.00 82176.7 817.25 0.46023 0.1657 0.569 
0.02 68562.4 964.67 0.47798 0.1655 0.569 

LJQ 
LJQ 
RRQ 
RRQ 
MQ 
MQ 

MQ 1 
MQ 1 

am and e," are in kcal/(mol.A1*); the hydrogen charge qH is in electrons; Ae (defined by eq 14) is in kcal/mol; ce is the correlation defined by 
eq 16; and flop is in A. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential function (see Results) that generated 
the dataset used in the fit. 

TABLE IV: R d b  of Fitting Potential8 of the Form MQ to the TOW Energy Onlya 

data ROQ R, A D qH L E  Ce 

MT24B 0.15 3.1 2.1 1.0788 0.4435 0.0975 0.942 
MT24B 0.05 3.1 2.1 1.0873 0.4254 0.0886 0.951 
MT24B 0.04 3.1 2.1 1.0897 0.4196 0.0886 0.95 1 
MT24B 0.03 3.1 2.1 1.0919 0.4141 0.0886 0.951 
MT24B 0.02 3.1 2.1 1.0958 0.4086 0.0890 0.950 
MT24B 0.00 3.1 2.0 1.1557 0.3879 0.0907 0.948' 
MT24B 0.00 3.1 2.2 1.0327 0.4079 0.0897 0.950 
MT24B 0.00 3.0 2.1 1.0561 0.3581 0.097 1 0.94 I 
MT24B 0.00 3.2 2.1 0.7588 0.4319 0.0924 0.949 
MT24B 0.00 3.2 2.2 0.6889 0.4409 0.0961 0.948 
MT24B 0.00 3.2 2.0 0.8283 0.4218 0.0902 0.950 
MT24B 0.00 3.0 2.2 1.5236 0.3670 0.0902 0.950 
MT24B 0.00 3.0 2.0 1.5856 0.3492 0.101 1 0.936 

-0.05 2.9 2.9 1.3279 0.3561 0.1242 0.782 
-0.05 3.0 2.9 0.8551 0.3947 0.1125 0.819 
-0.05 3.1 2.9 0.4584 0.4281 0.1210 0.788 
-0.05 2.9 3.0 1.2917 0.3607 0.1221 0.790 
-0.05 3.0 3.0 0.7908 0.4003 0.1 I23 0.820 
-0.05 3.1 3.0 0.4075 0.43 16 0.1219 0.786 
-0.05 2.9 3.1 1.2505 0.3654 0.1203 0.796 
-0.05 3.0 3.1 0.7280 0.4053 0.1126 0.819 
-0.05 3.1 3.1 0.3618 0.4346 0.1229 0.783 
-0.01 3.0 3.0 0.7935 0.4208 0.1139 0.8 14 
-0.07 3.0 3.0 0.7902 0.3907 0.1121 0.821 
-0.08 3 .O 3.0 0.7900 0.3861 0.1121 0.821 
-0.09 3.0 3.0 0.7900 0.3815 0.1 121 0.821 

aRw.and R,, and A are in A; D is in kcal/mol; the hydrogen charge qH is in electrons; Ae (defined by q 14) is in kcal/mol; and Cg is the 
correlation defined by q 16. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential function (see Results) that 
generated the dataset used in the fit. 

best value of A and R,. Tables 11-IV contain the results of the the LJQ, RRQ, and MQ forms. One hundred twenty configu- 
fits. rations were extracted from each of the simulations, and their 

In the first iteration, three force-bia~ed'~ Metropolis3' Monte cooperative energies were calculated. These sets will be referred 
Carlo simulations (1.8 X 106 MC steps each after equilibration) to as LJQ, RRQ, and MQ. As the calculations of the cooperative 
were Derformed by usinn the Darameters from the initial fits in energies and the fitting Drocedure used the minimum imane 

MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 
MQ 

- .  
convention (Le., no cutafi), while the Monte Carlo calculati6s 

- L I ~ ~ . L  I. . , . - . a * . -  I used a sDherical cutoff. the calculation with the LJO fit was (32) Metropolis, M.; Rosenbluth, A. W.; Rosenoiurn, M.  N.; iciicr, A. 
H.: Teller. E. J .  Chcm. Phvs. 1953. 21. 1087. repeated'under the minimum image convention (labeleu? LJQM) 

(33) Rao. M.; Pangali, C.; Bern;, B. J. Mol. Phys. 1979, 37, 1773. to assess the possible effect of this inconsistency. 
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TABLE V R d t a  of Sipulrtiole witla tbe Effective Potentid6 Fitted to tbe Ewreicp O W  

data -E" P c; K 41 ghfl 4 2  gh(2 -F CE 
LJO 13.18 -3969 13.1 6.3 2.80 3.70 5.50 1.30 13.04 0.79 
LJQM 13.82 -5897 12.1 6.2 2.80 3.64 5.50 1.29 14.89 0.79 

14.30 3530 9.6 4.7 2.70 4.20 4.90 1.18 13.02 0.82 
14.49 -3780 17.3 7.1 2.80 3.97 5.50 1.37 14.23 0.67 

RRQ 
MQ 
LJQl 13.33 6530 11.5 6.7 2.80 4.15 5.30 1.67 13.36 0.78 
RRQ I 16.06 -3592 12.2 4.6 2.65 4.44 4.80 1.20 14.63 0.73 
MQ1 17.47 -3835 11.2 6.4 2.60 4.03 5.60 1.21 14.40 0.45 

'E" and F are the calculated average internal energy and the calculated cooperative energy of 120 configurations generated by the new effective 
potential in kcal/mol, respectively; p is the liquid pressure in atm; C; is the configurational contribution to the constant-volume heat capacity; K is 
the coordination number defined as the average number of neighbors within 3.3 A; 4, and h2 are the locations of the first and second peaks in the 
water-water radial distribution function g(r), respectively; and cE is the correlation between ,V and F. Data labels refer to the potential function 
(see Rcsults) that generated the dataset used in the fit. 

In the second iteration, the three different functional forms were 
again fitted to the various datasets. Three new simulations were 
run, using the parameters fitted to the corresponding datasets. 
As at this stage the optimal value of Rw seemed to differ more 
from zero than at the initial stage, the optimal value was used. 
The datasets generated in the second iteration are referred to as 
LJQ1, RRQl, and MQ1. 

Tables 11-IV also contain the results of the fits in the first and 
second iterations. The simulations performed in the first and 
second iterations are described in Table V for the LJQ, RRQ, 
and MQ forms. The table gives the calculated energy, pressure, 
the configurational contribution to the constant-volume heat ca- 
pacity, the coordination number, and the locations and heights 
of the first two peaks of the water-water radial distribution 
function g(r). "Waterlike" behavior requires a coordination 
number between 4 and 5 as well as a weak second peak that is 
located at about 1.4 times the first peak's distance. The average 
of the cooperatively calculated energies of the configurations 
selected and its correlation with the effective potential energies 
calculated during the simulation is also given to assess the con- 
vergence of the potential generation process. The LJQM calcu- 
lation using the minimum image convention instead of the spherical 
cutoff showed no significant difference in the calculated structural 
properties although the waters outside the cutoff spheres con- 
tributed significantly to the energy and pressure-this is not 
surprising since the cutoff radius used was relatively small (dictated 
by the number of molecules). 

Following the best fit parameters for the LJQ and RRQ forms 
from the initial stage through the two iterations, the calculated 
parameters show a tendency toward convergence although they 
cannot be called converged yet when the Rw = 0 fits are com- 
pared. (For the MQ form the three nonlinear parameters make 
such comparison more difficult.) 

