
 



Physics of Many-Particle Systems, Vol. 19, pp 37-50 (1991)
E.S. Kryachko, ed., Naukova Dumka, Kiev

M. M e z e i

THE THEORY OF HYDROGEN BONDING IN WATER

1. Introduction

The water molecule itself is small and deceptively simple. However, its condensed
phases have several remarkable properties. In the solid phase, it can take an unusually high
number of crystalline forms and it is also capable to form an amorphous (glassy) solid. Upon
melting, contrary to conventional wisdom, it contracts which is rather rare. Furthermore, its
volume continues to decrease as the temperature is increased, leading to a density maximum
at 4oC — a phenomenon almost unique to water. Other, equally puzzling anomalies include
the large specific heat and the large isothermal compressibility of liquid water. Lang and
Ludemann reviewed recently the water anomalies [44].

The source of this anomalous behaviour of water can be traced to the peculiar way
that water molecules interact with each other, i.e. to the particular characteristics of the
water- water hydrogen bond. The purpose of this paper is to describe the water-water
hydrogen bond and its role in the various physical properties of liquid water.

2. Relation between the properties of a liquid and the intermolecular interactions

According to the basic tenets of statistical mechanics, the properties of a liquid are
uniquely determined from the potential energy function as the Boltzmann-weighted average
over all configurations. For a system of N particles, the Boltzmann average of a property Q
in the canonical ensembleis given as

〈Q〉 =
∫

Q(XN ) exp[−E(XN )/kT ]dXN/ exp[−E(XN )/kT ]dXN (1)

where k is the Boltzmann constant, T is the absolute temperature and E(XN ) and Q(XN )

are the total energy and the property Q at the N -particle configuration XN , respectively.
Eq. (1) can be considered a weighted average of Q, and thus exp[−E(XN )/kT ] is referred
to as the Boltzmann weight (the numerator of Eq. (1) serves to normalize it). Equations
similar in form to (1) hold in other statistical ensembles. As N tends to infinity, the limit
of Q becomes independent of the choice of the statistical ensemble and will give the liquid
value. For liquid water (far from the critical point), a collection of O(100) particles under
periodic boundary conditions appears to approach this limit sufficiently.

The evaluation of the integrals in (1) is a formidable task in general since the config-

urational space involved is 6(N -1) dimensional. Restricting the form of the function E(XN )
to certain manageable types, approximative solutions can be found, either by computer sim-
ulation or by integral equation techniques. Computer simulation generates a finite sample



of Boltzmann-weighted configurations allowing the calculation of the properties of interest
as simple averages over these configurations. The techniques used to generate these config-
urations may be probabilistic or deterministic. Probabilistic methods, called Monte Carlo
methods, introduced by Metropolis et al. [48] use an importance sampling technique while
the deterministic route, called molecular dynamics, follows Newton’s law (or its general-
ization in other ensembles) to generate physically meaningful trajectories — the ergodic
theorem ensures that these configurations too will follow the Boltzmann distribution. Inte-
gral equations, on the other hand, are obtained by imposing a so called closure relationship
on a hierarchy of distribution functions. The solutions to these equations, substituted into
Eq. (1) can yield the liquid properties. The success of these descriptions, besides overcoming
the numerical difficulties posed by slowly convergent or divergent iterations, hinges upon
the choice of the closure relation. The RISM method has been extended to molecules with
charged sites by Hirata and Rossky [34] and applied to liquid water by Pettitt and Rossky
[62]. However, as the error introduced by the closure relation assumed can only be assessed
empirically, most studies on liquid water used computer simulation.

From the discussion above it is clear that the property of a liquid is in principle a
function of the energy of the complete configurations. To elucidate the role of interactions
between neighbouring molecules, i.e. in case of water, the role of the hydrogen bond, it
is necessary to study the dependence of E(XN ) on the contributions from the individual

hydrogen bonds in the configuration XN .

3. Water clusters

3.1. The linear dimer

Our understanding of the hydrogen bond in water is based on the description of the
water dimer. Physico-chemical intuition, based on the polarity of the O-H bond, suggests
an O...H-O type arrangement, with the hydrogens not participating in the hydrogen bond
forming a trans arrangement to reduce the repulsion. This view is supported by the tetrahe-
dral arrangement of the water molecules in Ice Ih observed by X-ray diffraction. Theoretical
calculations at successively higher level of approximations confirmed that intuition, proving
that the (trans) linear hydrogen bond between two waters at ∼3.0 Å O-O distance leads to a
minimum in the dimer energy surface at about 5-6 kcal/mol. Calculations by Finney, Quinn
and Baum [2,25] showed that changing the non-bonding hydrogen of the donor water into the
cis conformation raises the energy only by about 1 kcal/mol. Figure 1 shows a linear dimer,
minimized at the MP2/6-31G∗ level [31,32] (SCF with the 6-31G∗ level plus second order
Moller-Plessett perturbation correction) by Dannenberg [20] with a calculated dimerization
energy of -6.40 kcal/mol. Evaluation of microwave spectra is essentially in agreement with
the calculations, although the model used to evaluate the data assumed the general features
of a linear hydrogen bond. The closeness of the H-O-H angle (105o) to the tetrahedral an-
gle (109o) and the “acceptor angle” to the half of the tetrahedral angle makes the linear
hydrogen bond a suitable building block of large hydrogen-bonded networks since the two
acceptor directions and the two O-H bonds define four nearly equivalent directions. This can
give rise to a variety of extended chains of hydrogen bonds where each water can form four
hydrogen bonds. As waters are not forced to keep potential hydrogen-bonding sites unused
due to the impossibility of finding partners, the network will be unusually strong. The near
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equivalence of the four hydrogen-bonding directions allows an orientational variability that
will reduce the entropic penalty of forming strongly bonded networks.

