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EVALUATION OF THE ADAPTIVE UMBRELLA
SAMPLING METHOD

MIHALY MEZEI

Department of Chemistry and Center for Study in Gene Structure and Function,
Hunter College of the CUNY, New York, NY 10021, USA

{Received December, 1988)

The adaptive umbrella sampling technique, introduced recently to improve the probability ratio method
and found to perform more reliably than the customary harmonic umbrella sampling, is tested and
compared with other free energy methods. One of the tests applies the method to a transition involving a
chemical change: calculation of the hydration free energy difference between acetone and dimethylamine
and the other test calculates the conformational free energy difference between the C; and «, conformations
of the alanide dipeptide. The dipeptide problem is also treated by two types of thermodynamic integrations
and by the perturbation method. The result for the acetone-dimethylamine problem is compared with
previous calculations on the same system using the perturbation method, overlap ratio method and finite
difference thermodynamic integration. Enhancements to the adaptive umbrella sampling method are also
presented.

KEY WORDS: Free energy, Monte Carlo computer simulation, probability ratio method, adaptive
umbrella sampling, alanine dipeptide.

1. INTRODUCTION

Methods for the calculation of free energy from computer simulations have been
periodically reviewed in recent years [1-7]. Most methods fall into one of the following
three classes: thermodynamic integration, the perturbation method and methods
involving probability ratios. A comparison between the perturbation method and
thermodynamic integration using three different paths has been described recently on
the occasion of introducing a new variant of thermodynamic integration [8}; the
methods were used to calculate the hydration free energy difference between dimethyl
amine and acetone. In another set of calculations on the same problem the overlap
ratio method was examined [13]. The purpose of this paper is to further study one of
the methods involving probability ratios, the so called probability ratio method in
conjunction with the adaptive umbrella sampling (vide infra), on both conformational
and chemical transitions. The results will be compared with calculations using both
thermodynamic integration and the perturbation method on the same system. En-
hancements to the adaptive umbrella sampling method that have been developed
during the course of these calculations will also be presented.

2. BACKGROUND

Calculations of the configurational free energy difference
Ad = A — Ay = —kTin(Z,/Z,), n
from computer simulation on complex systems generally follow one of the three
301



302 M. MEZEI

techniques mentioned earlier, the thermodynamic integration (in the following, TI.
originated from Kirkwood [10]:
) <o
AA = [ 0A(A)/0r di = (2ay
0

J”l (BEN(A)/SAY, di (2b)

0
the perturbation method (in the followings: PM), proposed by Bennett [11] and Torrie
and Valleau [12}:

AA = —kT Inexpl—(E, — E)/kT],. (3

and methods invelving probability ratios. These methods involve the acceptance ratio
method of Bennett [11], the overlap ratio method developed by Jacucci and Quirke
[9] (in the following, OR) and the probability ratio method (in the following, PRM)
under consideration in this study. It was originally developed for the determination
of the potential of mean force [14], and first applied to the determination of free
cnergy differences by Mezei, Mehrotra and Beveridge [15]:

Ad = —KkTin[P(A),_/P(A); ] (4)

In Equations (1-4) T is the absolute temperature, & is the Boltzmann factor, £, and
E, are the energies of system 0 and |, respectively, Ey(4) is the total configurational
energy of an intermediate configuration with coupling parameter 4 and P(1) is the
Boltzmann probability of the system to be at the intermediate stage 2 when 4 is also
a variable during the simulation. The coupling parameter 4 describes a continuous
path between the two systems as it varies from 0 to 1. In general several such paths
exist (three different ones were examined in Reference [8] for the acetone-dimethyl
amine problem). Most of the calculations described in this paper follow a path that
transforms linearly the coordinates of the molecule(s) changed, along with the poten-
tial coefficients (whenever applicable), resulting in a continuous deformation of
system A into system B along a non-linear path (the dependence of E(A) is not linear
in 4). For this path, at each Z the coordinates of the ““hybrid molecule” are obtained
as