Comparing the simulation results, the two MC simulations using 
the LJQ form gave reasonably similar structural and energetic 
results except that the pressures from the two simulations are very 
different. The RRQ simulations show some drift toward lower 
energy and shorter water-water distances but no drastic jump in 
the pressure. Additionally, it gives the most waterlike structure 
among the three in terms of coordination number and g(r) second 
peak position. However, the first peak's psition is significantly 
smaller than the experimental value, 2.8 A. The MQ simulations 
also show a drift toward lower energies, but the pressure and the 
structural indicators show reasonable convergence. The significant 
differences between the simulated liquids using the different 
functional forms are also highlighted by the large differences in 
the fitting parameters obtained for a given functional form from 
the fits on the datasets of the simulations with the different 
functional forms. 

An unexpected result from the fitting procedure was the near 
singularity of the linear equation system's matrix. For the LJQ 
form, the rows corresponding to the P and to the f1 terms were 
close to being linearly dependent, indicating that the inclusion of 
the P term is very nearly superfluous. For the RRQ form, the 
rows corresponding to the 0-0 and 0-H repulsions behaved 

(34) Soper, A. K.; Philip, M. 0. Chrm. fhys. 1986, 107.47. 

similarly, giving rise to analogous conclusions. 
Thus the results suggest that the proposed procedure is likely 

to converge, even though it may take more than the two iterations 
performed here. The energies are consistently fitted with ca. 1% 
error, irrespective of the functional form used. The ranking of 
the functional forms varied from iteration to iteration; thus, on 
this basis no clear winner emerged. However, the deep sensitivity 
of the calculated structure to the functional form chosen indicates 
that fitting the energies only is insufficient. 

The correlation between the energies calculated with the ef- 
fective potential and the cooperative potential (calculated after 
the MC run on the selected configurations) is consistently lower 
than the corresponding correlations on the set of configurations 
where the fitting was done (calculated during the fitting). This 
indicates that the effective potential allows the simulation to sample 
regions of the configuration space that differ significantly from 
the regions sampled in the previous iteration, decreasing the 
confidence in the result. This is true even for the LJQ fits where 
the cooperatively calculated energies are remarkably close to the 
effective energies used to generate the configurations. 

The apparent tendency of the simulation with a newly fitted 
effective potential based on the cooperative energies alone to move 
into newer regions of the configuration space may hold the clue 
to the strong dependence of the simulated structure on the 
functional form used since the energies of the "newer" configu- 
rations are obtained essentially by extrapolation, which is clearly 
more sensitive to the functional form. Inclusion of the virial sum 
into the fitting thus can be expected to help "localize" the iteration 
process since the virial sum, eq 8, depends on the derivatives of 
the energy. 

Results of Fitting the Cooperative Energies and Virirl Sums. 
The fitting of the energy and virial sum combination again started 
from the original three sets of configurations. The weight factors 
wE and wv were selected empirically in a two-step process. At 
first 

was used with both and w$ set to 1 .O in an attempt to factor 
out the difference in magnitude between the energy and virial sum. 
This consistently yielded much better correlations for the virial 
sum than for the energies. It was found that raising w ' ~  to 5.0 
yielded much better correlations for the energies without sig- 
nificantly deteriorating the virial fit, and these w values were kept 
for the subsequent fits. The fit indicators showed little change 
once wtE was set above 5 .  For the combined dataset MT24B this 
gave wE = 0.9465 and wv = 0.0535. The near singularity men- 
tioned in the previous section showed up less frequently (only for 
fits using near-zero Rw). 