3.2. Bifurcated and trifurcated water dimers

While there are excellent methods to find a local minimum on a surface, the deter-
mination of the global minimum has long frustrated mathematicians and scientists alike. As
the water dimer energy surface is six-dimensional, there is reason to suspect that the linear
dimers are not the only minima or, due to the complexity of the competing interactions there
might be regions far from the linear dimers that have comparable energy. In chemical terms,
it can be argued that while the water dimer forming a single linear hydrogen bond is clearly
optimizing the strength of that single bond, it might be possible to find other arrangements
that allow more than one, albeit individually imperfect, hydrogen bonds to form with a net
result that is comparable to the strength of the single linear hydrogen bond.
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Fig. 1. Minimum-energy water dimer with linear hydrogen bond. Distances are in Å.
Hydrogen bond is shown with broken line.
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Fig. 2. Low-energy water dimer with trifurcated hydrogen bond. Distances are in Å.
Hydrogen bonds are shown with broken line.
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Fig. 3. Low-energy water dimer with bifurcated hydrogen bond. Distance is in Å. Hydrogen
bonds are shown with broken line.

Finney and Baum exended their studies of the dimer surface using large-basis set
ab initio calculations to consider a bifurcated structure [2], shown on Figure 2. With the
two molecular planes kept perpendicular and the dipoles parallel, a shallow energy minimum
was observed at cca 3.1 Å O-O distance that is about 2.5 kcal/mol weaker than the linear
hydrogen bond.

Prompted by a study of the water dimer with the semiempirical AM1 method [22],
Dannenberg recently performed a series of ab initio calculations that showed that a tri-
furcated structure, shown of Figure 3, has nearly as low energy as the linear dimer, -6.02
kcal/mol at the MP2/6-31G∗ level [20] (reminding us once again that attention to the global
minimum problem can not be replaced by intuition). Its role in the liquid is likely to be
less important than the linear dimer’s since it can not be used in the formation of extended
networks. It may be significant, however, in situations where a few water molecules are
found isolated.

3.3. Water oligomers

In the consideration of molecular clusters one of the foremost questions is the possi-
bility of describing the cluster based on information on the dimer alone, i.e. the degree to
which the given intermolecular interactions can be considered to be pairwise additive. For
water the first quantitative answer was obtained by Hankins, Stillinger and Moskowitz, who
considered water trimers in various hydrogen-bonding orientations [30]. The trimer energy
consistently differed from the sum of the dimer energies by 10-15% in the vicinity of the equi-
librium dimer O-O distance, but its sign depended on the conformation. Similar conclusions
were drawn later by Clementi et al. [19].

3.4. The role of electrostatics
in water-water interactions

In the discussion above the formation of the water dimer was dominated by the elec-
trostatic interaction, even though it is clear that, particularly at closer distances, classical
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physics can not describe adequately the hydrogen bond. Electrostatics takes over, however,
rather soon: the difference between the quantum-mechanically calculated dimer energies (at
the Hartree- Fock level [63]) and the corresponding classical electrostatic interaction based
on the quantum-mechanically calculated monomer charge density (with induced dipole inter-
actions included) amount to only a few percent of the interaction energy for O-O distances
of 5 Å or larger [53].

While the interaction between waters at hydrogen-bonding or closer distances have
significant non-electrostatic component, Clementi et al. [19], based on the study of 28 water
trimers, found that the nonadditive contribution to the energy can largely be explained by
the polarization of the water electron density due to the electric field of its neighbours.

4. Modeling water-water interactions

While the importance of cooperative contributions was always recognized, compu-
tational restrictions necessitated the use of pairwise additive potentials, i.e. potentials that
contain terms for each pair of molecules that are independent of the position of the rest of
the system. To minimize the effect of neglecting the cooperative contributions, the poten-
tials were parametrized to include these contribution in an average fashion. For this reason
they usually called effective pairwise additive potential. While there has been considerable
success in modeling liquid water with effective pairwise additive potentials, it is important to
note that their validity is restricted to the state they have been parametrized to — e.g. they
will not describe well interfaces or a simple dimer. In most cases additional simplification
was obtained by assuming that the intramolecular geometry of a water molecule can be kept
fixed and by neglecting quantum effects.