R(:) = (I — i) R* + /R", (5)

Where R, and Ry are the coordinates of the original molecules A and B, respectively.
When the systems A and B differ chemically as well, similar coupling is performed on
the solute-solvent potential coefficients (e.g. the R vectors include the potential
coefficients).
For the dipeptide problem thermodynamic integration was also performed over the
path
EGG, XNy = E (XN + (1 — DE,(X™N). (6)
proposed by Mezel and Beveridge [6] and tested by Meczei [8, 16, 17]. In this case
system A is continuously turned off while system B is turned on. The exponent k was

introduced to eliminate the singularity first treated by Mruzik er al. [18].
The potential cf mean force along 4 is defined as:

W) = —kTIn P(A) + const. (7

For free energy changes above a few kT, Equation (7) implies that the probabilities
of sampling of the two conformations would differ by orders of magnitude. Thus,
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when the coupling parameter 4 is also a simulation variable, in order to take advan-
tage of Equation (7), the simulation has to be performed in a non-Boltzmann
ensemble, where the Hamiltonian E(X™, R(1)) is replaced by a modified Hamiltonian
E(X™, R(A)):

E (XN, R() = EXN, R(A) + E,(2). ®)
The Boltzmann average of any quantity Q can be recovered as
Qs = QWA [{W(A))., )
where
w(d) = exp [E,(A)/kT] (10)

and <), implies configurational average using the modified Hamiltonian given by
Equation (8). Use of this technique is usually referred to as umbrella sampling. Most
previous calculations using umbrella sampling used an empirical approach to deter-
mine the non-Boltzmann bias. In particular, Pangali, Rao and Berne introduced the
harmonic weighting function [19]:

E,(A) = o(d — A) (I

where the simulation is designed to sample in the vicinity of 4,.

Recently, iterative approaches have been developed, based on the recognition of the
fact that the best choice for E, (1) is — W{(A). Paine and Scheraga [20] obtained the
gas-phase conformational free energy map of the alanine dipeptide and Mezei [21]
recalculated the free energy difference between the C, and x; conformations of the
alanine dipeptide in aqueous solution. For the latter problem, several technical
difficulties had to be overcome: matching of iterations with large statistical noise,
recognition of cquilibration phase, guiding the simulation to undersampled regions
and others. An important element of the method is the recognition that the normaliza-
tion factors of the estimated probability distributions (whose determination is equiv-
alent of the “matching’ problem discussed in previous studies) should be continually
redetermined as the calculation proceeds through the solution of a nonlinear mini-
mization problem. Using this iterative scheme is called adaptive umbrella sampling (in
the followings: AUS). In recent work on the calculation of the conformational free
energy of the dimethyl phosphate anion the AUS method proved to be significantly
more reliable than the use of the harmonic weighting function [22].

The first test, transforming acetone into dimethylamine in dilute aqueous solution,
allows for detailed comparison with several earlier calculations and gives the first
indication as to the performance of the AUS-PRM method on a chemical transition.

The second test system treats only conformational transformation, the change from
C; to oy conformation of the alanine dipeptide, but it involves a larger change and
thus provides information on the scaling properties of the methods compared.
Previous studies [15, 21] (using the potential library of Clementi and coworkers [23])
have shown that the solvent effect prefers the ap conformation. Thus, the current
study, besides providing information on the performance of the AUS—PRM method,
will show the sensitivity of the calculated free energy difference to the choice of
potentials. Comparisons with thermodynamic integrations along both paths des-
cribed by Equations (5, 6) and with perturbation method calculations will be also
given.
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3. CALCULATIONS

The simulations used the Metropolis algorithm [24], modified by incorporating the
force bias procedure [25] and preferential sampling [26] for convergence acceleration.
The energy calculations were based on the OPLS functions developed by Jorgensen
and coworkers for the solute-water interactions [27, 28] and the TIP4P water-water
potential [29, 30]. These parameters were developed to represent the interactions
between water and small amides; however, for lack of more specific parameters they
were also used for acetone and dimethyl amine. Clearly, this is an extrapolation and
thus for the acetone-dimethylamine problem the comparison with experimental data
could be expected to be worse than usual with the OPLS potentials.