Following the pattern established at the calculations using the 
energy fit only, two iterations were performed by using each of 
the three functional forms. The resulting sets of configurations 
were labeled LJQV, RRQV, and MQV for the first iteration and 
LJQV1, RRQVI, and MQVl in the second. In each iteration, 
the optimal value was established first for the LJQ and RRQ 
forms (they consistently came out to be the same in any given 
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TABLE VI: R d t s  01 Fitting Potentials 01 the Form UQ to the Energies md Vihl  Sumsg 
data RM e e qn A AP CP Av cv 

MT24B 0.21 827343 1914.73 0.49429 0.312 0.147 0.92 1.173 0.98* 
LJQV -0.10 850960 2380.63 0.22474 0.515 0.167 0.59 2.572 0.56' 
RRQV -0.10 731224 1471.03 0.36536 0.291 0.118 0.83 1.905 0.76 
LJQVI -0.1 1 584777 1598.28 0.28754 0.704 0.328 0.50 10.91 0.09. 
RRQV 1 -0.25 552379 873.017 0.34063 0.830 0.163 0.79 1.576 0.76 
and @ are in kcal/(mol.A12) and kcal/(mobA6), respectively; the hydrogen charge qH is in electrons; A, AE, and Av, defined by eqs 13-15, 

are in kcal/mol; cE and cy are the correlations defined by eqs 16 and 17; and Rw is in A. An asterisk marks the fits chosen for new simulations. 
Data labels refer to the potential function (see Results) that generated the dataset used in the fit. 

TABLE VII: R d t a  01 Fitting Potentials 01 the Form RRQ to the Eneq#es and V i h l  Sumsa 

data Ew e cpz" qH A AI3 Ce AV CV 

MT24A 0.2 1 75266.0 1469.01 0.64751 0.364 0.208 0.85 0.208 0.98. 
LJQV 0.05 47975.3 1974.50 0.53227 0.582 0.157 0.68 2.956 0.53 
RRQV -0.10 197498 1244.89 0.42733 0.2 18 0.096 0.89 1.406 0.86* 
LJQVI -0.10 -281 I27 67 7 7.09 0.43401 0.687 0.306 0.57 10.76 0.23 
RRQVI -0.10 127690 1239.79 0.42167 0.647 0.132 0.88 1.227 0.85' 
RRQV2 -0.10 149200 1073.48 0.42090 0.645 0.115 0.78 1.532 0.76 
RRQV2 0.00 135994 1103.67 0.47855 0.642 0.115 0.78 1.524 0.76 
RRQV3 -0.10 138800 11 18.65 0.41964 0.625 0.110 0.82 1 SO4 0.82 
RRQV3 0.06 1 I9351 1 153.37 0.52001 0.613 0.127 0.75 1.478 0.82 

a @  and cy? are in kcal/(mol.A12); the hydrogen charge qH is in electrons; A, AE, and Av, defined by eqs 13-15, are in kcal/mol; cE and cy are 
the correlations defined by eqs 16 and 17; and Roq is in A. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential 
function (see Results) that generated the dataset used in the fit. 

TABLE VIII: Results 01 Fittim Potentials 01 the Form MO to the Eaerniea and V i h l  Suma 
data Roq R,  A D qH A Ae CE A V  CV 

MT24B 0.21 3.1 2.3 0.7408 0.5740 0.384 0.132 0.91 1.565 0.97 
MT24B 
MT24B 
MT24B 
MQV 
MQV 
MQV 1 
MQVl 
MQV 1 

0.21 3.1 2.1 
0.00 3.1 2.1 
0.00 3.1 2.0 
0.00 3.1 2.0 

-0.10 3.1 2.0 
0.00 3.0 1.8 

-0.55 3.1 1.8 
-0.55 3.1 1.7 

1.0254 
1.1099 
1.3108 
0.9048 
0.8281 
1.4143 
1.4062 
1.7077 

0.5436 
0.3978 
0.3794 
0.3959 
0.3487 
0.3419 
0.1933 
0.1722 

0.342 
0.384 
0.304 
0.803 
0.780 
0.8 14 
0.196 
0.792 

0.113 0.93 
0.132 0.91 
0.1 11 0.94 
0.167 0.71 
0.147 0.73 
0.193 0.68 
0.190 0.68 
0.201 0.63 

1.401 0.98 
1.565 0.97 
1.227 0.98* 
1.822 0.76 
1.768 0.78' 
2.139 0.68 
2.092 0.70 
2.073 0.69 

'Rw, Re,, and A are in A; D is in kcal/mol; the hydrogen charge qH is in electrons; A, AE. and Av, defined by eqs 13-15, are in kcal/mol; and 
ce and cy are the correlations defined by eqs 16 and 17. An asterisk marks the fits chosen for new simulations. Data labels refer to the potential 
function (see Results) that generated the dataset used in the fit. 