4.1. Pairwise additive models

Pairwise additive models assume localized centers of interaction on the water molecule,
where neither the position of these centers within the local water frame, nor the strength of
the interaction is affected by the molecule’s environment. The type of interactions consid-
ered for water water interactions include electrostatic (point charge, dipole or quadrupole,
etc.), exchange repulsion (inverse twelfth power or exponential) and dispersion (inverse sixth
power). The combination of this latter two is also called the Lennard-Jones potential.

Bernal and Fowler [9] proposed a model that turned out to be the prototype of
several successful models: positive charges at the hydrogen sites and a negative charge at a
site on the HOH bisector, offset from the oxygen by 0.15 Å, and a Lennard-Jones center on
the oxygen.

Ben Naim and Stillinger proposed a model consisting of four tetrahedrally arranged
charges (two of them positive and the other two negative and a Lennard-Jones center at the
oxygen site [5]. A switching function was used to simultaneously turn off the electrostatic
interactions and turn on the Lennard-Jones term. The potential parameters were designed
to reproduce experimental data. It was the first water model to be tested by computer
simulation by Rahman and Stillinger [65] — this work provided the basis of a refined version
called the ST2 model [78].
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Sarkisov, Dashevsky and Malenkov [70] developed a water model using Kitaigord-
sky potential functions (1/r6+ exp type) [42] for non-bonded interactions and a double-
exponential hydrogen-bonding potential, added to the “standard” electrostatic terms and
calculated its thermodynamic and structural parameters with Monte-Carlo simulations. The
parameters were determined by fitting to experimental data, notably the dimer vibrational
spectrum.

Using a different approach, Clementi and coworkers obtained several water models
by fitting the potential parameters to ab- initio dimer energies of a large number of dimers.
After having obtained inadequate results using Hartree-Fock wavefunctions [41,63], a fit to
correlated dimer energies by Matsuoka, Clementi and Yoshemine [47] resulted in the MCY
model. It placed positive charges at the hydrogen sites and a negative charge on the HOH
bisector — in a similar fashion to Bernal and Fowler’s model. Exponential repulsions were
centered at the sites of all three atoms.

Jorgensen and coworkers set out to obtain a water model that was computationally
less expensive then either the ST2 or the MCY models, and at the same time provide a better
description of water than these two. This study produced the TIPS family of potentials
[37,38], settled with the TIP4P model [39], that is of the form of Bernal and Fowler but with
different parameters. A parallel work by Berendsen and coworkers [7] resulted in the SPC
potential — here the negative charge is at the oxygen site.

The list above is far from complete — they include only the models that are used
most frequently. It is generally agreed upon that the main features of liquid water can be
reproduced by several of them. Critical comparisons of can be found in Beveridge et al. [10],
Finney, Quinn and Baum [24], Jorgensen et al. [39], Morse and Rice [56], Reimers, Watts
and Klein [68].

4.2. Flexible water

The introduction of intramolecular degrees of freedom is essential for the modeling
of vibrational spectra. It is also a way to introduce cooperativity into the water-water
interaction through the variations in the molecular geometry, even though the atom-atom
interactions are still kept pairwise additive. While at atmostpheric pressures the rigid water
models appear adequate to describe the liquid structure, it is likely that for the description of
water at high pressure the flexibility is necessary. They are also simpler to use in molecular
dynamics simulation as the necessity of dealing with rigid-body mechanics is absent (although
the calculations may become more expensive due to the necessity of smaller time step). Such
models were constructed by Watts [83], Lemberg and Stillinger [45], Toukan and Rahman
[81] and Bopp, Jancso and Heizinger [12].

4.3. Cooperative models

When modeling water-water interactions either the strength of the interaction or the
position of the interaction centers is made dependent on the surrounding waters a cooperative
model results. Campbell and Mezei [15] showed that dipole polarizability can provide an
efficient way to include the effect of the surroundings. This conclusion was strengthened
by the results of Clementi et al. discussed above [19], by the good agreement obtained in
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subsequent calculations [16] between the calculated and experimental heats of formation of
several ice forms. Furthermore, Mezei and Dannenberg recently examined the predictions of
various pairwise additive models and the cooperative model of Campbell and Mezei on the
low-energy trifurcated dimers [54] — a stringent test since this low energy region was not
considered during the construction of any one of these potentials. For the first trifurcated
structure with ab initio energy of -3.1 kcal/mol all of the pairwise additive models examined
gave positive energy while the Campbell-Mezei model gave -3.7 kcal/mol. Similarly, the
energy of the second trifurcated structure (ab initio value: -6.0 kcal/mol) was obtained as
-5.1 kcal/mol while the best number among the pair potentials was -3.6 kcal/mol. This
indicates that the inclusion of the cooperative effects in a physically meaningfull way can
have the added bonus of improving the description of the dimer energy surface by producing
better extrapolations for the regions of the configuration space not covered by the fitting
process.