The alanine dipeptide, AcAlaNHMe, is customarily described by the torsion angles
¥ (N-C-C-N) and ¢ (C-N-C-C). The conformation preferred in the gas phase called

C, corresponds to torsion angles iy = 90°, ¢ = — 90° and the conformation model-
ing the a-helix, called oy is described here with torsion angles ¥ = - 50° and
¢ = —170°

The essence of the PRM is that the coupling parameter A (defined for this study by
Equation (5)) is also varied during the simulation. This work employed the adaptive
umbrella method described in Reference [21]. In addition to the concerns raised in
Reference [21], for the chemical transition care had to be taken to make sure that the
coupling parameter never leaves the [0,1] interval. This is a consequence of the
introduction of the coupling to the repulsive core term, whose sign could change upon
the coupling parameter leaving the [0,1] interval, resulting in solvents being drawn
onto the solute. This problem does not arise in PRM calculations where only con-
formational changes are considered.

The calculations described here used either S0K iterations or 100K iterations
(1K = 1000 attempted moves). The sampling of the whole interval was speeded up by
using the extension scheme of Equation (19) of Reference 21 with C = 0 and the newer
extension scheme described in Appendix [I with ¢, = 1.1 and ¢, = 0.75. The estimate
of the probability distribution was improved by the technique described in Equation
(21) of Reference [21] with DW_,, = 5 kT and the technique described in Appendix IT1.
The iteration screening procedure described in Appendix I was also employed, but it
screened out only one iteration. However, on trial runs with C = 0.2 kT (“strong en-
couragement’’) it was very efficient to screen out the obviously unequilibrated iterations
that resulted from the application of the too small C value. Calculations were also
performed where the input to the minimization procedure (the initial values of the
normalization factors) were periodically recomputed (as opposed to using the values
from the previous iteration), as described in Appendix I'V.

4. RESULTS AND DISCUSSION

Tables 1 and 2 summarize the computed free energy differences for the first test system
(done without the regeneration of initial normalization factors) at the middle and at
the end of the calculation using the PM and the TI along the same coupling parameter
path from Reference [8], some of the OR calculations from Reference [13] and with
the PRM used here, along with the run lengths involved. The comparison is extended
to the free energy differences computed between intermediate states.

The 2000 K long PRM runs (labeled PRM1 and PRM?2) already succeeded in
sampling the full [0,1] interval and, except for the [0.9,1.0] interval where the “crea-
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tien™ of the oxygea atom has just started, gave results that are close to the TI, PM
and OR values. at less than one third of the cost. In the {0.9.1.0] interval, however.
the agreement was poor, due mainly to the general difficulty of simulating a creation

regime and also to the finite coupling parameter gridsize (0.02) combined with the
large gradient of W{1). Extending the calculation to 4000 K brought the cost close to
the TI, PM or OR costs since the fitting procedure becomes rather expensive as the
number of iterations reach the one hundred range but the precision did not improve
significantly in this range.

The poor performance of the calculations on the creation region prompted an
additional calculation where the coupling parameter was limited to the [0.85,1.0]
range (labeled PRM3). 50K iterations were used. Due to the restriction on A, most
iterations sampled the whole [0.9, 1.0] interval. As seen in Table 2, the agreement with
the previous results improved significantly but some discrepancy still remained. It can
be probably attributed to the fact that the calculation used a 0.02 gridsize to collect
the coupling parameter distribution and the steep drop at the A = 0 end (ccal kcal/
mol difference between the gridpoints centered at 0.97 and 0.99) makes the results
sensitive to the choice of grids and less certain the extrapolation from 0.99 to 1.0. This
could only be improved by the use of a finer grid.