TABLE I X  Results 01 Simulrtiow with the Effective Potentials Fitted to tbe Energiea and Virial Sums" 

data -Pfl Pfl P K 41 gu1 r k z  gu2 -EE c!3 P CV 

LJOV 13.43 8.23 -4883 7.2 2.80 4.16 5.60 1.42 12.46 0.64 6.83 
RRQV 
MQV 
LJQV 1 
RRQV 1 
MQV 1 
RRQV2 
2SD 
RRQV3 
2SD 

15.45 4.16 
14.53 7.18 
12.54 9.50 
14.44 1.01 
14.82 0.00 
14.95 3.90 
0.1 

14.86 3.41 
0.1 

-1811 
-4 1 06 
-5873 

535 
-3552 
-1614 

240 
-1243 

533 

4.4 2.65 5.12 4.45 1.33 12.53 0.48 -39.6 
7.3 2.80 3.96 5.50 1.41 14.10 0.61 6.27 
8.3 2.85 5.32 5.10 1.59 11.56 0.45 12.87 0.13 
4.5 2.65 4.26 4.75 1.17 14.56 0.79 -7.85 0.83 
6.9 2.70 3.51 5.40 1.32 14.09 0.69 13.31 0.61 
4.5 2.65 4.41 4.15 1.21 14.42 0.82 4.39 0.77 
0.4 0.1 0.2 
4.6 2.65 4.47 4.75 1.17 14.30 0.78 14.59 0.83 
0.04 0.05 0.01 

aFff and EE are the calculated average internal energy and the calculated cooperative energy of I20 configurations generated by the new effective 
potential in kcal/mol, respectively; p is the liquid pressure in atm; Pfl and P are the calculated average virial sum and the calculated cooperative 
virial sum of the 120 configurations generated by the new effective potential in kcal/mol, respectively; K is the coordination number defined as the 
average number of neighbors within 3.3 A; 4, and 4, are the locations of the first and second peaks in the water-water radial distribution function 
g(r), respectively; Ce is the correlation between ,@and EE; cv is the correlation between and t? and 2SD is the 95% confidence interval estimated 
from the Monte Carlo simulation block averages. Data labels refer to the potential function (see Results) that generated the dataset used in the fit. 

iteration, although there is no guarantee for it in general). For 
the MQ form, the other nonlinear parameters were optimized with 
this Rw value, and Rw was reoptimized afterward. The salient 
characteristics of the fits are collected in Tables VI-VIII, and 
the simulation results are given in Table IX. 

At the end of the second iteration, there were significant dif- 
ferences in the performance of the three functional forms. The 
best fit to the LJQVl dataset showed a marked deterioration from 
the previous iterations and was much worse than the other two. 
Similarly, the MQ fit worsened after the second iteration and gave 
significantly larger A values than the RRQ fit. On these grounds, 

the LJQ and MQ forms were eliminated from further consider- 
ations, and a third iteration was performed by using the RRQ 
form (to establish the level of convergence). This simulation was 
twice as long as the previous ones, and the resulting set of con- 
figuration was analyzed in two halves, labeled RRQV2 and 
RRQV3. These results are also shown in Table VII. 