Berendsen [6] have sought to introduce cooperative effect into a water model based
on point charges in a tetrahedral direction by allowing the magnitude of the charge to vary
as the electric field changes. The magnitude of the change was determined in such a way that
the change in the dipole moment of the molecule conformed to what the polarizability of the
molecule would require. Stillinger, David and Weber have combined the Lemberg-Stillinger
flexible water with an induced-dipole-related cooperative contribution [21,82]. Recently there
has been a renewed interest in modeling cooperatively water interactions. Cieplak, Liebrand
and Kollman [17] included an induction term into the water-water interaction model. As an
alternative, Sprik and Klein [75] added terms in the time derivatives of the induced dipole
vector magnitudes to the Lagrangian for use in a molecular dynamics simulation.

T a b l e 1. Quantum correction to the free energy

ST2 MCY TIPS SPC SPC TIPS2 TIPS4 QPEN CH
< F 2 > ∗104 .6236 .5718 .5242 .6608 .6524 .6675 .6793 .6238 .6583
< N2

X > ∗104 .4662 .5256 .3326 .4529 .4484 .4645 .4704 .4678 .3372

< N2
Y > ∗104 .4652 .5260 .3200 .4480 .4526 .4641 .4701 .4657 .3371

< N2
Z > ∗104 .4625 .5216 .3265 .4570 .4454 .4672 .4732 .4665 .3322

A-ACl 0.667 0.764 0.489 0.652 0.622 0.693 0.703 0.691 0.511

L e g e n d: a — < F 2 > is the average square of the force acting on a molecule, in a.u.; b
— < N2

i > is the average square of the torque on the molecule around the axis i, in a.u.; c
— A-ACl is the quantum correction to the free energy, in kcal/mol. d — the potentials used
are as follows: ST2: Ref. 78; MCY: Ref. 47; TIPS: Ref. 37; SPC: Ref. 7; TIPS2: Ref. 38;
TIP4P: Ref. 39; QPEN: Ref. 46; CH: Ref. 18.

4.4. Quantum effects

Most of the current water models are based on classical statistical mechanics, i.e. all
quantum effects are mapped into the intermolecular potential. The intermolecular quantum
effects, however, can still be estimated. For example, Powels and Rijkayzen [64] provide
an expression for the quantum correction to the free energy of the liquid that requires
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only the calculation of the force and torque-component square averages. The results of
these calculations, given in Table 1, calculated from simulations using several different water
models [52], show that this correction is of the order of 1 kT . Similar results were obtained
by Kuharsky and Rossky [43] with the same technique and by Berens et al. by a different
approach [8]. Incidentally, the magnitudes of the torque components indicate a surprisingly
isotropic environment for all water models studied. The structural effect of the quantum
contributions was estimated by Kuharsky and Rossky [43] and again showed a small but
noticeable difference: the peak heights and through depths of the radial distribution functions
decreased by 5-10% .

5. Hydrogen bonding in liquid water at standard
temperature and pressure

5.1. Experimental indicators

X-ray and neutron diffraction experiments provide atom-atom radial distribution
functions gAB(r) (i.e. the average atomic density of atom B around atom A) in water and
thus are the most relevant to the hydrogen-bond structure in the liquid. They started with
the pioneering work of Narten and coworkers (using mainly X-rays) [58,59,80] and were
followed up by electron diffraction experiments by Palinkas et al. [61], neutron diffraction
experiments by Dore and coworkers [23,29], and Soper and coworkers [73,74]. Figures 4-
6 show the gOO(r), gOH(r) and gHH(r) obtained from the latest diffraction experiments.
They support the prevalence of the linear hydrogen bond in water since (a) the most frequent
O-O distance corresponds to the linear dimer O-O distance; (b) the two most frequent O-H
distances correspond to the distance between the acceptor oxygen and the donor hydrogen
and between the acceptor oxygen and the non-donor hydrogen in the linear dimer; (c) the
average number of neighbours that is represented by the density up to the first minimum
of gOO(r) is about four, just what would be expected from the tetrahedral picture of four
hydrogen-bonded neighbours, well known from Ice Ih; (d) the position of the second peak in
gOO(r) is at about 1.4 times the position of the first peak. This last feature is an indication
that there are extensive hydrogen-bonded networks in water since it follows from the second
peak’s position that most hydrogen-bonded neighbours of a water have mostly hydrogen-
bonded neighbours as well. In fact, reproduction of the position of the second peak in
gOO(r) is usually taken as the first important test on a water potential.

The diffraction experiments are not the only ones that provide structural information
on water. However, any other type of experiment that gives structure-related conclusions
(for example, estimation of coordination numbers from the compressibility) includes further
assumptions on the liquid and thus the accuracy of the numerical results depends on the
(unchecked) validity of the assumptions.