Since the PRM3 run showed that the method is capable to give results close to the
TI. PM and OR results, it was thought that the possibility of the nonlinear minimiza-
tion reaching a local minimum that is too far from the global minimum may be a
factor in the poorer performance of the PRM1 and PRM2 runs on the [0.9,1.0]
coupling parameter interval, To test this hypothesis, the normalization factors were
recalculated for the run PRM2 with the procedure described in Appendix IV. This
produced a W(4) that was virtually identical with the previously obtained one over the
[0.0,0.9] interval but on the critical [0.9,1.0] interval the calculated free energy dif-
ference changed by 0.3kcal/mol (in the right direction). This prompted two new
calculations (labeled by PRM4 and PRMS5) where the minimization started from a
fresh initial estimate at every 2nd or Sth iteration, respectively. 100 K iterations were
used to allow long runs without having to solve the minimization problem with too
many iterations even though the 50K iteration run performed better on the critical
interval. Each calculation gives the free energy difference within a few tenth of a
kcal/mol to the results with the other methods. The behaviour on the [0.9.1.0]
coupling parameter interval is about as good as that of the PRM3 run. The com-
parisons on the subintervals, however still show larger deviations from the other runs
and the change as the calculation progresses is larger than the corresponding change
in either of the other runs over comparable length of the calculation indicating slower
convergence. The calculation regenerating the starting point at every other iteration
appears to perform somewhat worse than the one that regenerates the starting point
only at every Sth iteration.

For the alanine dipeptide, the AUS-PRM calculation was performed in two sleps,
the first step sampled the coupling parameter interval [0,0.55] while the second was
restricted on the {0.45.1.0] interval. As an additional test, a calculation was also done
on the [0.35.0.65] interval. These calculations used 50 K iterations and their length was
between 3200 and 3600 K. The calculated potential of mean force is shown in Figure
1. The solvent contribution to the free cnergy difference between the two conforma-
tion is obtained as 12.5kcal/mol, favoring ag . based on the three calculations (match-
ed at the center of the overlapping segments) and as 2.8 kcal/mol using only the first
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two runs. Based on the comparison of the potential of mean force estimates over the
same A interval, the uncertainty of these can be put at 1-2 kcal/mol. The direction of
the difference is in agreement with both previous calculations [15, 21] and experiment-
al estimates. Its magnitude, however, is significantly larger. Reference [15] calculated
3.6 kcal/mol that was revised in Reference [21] to 1.8 kcal/mol. The previous calcula-
tions used the potentials of Clementi and coworkers that assigned different charge
parameters to different conformations. It is suspected that the large free energy
difference is mainly due to the conformation independent charges used by the OPLS
potentials. This issue is currently under investigation.

The adequate assessment of the performance of the AUS-PRM method required
calculations on the same problem using different methods. Thus we calculated the free
energy difference by thermodynamic integration over the path used by the PRM
calculations described by Equation (5) and over the “nearly linear” path described by
Equation (6). The integrand of Equation (2a) as approximated by a finite difference
ratio of A4 and A1 where A4 was chosen to be 0.02 and A4 was computed by the PM.
This technique, called finite difference thermodynamic integration, (FDTI) was sug-
gested in Reference [8]. The potential of mean force calculated from TI is also shown
on Figure 1. In addition, Table 3 gives the free energy differences at the quadrature
points and the corresponding calculated conformational free energy differences cal-
culated as the calculation progressed while Table 4 gives the TI integrands and
calculated free-energy differences in a similar fashion.

The FDTI calculation, based on a 5-point Gaussian quadrature, gave the free
energy difference as 8.9 + 4.6kcal/mol while the nearly lincar TI gave
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Table 4 Description of the nearly linear TI calculations.

A 0.0469 0.2308 0.5 0.7692 0.9531 AA

1000 K 204.38 62.839 3.5468 —54.599 —126.29 11.7
2000 K 209.69 61.163 1.8278 —47.434 —136.09 12.6
3000 K 205.34 63.948 0.7734 —46.662 —135.87 12.6
4000K 200.02 62.532 0.9297 —48.057 —134.15 12.6

The AA values are the calculated free energy differences. The other table entries arc the TI integrands at the quadrature points; all energies
are in kcal/moi.