Comparison of the RRQVS and RRQV3 results and their 
calculated errors show the adequateness of the 1800K long runs. 
Comparison of the RRQVS and RRQV3 results with the previous 
iterations shows that the coordination number, the location of the 
first and second peak of g(r), the height of the second peak of 
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the g(r), and the energy and virial correlations between the co- 
operative and effective values converged. While the fluctuations 
from iteration to iteration in the energy, pressure, and first peak 
height of the g(r) are significantly larger then their error, the 
RRQV2 and RRQV3 values are always between the first and 
second iteration values. Furthermore, unlike the fits using the 
energy only, the correlations between effective and cooperative 
energies and virials calculated during the fit were close to the 
corresponding correlations calculated on the newly generated 
configuration set. 

Comparison of the calculated liquid properties (based on the 
final fit) with experiment shows that the basic water characteristics 
are present: the coordination number is around 4, and the second 
peak of the 0-0 radial distribution function is closer than the 
double of the first peak distance (although not as close as it should 
be) and is very small. However, the first peak of the 0 4  radial 
distribution function is about 0.1 5 A closer than the experimental 
value and is too high, the calculated energy is more negative than 
the experimental (by 5 kcal/mol if quantum corrections are ne- 
glected), and the pressure is somewhat off (by ca. 0.5 kcal/mol 
in terms of pV). Altogether, these results are not too bad for a 
water model that was developed essentially completely ab initio. 

Conclusions 
The calculations described demonstrate the difficulty of pro- 

viding a robust pairwise approximation to a cooperative model 
for water. Unless both the energies and the virial sums are fitted, 
different functional forms yielding equally good fits can result 
in simulated liquids that are qualitatively different. However, 
when the virial sum was also included into the fitting procedure, 
the functional forms under study showed significant differences, 
allowing a meaningful choice of best fit. Also, the fit parameters 
and the calculated liquid properties showed reasonable conver- 
gence. 

The study described here focused on the fitting aspect of the 
problem. The fitting procedure was independent of the special 
features of the cooperative potential used. Therefore, it is expected 
that similar procedure would be applicable to different cooperative 
models, including semiempirical or, ultimately, ab initio calcu- 
lations. 

The fit can also be analyzed for the significance of the difference 
between the pairwise and cooperative energies. On the 120 
configurations of the RRQVl calculation the root mean square 
between the cooperative and fitted energies was 0.132 kcal/mol, 
and the largest deviation was 0.38 kcal/mol. As there were 125 
molecules in the system, these values translate into a 10l2 and lou 
correction factor, respectively, to the Boltzmann factor of the 
configuration involved. Thus it is safe to conclude that the 

configurations sampled by the two different potentials would be 
different. To quantify this difference, the energy changes resulted 
from random molecular displacements were calculated with center 
of mass displacement limited to 0.1 A and angular displacment 
limited to 20°. It was found that with these displacements (av- 
eraging 0.05 A and loo) the average energy change is 1 kcal/mol. 
Thus it is reasonable to conclude that the cooperative energies 
can be reproduced by small perturbations of the configuration (well 
under 0.1-A translational and loo rotational displacement for each 
molecule). 
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Appendix. Efficient Calculation of the Pressure in the 
Canonical Ensemble Monte Carlo for Inverse Power Central 
Force Models 

of the virial sum K3' 
The pressure in the canonical ensemble is obtained as a function 

(All  

where k is the Boltzmann factor, Tis  the absolute temperature, 
u is the volume, and Vis the virial sum given by eq 8. In general, 
calculation of the virial sum requires the calculation of the forces 
on the particles, a nonnegligible amount of extra work (unless the 
force-biased displacement scheme33 is used where the forces are 
also needed anyway), and is thus rarely done. However, if eU 
depends only on Ir,,l (i.e., there is only one interaction center per 
particle) and the interaction follows an inverse power law (or is 
a sum of inverse power terms), then the contribution of particles 
i and j  to the virial sum can be obtained with negligible extra work, 
since in this case eq 9 reduces to 

P = kT(N - V/3k7')/~ 

Thus the calculation of the virial sum in this case requires only 
the separate accumulation of the contributions to the total energy 
from the various distance powers during the simulation and their 
multiplication with the corresponding exponent x after the sim- 
ulation. 
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