5.2. Hydrogen-bond structure from computer simulations

To get further detail on the hydrogen bonds in liquid water, one has to turn to the
results of computer simulation. Since the groundbreaking work of Rahman and Stillinger
[65], liquid water has been simulated by a large number of potentials. Calculations with
several potentials reproduced the main features of the experimental radial distributions, i.e.
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the positions of the peaks and reasonable agreement was obtained with the peak heights
as well, indicating that the general features of the liquid are well modeled even though the
relative populations of the various possible geometries are not described too well. (It is
to be mentioned, however, that the experimentally derived radial distributions also show
disagreement among themselves.)

For the description of the microscopic state of a liquid Ben Naim [4] introduced the
idea of quasi-component distribution function (QCDF). For a given property, the QCDF
gives the mole fraction of waters for which this property has a given value. For example,
the QCDF of the coordination number K, xc(K), gives the mole fraction of waters with
coordination number K. Table 2 tabulates xc(K) computed from simulations using several
different potentials [52,55]. The fact that xc(K) is nonzero for 0≤K≤8 shows how far liquid
water is from the Ice Ih picture, even though the average number of near neighbours is around
four. Their similarity is also rather striking as the potentials in the study were developed
using radically different approaches.

T a b l e 2. Comparison of the QCDF of coordination numbers
for the different water models

ST2 MCY TIPS SPC TIPS2 TIP4P QPEN CH
xc(0) .0000 .0000 .0001 .0000 .0000 .0000 .0000 0.001
xc(1) .0000 0.001 0.004 0.002 0.001 0.001 0.001 0.013
xc(2) 0.003 0.022 0.049 0.032 0.030 0.023 0.025 0.074
xc(3) 0.052 0.151 0.206 0.184 0.184 0.162 0.157 0.212
xc(4) 0.392 0.456 0.390 0.440 0.480 0.500 0.452 0.325
xc(5) 0.341 0.290 0.260 0.266 0.245 0.251 0.273 0.246
xc(6) 0.161 0.076 0.075 0.065 0.051 0.054 0.076 0.100
xc(7) 0.044 0.009 0.011 0.008 0.005 0.006 0.011 0.023
xc(8) 0.007 0.000 0.000 0.000 0.000 0.000 0.001 0.002
< K > 4.807 4.306 4.131 4.167 4.115 4.167 4.254 4.123

L e g e n d: a — The cutoff for the coordination number definition was 3.3 Å; b — the
potentials as in Table 1.
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Fig. 7. Definition of the hydrogen-bond parameters ROO, θH , θLP , δD.
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For an analysis of the hydrogen bonding one first needs an operational definition of
the hydrogen bond. The geometrical parameters corresponding to an intuitive description
of the hydrogen bond are defined on Figure 7, using the concept of ‘lone-pair’ positions
(LP), a pair of points forming a tetrahedron centered on the oxygen with the two hydrogens.
A hydrogen bond can be defined in terms of these parameters by requiring them to stay
between certain preset limits. Alternatively, an energetic criterion can be also established.
If, however, a significant number of low energy dimers different from the linear dimer occur,
the energetic definition would fail to differentiate between the two.

T a b l e 3. Characterization of the strong hydrogen-bond QCDF’s

ST2 MCY TIPS SPC TIPS2 TIP4P QPEN CH
ROOmax 2.85 2.85 2.85 2.75 2.75 2.75 2.75 2.95
xH(Rmax

OO ) 0.264 0.231 0.221 0.240 0.245 0.261 0.250 0.220
θmax
H 12.5 17.5 12.5 12.5 12.5 12.5 12.5 17.5

xH(θmax
H ) 0.213 0.187 0.189 0.220 0.205 0.235 0.232 0.161

θmax
H 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

xn
H(θmax

H ) 0.294 0.229 0.293 0.344 0.303 0.353 0.329 0.211
θmax
LP 12.5 22.5 32.5 27.5 22.5 27.5 22.5 32.5

xH(θmax
LP ) 0.176 0.138 0.113 0.116 0.123 0.126 0.131 0.117

θmax
LP 2.5 2.5 2.5 2.5 7.5 2.5 7.5 2.5

xn
H(θmax

LP ) 0.245 0.163 0.125 0.132 0.148 0.147 0.152 0.118
δmax
D 5.0 5.0 5.0 5.0 25.0 5.0 5.0 5.0

xH(δmax
D ) 0.090 0.090 0.069 0.071 0.078 0.075 0.094 0.078

L e g e n d: a — The grid intervals are 0.1 Å, 5o, 5o and 5o for the variables ROO, θH , θLP
and δD, respectively; b — The variable values refer to the midpoints of the grid interval; c
— Potentials as in Table 1.