12.6 + 3.0kcal/mol. A somewhat shorter FDTI calculation using a 3-point quadra-
ture gave 9.37 kcal/mol. The error estimates were obtained from the error estimates
for the integrand at each quadrature point, calculated based on block averages. From
the stability of the calculated free energy differences these estimates appear to be
somewhat conservative although not out of line from the usual precision obtained on
solute-solvent properties for such a solute size. The larger discrepancy between the
FDTI and the other two results is likely due to interpolation error since the potential
of mean force as calculated by the PRM appears to have a more complex shape.

Finally, two additional simulations attempted the calculation of the free energy
difference over the [0.0,0.1] and [0.0, 0.15] intervals using the PM, to estimate the
number of PM runs that would be needed to calculate the free energy difference
adequately. The simulations used a Hamiltonian that corresponded to a state that is
the average of the two endpoints, as described in Reference [8]. After 1500 K MC steps
the free energy difference settled at 1.9 and 2.0 kcal/mol, respectively. These numbers
are quite inconsistent with the estimate obtained from the PM calculations over the
0.02 A intervals at A = 0.046 and A = 0.11, as both of them gave over 0.52 kcal/mol,
suggesting 2.6 kcal/mol for just the [0.0,0.1] interval. A closer inspection of the PM
calculations showed that the smallest and largest energy differences sampled spread
over 14.8 and 19.2 kcal/mol, respectively, indicating that the smallest and largest
terms contributing to Equation (3) would differ by factors of exp(14.8/
kT) = 5.2 x 10" and exp(19.2/kT) = 7.9 x 10", respectively!

The calculations reported here present the probability ratio method with adaptive
umbrella sampling as a competitive alternative to the OR, PM or TI for the calcula-
tion of solvation free energy differences involving small chemical change, although its
slower convergence results in somewhat lower precision at comparable cost. However,
the self-checking nature of the method ensures that the error is never too large since
a significantly incorrect estimate for W(1) will lead to inadequate sampling of the
coupling parameter space. It is also an advantage that the need to set up several
individual calculations is absent (or, for more complex problems, largely reduced).

For the larger change examined in this study, the PRM and the nearly linear TI
showed equally good performances; the other TI technique, FDTI, appeared to show
some quadrature error and the PM was found to require too many steps and thus was
deemed uneconomical.
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APPENDIX I. A-POSTERIORI REJECTION OF ADAPTIVE UMBRELLA
SAMPLING ITERATIONS

In Reference [21] it was suggested that upon reaching a new coupling parameter
region the corresponding iteration(s) be dropped since these are likely to correspond
to an “uncquilibrated™ state. It was also remarked that this procedure nceds improve-
ment since it is not clear a-priori, just how many iterations really need tc be dropped.

This appendix describes a more sophisticated procedure that has been applied in the
present work. At the end of every iteration, all iterations are compared with the
subsequent ones. Those that are found to be followed by iterations sampling the same
region but giving significantly different distribution are dropped. The term “‘signifi-
cantly different” is given quantitative meaning as follows. For two iterations 1 and
the range of overlap [p,q] is determined first (p and g are the limiting gridpoints
corresponding to the coupling parameter region sampled by both iterations). Itera-
tions that are only marginally overlapping, that is. when q — p < N°,.. are not
compared. NI,;, was chosen to be 4, corresponding to a coupling parameter interval
of length 0.08 in the simulation. For gridpoints p < s < q the ratio

ro = p./p. (AL
and the weight
wy = (NYNL 4+ NUYND(N, + ND) (Al.2)

s

were computed where py is the probability distribution value at gridpoint s in iteration
i and N[ is the number of times the gridpoint s was sampled in iteration i. The
deviation index I, was obtained as

Iy = {{EwrjZw) — (Zwri/Zu))ig — p)}' . (A1.3)

Clearly, for distributions that are identical, I is zero and larger deviations will give
larger [}, values. The fundamental assumption in this screening procedure is that later
interactions are less likely to be unequilibrated. On this basis the following rejection
criterion was established: Drop any iteration that gives /;, > I™® values with more
than PC™" percent of the subsequent iterations. After some experimentation, the
values 73" = 0.9 and PC™ = 20% was chosen.

