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INTRODUCTION

The force-biased extension of the Metropolis Monte Carlo method [1] improves convergence
by sampling moves preferentially along the directions of force (and torque) [2]. For solvated
systems it is particularly effective [3] when coupled with the prefererential sampling scheme
[4] that attempts to move solvents near the solute more frequently. However, in recent force-
biased simulations of aqueous ionic solutions [5] some of the water molecules in the vicinity of
the solute remained essentially stationary. Only significant reduction in the stepsize produced
some accepted moves.

The present note describes the development and testing of the Distance-Scaled Force
Bias method that allows the full use of force-biased displacement of the water molecules far
from the solute and still provides for an adequate sampling of the solvent molecules near the
solute.

BACKGROUND AND THEORY

A component of a force-bias trial displacement, δ, in the range [−∆, ∆] is selected with
probability

Pi(δ) = exp(λβFi∆)/sinh(λβFi∆)/(λβFi/2) (1)

where i = x, y or z, β = 1/kT , and Fi is the force along the axis i and λ is a scalar parameter.
λ=1/2 is considered optimal[6] in first order. For a rotation, replace the force by the torque.
Pi(δ) increases monotonously and

Pi(∆)/P( −∆) = exp(λβFi∆). (2)



The half-width of the distribution is ln 2/(λβFi). As Fi tends to infinity, Pi(δ) becomes a
Dirac-delta centered at sign(Fi) ∗∆.

If the force acting on a molecule is too large the likelihood that an attempted move
is significantly smaller than ∆ is small. Thus, a solvent molecule in the vicinity of a strongly
attractive solute would keep trying to make a move toward the source of the attraction, but
if the trial move is always of sufficient magnitude to bring the molecule into the repulsive
region of the solute, the move will be perpetually rejected.

A simple solution places a limit for all molecules on the magnitude of the force and
torque components in Eq.(1). The optimal value of the limits can be determined empirically.

More sigificant improvements can be obtained if λ is made a smooth monotonically
increasing function of the solute-solvent distance R, λ(R), that has a small value at distances
less than the molecular diameter and increases to 1/2. It should not get too close to zero,
since that would lead to an indeterminate δi in Eq. (1). Using λ(R) the trial move is obtained
with the standard force-bias prescription:

δi = ln[exp(−λβFi∆) + 2ξsinh(λβFi∆)]/(λβFi) (3)

where ξ is a random number in the [0,1] interval. The the move is accepted with probability

Pacc = min{1, (exp[β(Uo − Un)])[(P (−δ, λ(Rn))/P (δ, λ(Ro))]} (4)

where the subscripts o and n refer to the configurations before and after the move, U is the
energy, and P (δ, λ(R)) is the product of the probabilities of the components of δ including the
torque. This ratio of probabilities is similar to that used for the regular force bias method;
the new feature is the R-dependent λ. This technique is called the Distance-Scaled Force
Bias method.

For anisotropic solutes the solute-solvent distance R here has been defined as the
distance between a selected point on the solvent (for example, center of mass) and the
nearest heavy atom (i.e. other than hydrogen) on the solute. For isotropic solutes this
quantity coincides with the distance between the centres of masses of the solute and solvent
while for anisotropic solutes it is more useful than the distance between centres of masses.

The scaling algorithm itself, however, is independent of the definition of R. Prefer-
ential sampling [4] can be based on this definition of R as well.

CALCULATIONS AND RESULTS.

The method has been tested on a system of 1800 TIP4P water molecules [7] surroundig a
DNA octamer duplex and Na+ ions. The AMBER force-field [8,9] was used for the DNA-
water interactions and the OPLS model [10] was used for the Na+-water interactions. λ(R)
was chosen to be constant λo in the range 0 to 3 Å and 1/2 in the range 7 Å to infinity with
linear interpolation between λo and 1/2. The preferential sampling, used for all calculations,
was also based on the distance R defined above.



Several test calculations of 2 × 105 attempted moves were performed with stepsize
parameters 0.275 Å and 17.5o. Table 1 gives the average stepsizes and the minimum, maxi-
mum and average acceptance rates are given for all the runs performed. Earlier simulations
on liquid water gave 4.1*10−10 N and 3.2*10−20J/rad. for the root mean square force and
torque components, respectively [11].

Table 1 shows that both limiting sufficiently the force/torque components and using
the scaled force-bias technique (λo < 1/2) helps to make all solvents move. In the best
combination, the smallest acceptance rate is higher than the corresponding rate using the
Metropolis method. The scaling is more effective than limiting the components but the
combination of the two techniques is the most powerful. This is achieved at negligible com-
putational expense and without any degradation of the overall performance when compared
with the original force-bias technique.

Table 1. Convergence characteristics of the different runs.

λo Fmax Tmax 〈P acc〉 P acc
min P acc

max 〈r〉 〈φ〉

Metropolis: 0.213 0.045 0.550 0.229 7.71
FB 1/2 8.2 6.5 0.347 0.000 0.747 0.269 8.65
FB 1/2 4.1 3.5 0.351 0.014 0.740 0.259 8.34
FB 0.05 8.2 6.5 0.362 0.050 0.712 0.262 8.50
FB 0.1 8.2 6.5 0.365 0.061 0.707 0.263 8.50
FB 0.15 8.2 6.5 0.363 0.034 0.741 0.263 8.51
FB 0.1 4.1 3.5 0.352 0.021 0.688 0.254 8.26
FB 0.1 0.365 0.027 0.702 0.265 8.55

Legend: a) λo: the value of λ at R¡3 Å (λo=1/2 means no scaling; b)Fmax and Tmax are the
limits on the force and torque components, respectively in 108 J and 1020 J/rad, respectively;
c)〈P acc〉, P acc

min P acc
max are the average, minimum and maximum acceptance rates, respectively;

d) 〈r〉 and 〈f〉 are the average total displacement and rotation angle, respectively, in Å and
degrees, respectively.
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