Mezei and Beveridge [50] carried out a study of the distribution of these parameters
on the ST2 and MCY water models, using two different geometric criteria, called the ”strong”
and the ”weak” hydrogen bond. The strong hydrogen bond is defined by ROO < 3.0 Å,
θH ≤ 45o, θLP ≤ 45o, δD ≤ 90o and it was found to correspond reasonably well to a
reasonable energetic cutoff, selected based on the minimum of the pair-energy frequency
distribution. The weak hydrogen bond is defined by ROO ≤ 4.0 Å θH ≤ 53o, θLP ≤ 70.5o,
δD ≤ 180o. Figures 8-11 show the QCDF’s of the four hydrogen-bond parameters for the
MCY water. They again confirm the intuitive picture of the hydrogen bond. An interesting
feature of the QCDF’s of the angles H and LP is that their peak is not at 0o, i.e. most of
the hydrogen bonds are bent. While at first it appears to be a contradiction with the linear
hydrogen bond assumption, it can be understood as a statistical effect: the configuration
space volume of hydrogen bonds with angles θH and θLP are proportional to sin θH and
sin θLP , respectively. As Figures 9 and 10 also show, when this volume contribution is
factored out, the preference toward linear hydrogen bonds become evident. Later studies of
other water models showed similar picture. In Table 3 the main features of the calculated
hydrogen-bond distributions from several different simulations are compared for the strong
hydrogen bond [50,55]. Belch, Rice and Sceats [3] used a combination of H, LP and the H-LP
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Fig. 11. QCDF's for the hydrogen-bond 
parameter δD. MCY water at 25oC [50]. 
Symbols as in Figure 8.

Fig. 9. QCDF's for the hydrogen-bond 
parameter θH. MCY water at 25oC [50]. 
Symbols as in Figure 8.

Fig. 10. QCDF's for the hydrogen-bond 
parameter θLP. MCY water at 25oC [50]. 
Symbols as in Figure 8.

Fig. 8. QCDF's for the hydrogen-bond 
parameter ROO. MCY water at 25oC [50]. 
■: xH(ROO), strong hydrogen bond,
▲: xH(ROO)/(4πR2

OO), strong hydrogen bond,
� : xH(ROO), weak hydrogen bond,
∆ : xH(ROO)/(4π R2

OO), weak hydrogen bond.
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distance as a geometric criterion and found that for the ST2 water a close correspondance
exist between their geometric and the energetic hydrogen bond definition, although some
waters close to the energy treshold may not be geometrically hydrogen bonded.

5.3. Hydrogen-bonded networks

As discussed earlier, the possibility of two acceptor and two donor hydrogen bonds
gives rise to an easy development of hydrogen-bonded networks. Geiger, Stillinger and Rah-
man [28] analyzed computer simulation histories of the ST2 model (at different temperatures)
from this point of view. They used an energetic criterion of hydrogen bond and found that
the average number of hydrogen bonds per water nHB is a monotonous (actually, nearly lin-
ear) function of the energy cutoff. Treating the formation of the hydrogen-bonded networks
as a percolation phenomenon, the found that, in good agreement with Stockmayer’s theory
[79], the percolation threshold of liquid water is nHB >∼ 1.3. This means that, for most
reasonable hydrogen-bond definitions, water can be considered a hydrogen-bonded gel.

Mezei and Beveridge extended their studies using the geometric hydrogen-bond cri-
terion on simulation histories of the ST2 and MCY models (also at different temperatures).
When the number of waters with no hydrogen bonds was plotted against nHB, the resulting
curve was found invariant to the potential or to the choice of hydrogen-bond criterion. This
fit very well into the percolation model of liquid water proposed by Stanley [76]. The percola-
tion model assumed that at most 4 hydrogen bonds can be formed per water, and individual
bonds form with probability pHB = nHB/4. The first prediction of this model gives the
distribution of clusters with N waters as a function of pHB as a simple binomial expression
(for N = 1 this is exactly the number of unbonded water studied earlier). The formula also
performed well for N > 1 when compared with computer simulation results, especially for
nHB < 2.5. An additional, more subtle consequence of the model (following only from com-
binatorial arguments) is the clustering of 4-bonded waters. This is rather remarkable, since
the idea of water consisting of a mixture of 4-bonded, ice-like “structured” water and more
disordered water has been discussed since Roentgen [69]. In analogy with the comparison
of the density of Ice Ih and water, these 4-bonded regions should have lower density than
the other regions of the liquid. Computer simulation results were analyzed by Geiger and
Stanley [27], Rapaport [66] and Mezei [49]. In most cases, small density deviations were ob-
tained but, depending on the volumes considered in the density calculations, the results were
contradictory. For the ST2 water, using the energetic hydrogen bond definition, however,
the density around the 4-bonded waters was found to decrease unequivocally. Experimental
evidence is based on small- angle X-ray scattering experiments [14]: the structure factor
S(q) shows an anomalous increase with decreasing q that is interpreted as evidence for en-
hanced density fluctuations. As predicted, the effect becomes more pronounced as the water
is supercooled and becomes negligible with the introduction of impurities.