APPENDIX II. A NEW SCHEME TO GUIDE THE SIMULATION TOWARD
UNSAMPLED REGIONS

In the procedure described in Reference [21], the “‘abandonment™ of a coupling
parameter region triggered the introduction of a modification of the umbrella sam-
pling weights designed to drive back the simulation whenever the overall sampling
rate of the abandoned region was below a threshold value. The modification was
always by a constant factor, given on input. This inflexibility reduced the efficiency
of the procedure since too small change was ineffective while too large values resulted
in clearly unequilibrated iterations. While the screening procedure described in App-
endix I was rather successfull in removing these unequilibrated iterations during trial
runs, it resulted in the deletion of too many iterations. In the present work a more
flexible alternative has been employed as follows.
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An array of additional biasing factors S(4,) is established and initialized to 1. At
the end of each iteration, the array elements corresponding to unsampled gridpoints
are multiplied by a constant ¢, (> 1) and for sampled gridpoints raised to the power
of ¢, (< 1), an other constant. The biasing weights computed from the E,, values just
calculated are then multiplied by S. This way, unsampled grids become progressively
more attractive while sampling of a grid will eliminate this added “attraction” in a few
iterations. The ratio of the smallest and largest values in .S also gives an indication of
accuracy of the computed probability distribution — the larger this ratio, the stronger
distortion of the computed E,, was required to obtain full sampling.

APPENDIX III. ELIMINATION OF SPURIOUS PEAKS FROM w(/)

In Reference [21] it was suggested that the ratio of w(l) values (e.g. difference between
E, (4) values) corresponding to neighbouring grids be limited to a threshold value to
screen out spurious jumps in E,(4). In the present work an additional filter of the
same vein has been introduced as follows.

For three consecutive gridpoints 4, 4, 4., the value of w(4;} will be modified
whenever it is outside of the interval

[0.75 w(4_) + 0.25 w(Ai,)), 0.25 w(Z_,) + 0.75 w(4;_))], (A3.1)
the “middle half” of the interval [w(4,_,), w(/;,,)]. That is, if
w(4) — wldi_ )l < Iwldiy ) — widio,)l/4 (A3.2)
then w(4;) is replaced by
w(ii_i) + [wldiyy) — wl4i_)))/4 (A3.3)
and if
wld) — wldip )l < wldiy) — wldio)l/4 (A3.4)
then w(4;) is replaced by
w(ii ) + [w(di) — w4 )4 (A3.5)

The underlying assumption in this procedure is that the grid is fine enough so that
w(/;) is a rather smooth function. This assumption is also important when a “legiti-
mate”’ peak is encountered, since in that case the elimination of the peak introduces
a small error. Actually, if this assumption is not fulfilled then the calculated w(d)
would be sensitive to the gridsize and the position of the grid.

APPENDIX IV. GENERATING NEW STARTING VALUES FOR THE
MINIMIZATION PROBLEM

The alternative to using the normalization coefficients from the previous iterations as
a starting point for the minimization is based on the assumption that for iterations
that cover the same coupling parameter range the normalization factors can be
determined to a good approximation by the one-step optimization procedure des-
cribed in Reference 21 where only the last iteration’s normalization factor is allowed
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to vary. The new approach starts with defining a center for each iteration i as

Aei = Zon(4) A dZ n(Ay) (Ad.1)
k k

where n(4,) is the number of configurations with coupling parameter value falling into
the grid centered at A,. The iterations are sorted in the order of increasing 4, the first
iteration 1s assigned normalization factor 1. After that, the normalization factor of
each successive iteration is determined by the one-step optimization process.
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