Care should, however, be exercised when this idea of “two kinds of waters” is made
into a quantitative model. While it is tempting to simply assume real water as a mixture of
these two different kinds of waters and assign particular properties to each type, resulting in a
quantitative model for the properties of liquid water (as it has indeed been done), Kauzmann
has shown that such model is internally inconsistent [40]. Specifically, he showed that if water
is assumed to consist of structured clusters of N water molecules in a “sea” of unstructured
waters then the experimental data for the temperature dependence of the thermal expansion
coefficient requires N � 40 while the experimental temperature dependence of the heat
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capacity can only be reproduced with N near unity. Thus this concept of the two kinds
of waters must be included in a more complex way — possibly with a continuum of water
types.

5.4. Hydrogen-bond lifetime

If most neighbours of a water can be assumed to be hydrogen bonded the time
required for a molecule to diffuse away from its neigbour indicates the time during which
a hydrogen bond is intact. Hertz estimated the residence time as the time required for a
water molecule to diffuse from the first peak of gOO(r) to the second peak, 8 ps [33]. Impey,
Madden and McDonald [36] found that the correlation time for the persistence of waters
in the first shell of a water is 1.8 ps in the MCY water. As this quantity gives roughly
the time required for a water molecule to diffuse from the first peak of gOO(r) to the first
minimum, there is reasonable correspondence with Hertz’s estimate. However, for most
“reasonable” definition of hydrogen bonds there are almost always neighbours that are not
hydrogen bonded therefore the numbers above are to be considered a lower bound for the
hydrogen-bond lifetime.

Rapaport followed the breaking and forming of hydrogen bonds [67] (energetic cri-
terion) in his simulation of the MCY water. Waters displayed an oscillatory behaviour -
hydrogen bonds broke with an exponential time-constant of 0.05-0.3 ps but in most cases
the bond was reformed. The time constant of the “irrevocable” breaking of hydrogen bonds
was found to be larger, in the 1-10 ps range. This is basically in accord with the experimen-
tally observed characteristic times for intermolecular vibration and diffusion, 0.07 ps and 18
ps, respectively: a hydrogen bond breaks after cca 20-100 vibrations.

Sciortino and Fornili [71] examined a 20 ps molecular dynamics run of ST2 water.
They proposed a combined energetic, geometric and temporal definition of hydrogen bond:
a pair is considered hydrogen bonded that stays within 3.5 Å with attractive energy for at
least 0.4 ps. It was found that hydrogen-bonds that persist longer have larger peaks in their
hydrogen-bond angle QCDF’s and a larger abundance of waters with four hydrogen-bonded
neighbours, indicating the prevalence of better developed bonds among the longer lived ones.
The time constant of a hydrogen bond was found to be 2.0 ps — in the same range as the
studies discussed above.

5.5. Energetic considerations

The hydrogen-bond QCDF’s discussed earlier indicate that in the liquid state the
deviation from the linear hydrogen bond is the ”norm” and the occurrence of water pairs
with minimum energy is a rare event. This conclusion can be quantified by the calculation of
the QCDF of the pair-energy xP (ε), defined as the mole fraction of neighbours within 3.3 Ao
with energy . For all water models examined, xP (ε) was found to have a single peak, drop
sharply to zero at the minimum of the water water potential and approach zero much slower
in the positive direction, indicating the existence of some repulsive pairs [52,55]. Table 4
gives the characteristics of xP (ε) calculated for several water models.

The average-near neighbour pair energy, in conjunction with the average number of
hydrogen bonds can give an indication of the share of hydrogen bonds in the total energy of
the liquid. For example, the average pair energy of the MCY water is 3.0 kcal/mol. Using the
“strong” geometric definition of a hydrogen bond, nHB was found to be 2.1 , resulting in an
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average total hydrogen bond energy of 6.2 kcal/mol. As the average total binding energy of a
water molecule in the MCY water is 17.4 kcal/mol [55], this suggests a cca 30% contribution
from hydrogen bonds to the total energy. Even if all first-shell neighbours are considered to
be hydrogen bonded, there is about 30% of the energy that comes from interactions with
waters outside the first shell since for the MCY water 〈K〉 = 4.3. Similar conclusions hold
for the other water models.

T a b l e 4. Characterization of the QCDF xP (ε)

ST2 MCY TIPS SPC TIPS2 TIP4P QPEN CH
εmax -4.60 -4.40 -4.10 -5.10 -4.80 -4.70 -5.00 -4.30
xP (εmax) 0.0531 0.0581 0.0522 0.0514 0.0306 0.0309 0.0581 0.0316
ε99.9
< -6.60 -5.60 -5.60 -6.50 -6.10 -6.10 -6.40 -5.50

ε99.9
> 5.40 5.20 >2.90 >2.90 >2.90 >2.90 4.40 >2.90

ε
1/2
< -5.60 -5.20 -5.20 -6.10 -5.70 -5.70 -5.80 -5.10

ε
1/2
> -2.60 -2.20 -1.80 -2.80 -2.80 -3.00 -3.00 -2.30

Legend: a — The grid sizes were 0.2 kcal/mol; b — max is the right end point of the grid
where the maximum of xP (ε) is; c — the value of the maximum is xP (εmax); d — ε99.9

<
and ε99.9

> give the beginning and end point of the smallest interval that contains 99.9%

of the distribution; e — ε99.9
<1/2 and ε99.9

>1/2 give the smallest and largest values such that

xP (ε) = xP (εmax)/2; f — Potentials as in Table 1.

6. Hydrogen bonding in liquid water under
non-standard conditions

Both experimental and theoretical studies were performed on water at high and
low temperatures and pressures. The common result of these studies was the remarkable
persistence of the hydrogen bond.

6.1. Diffraction results

Narten and Levy extended their X-ray diffraction measurements up to 200oC [59].
The position of the first peaks in the atom-atom distributions remained virtually unchanged,
but the peak heights were lowered - an indication of the persistence of the hydrogen bonds
but also an increased disorder. The second peak of gOO(r), on the other hand, moved
out to about twice the first peak’s distance. This indicates the appearance of a significant
number of non-tetrahedral neighbours. Neutron diffraction studies of Gibson and Dore [29]
in the 11oC-75oC range showed a slight increase in the O-D distance with the increase in
temperature. Neutron diffraction experiments in the supercooled region by Bosio et al. [13]
showed the same trend and also gave indication of enhanced orientational structre.

Gabella and Neilson performed X-ray diffraction measurements on light and heavy
water up to 6 kbar pressure(i.e. at 1.152 g/cm3) [26]. Simply scaling the down the distances
by 5% would produce the density at 6 kbar. The O-O and the O-H distances at 6 kbar
were found to be shortened by less than half of this scaled amount: 0.05 Å and 0.03 Å,
respectively. This can be considered an indication of the resistance of a hydrogen bond to
pressure.
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6.2. Computer simulation studies

Mezei and Beveridge simulated the MCY water at 25oC, 37o and 50o at the respective
experimental densities [51]. No shift in the peak position was observed but the peak hights
decreased slightly with the increase in temperature. Impey, Klein and McDonald studied the
MCY water at high density (i.e. under high pressure) and at high temperatures [35]. The
high temperature results were in qualitative agreement with the X-ray results of Narten,
Danford and Levy [58]. The high-density study was run at 1.345 g/cm3 (corresponding to
22 kbar pressure). The first peak position of gOO(r) is shortened by only 0.04 Å, an order
of magnitude smaller than simple scaling would cause. Similar behaviour was observed for
gOH(r) and gHH(r).

Palinkas et al. examined the hydrogen-bond structure of their modified central-force
model [12] also at 1.345 g/cm3 density [60]. The mean O-O distance is decreased only by
0.1 Å. This is larger than the change for the MCY but is less than a third of what the
density scaling would indicate — again confirming the strong integrity of hydrogen bond
under pressure. The density increase is instead achieved by an increase in the deviation
from tetrahedrality. The stronger distortions can then provide room for additional waters
in the first shell. As a consequence, significant distortion of the hydrogen-bond angles was
found and the average number of hydrogen bonds decreased from 1.9 to 1.3 .

Mountain studied the TIP4P water at lower densities (i.e. expanded water) and at
elevated temperatures [57]. Increasing only the temperature showed similar behaviour as
described earlier: lowering peak heights and moving the second peak farther out. The first
peak of gOH (r), called by Mountain the ”hydrogen- bond peak”, gets progressively smaller
as the temperature is increased and disappears at cca 780 K temperature for all pressures
studied. Using a simple geometric criterion for the hydrogen bond (O-H distance less than
2.4 Ao), hydrogen bonds were found to persist even at supercritical temperatures. He also
found that for densities above 0.45 g/cm3 the average hydrogen bond scaled by the number
density, nHB/(N/V ), is a simple (nearly linear) decreasing function of the temperature, but
the scaling does not hold for lower densities.

7. Summary

We have seen that the water-water interaction energy surface is a rather complex one
allowing different types of hydrogen bonds. Out of these the linear hydrogen bond dominates
the liquid water structure. Several unusual properties of the linear hydrogen bond contribute
to the anomalous properties of liquid water: a) it is rather strong therefore persists for several
picoseconds in a wide temperature and pressure range; b) it is strongly orientation depen-
dent, resulting in unusual density patterns; c) the balance between the acceptor and donor
hydrogen bonds allow the formation of extended networks; d) the tetrahedral directionality
yields a large number of energetically (nearly) equivalent configurations with different orien-
tations for a given arrangement of molecular centers thereby reducing the entropic penalty
for the orientational restrictions; e) the geometry of the hydrogen-bonded networks does not
work against the contribution of distant neighbours through electrostatic interactions.
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