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EVALUATION OF THE ADAPTIVE UMBRELLA 
SAMPLING METHOD 

MIHALY MEZEI 
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Hunter College o f t h e  CUNY. New York, N Y  10021, USA 

(Received Decenther, 1988) 

The adaptive umbrella sampling technique, introduced recently to improve the probability ratio method 
and found to perform more reliably than the customary harmonic umbrella sampling, is tested and 
compared with other free energy methods. One of the tests applies the method to a transition involving a 
chemical change: calculation of the hydration free energy difference between acetone and dimethylamine 
and the other test calculates the conformational free energy difference between the C, and uR conformations 
of the alanide dipeptide. The dipeptide problem is also treated by two types of thermodynamic integrations 
and by the perturbation method. The result for the acetone-dimethylamine problem is compared with 
previous calculations on the same system using the perturbation method, overlap ratio method and finite 
difference thermodynamic integration. Enhancements to the adaptive umbrella sampling method are also 
presented. 

KEY WORDS: Free energy, Monte Carlo computer simulation, probability ratio method, adaptive 
umbrella sampling, alanine dipeptide. 

1 .  INTRODUCTION 

Methods for the calculation of free energy from computer simulations have been 
periodically reviewed in recent years [l-71. Most methods fall into one of the following 
three classes: thermodynamic integration, the perturbation method and methods 
involving probability ratios. A comparison between the perturbation method and 
thermodynamic integration using three different paths has been described recently on 
the occasion of introducing a new variant of thermodynamic integration [8]; the 
methods were used to calculate the hydration free energy difference between dimethyl 
amine and acetone. in another set of calculations on the same problem the overlap 
ratio method was examined [ 131. The purpose of this paper is to further study one of 
the methods involving probability ratios, the so called probability ratio method in 
conjunction with the adaptive umbrella sampling (vide infra), on both conformational 
and chemical transitions The results will be compared with calculations using both 
thermodynamic integration and the perturbation method on the same system. En- 
hancements to the adaptive umbrella sampling method that have been developed 
during the course of these calculations will also be presented. 

2. BACKGROUND 

Calculations of the configurational free energy difference 

AA = A ,  - A,  = - k T l n  ( Z , / Z , ) ,  (1) 
from computer simulation on complex systems generally follow one of the three 
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302 M .  MEZEl 

techniques mentioned earlier. the thermodynamic integration (in the following, Tli. 
originated rrom Kirkwood [lo]: 

A A  = i iA(i) ibi ,  d,i = (2ar 

j’ (8EN(Iu)/d3.), d3” (2bi 

the perturbation method (in the followings: PM), proposed by Bennett [ 1 I ]  and Torrie 
and Valleau [ 121: 

0 -  

0 

AA = - k T  ltz ( e x p [ - ( E ,  - E, , ) /kT]) , ) .  (j! 

and methods involving probability ratios. These methods involve the acceptance ratio 
method of Bennett [ I  I ] ,  the overlap ratio method developed by Jacucci and Quirke 
[9] (in the following, OR) and the probability ratio method (in the following, PRM) 
under consideration in this study. It was originally developed for the determination 
of the potential of mean force [14], and first applied to the determination of free 
energy diffcrenccs by Mezei, Mehrotra and Beveridge [IS]: 

A A  = ~ k T  In [PO.) ,,=, /P(2- ) ;=( , ] .  (41 
In Equations (1-4) T is the absolute temperature, k is the Boltzmann factor, Eo and 
E, are the energies of system 0 and 1, respectively, EN (A) is the total configurational 
energy of an intermediate configuration with coupling parameter 2 and P(2)  is the 
Boltzmann probability of the system to be at the intermediate stage I. when 3, is also 
a variable during the simulation. The coupling parameter 3. describes a continuous 
path between the two systems as it varies from 0 to 1 .  In general several such paths 
exist (three different ones were examined in Reference [8] for the acetone-dimethyl 
amine problem). Most of the calculations described in this paper follow a path that 
transforms linearly the coordinates of the molecule(s) changed, along with the poten- 
lial coefficients (whenever applicable), resulting in a continuous deformation of 
system A into system B along a non-linear path (the dependence of E ( i )  is not linear 
in >L). For this path, at each 2 the coordinates of the “hybrid molecule” are obtained 
as 

R ( i )  = ( 1  ~~ i ~ )  R4 + i R H ,  ( 5 )  
Where R ,  and R, are the coordinates of the original molecules A and B, respectively. 
When the systems A and B differ chemically as well, similar coupling is performed on 
the solute-solvent potential coefficients (e.g. the R vectors include the potential 
coefficients). 

For the dipeptitie problem thcrmodynamic integration was also performed over the 

E ( i ,  X ” )  = i ” k E , ( X h )  + ( I  ~ ; . )kE, ) (XN) .  (6) 
proposed by Mezei and Beveridge [6] and tcsted by Mczci [8. 16. 171. In this case 
system A is continuously turned off while system B is turned on. The exponent k was 
introduced to eliminate the singularity first treated by Mruzik t’t al. [18]. 

path 

The potential cf mean force along 2. is defined as: 

W ( ? ~ )  = ~ k T  ln P(i) + const. (7) 
For frcc cncrgy changes above a few kT, Equation ( 7 )  implies that the probabilities 
o f  sampling o f  the two conformations would differ by orders of magnitude. Thus. 
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UMBRELLA SAMPLING 303 

when the coupling parameter ;1 is also a simulation variable, in order to take advan- 
tage of Equation (7), the simulation has to be performed in a non-Boltzmann 
ensemble, where the Hamiltonian E ( X N ,  R(A)) is replaced by a modified Hamiltonian 
E‘(XN, R(i)):  

E‘ (XN,  R(A)) = E(XN, R(A)) + &(A). (8) 

< Q > B  = ( Q 4 A ) > w i < ~ ( A ) > w  (9) 

~ ( 3 , )  = exp [E,(A)/kT] (10) 

The Boltzmann average of any quantity Q can be recovered as 

where 

and ( ), implies configurational average using the modified Hamiltonian given by 
Equation (8). Use of this technique is usually referred to as umbrella sampling. Most 
previous calculations using umbrella sampling used an empirical approach to deter- 
mine the non-Boltzmann bias. In particular, Pangali, Rao and Berne introduced the 
harmonic weighting function [ 191: 

E,(A) = c(A - 3J (1 1) 
where the simulation is designed to sample in the vicinity of ,lo. 

Recently, iterative approaches have been developed, based on the recognition of the 
fact that the best choice for E,(,l) is - W(L). Paine and Scheraga [20] obtained the 
gas-phase conformational free energy map of the alanine dipeptide and Mezei [21] 
recalculated the free energy difference between the C, and aR conformations of the 
alanine dipeptide in aqueous solution. For the latter problem, several technical 
difficulties had to be overcome: matching of iterations with large statistical noise, 
recognition of equilibration phase, guiding the simulation to undersampled regions 
and others. An important element of the method is the recognition that the normaliza- 
tion factors of the estimated probability distributions (whose determination is equiv- 
alent of the “matching” problem discussed in previous studies) should be continually 
redetermined as the calculation proceeds through the solution of a nonlinear mini- 
mization problem. Using this iterative scheme is called adaptive umbrella sampling (in 
the followings: AUS). In recent work on the calculation of the conformational free 
energy of the dimethyl phosphate anion the AUS method proved to be significantly 
more reliable than the use of the harmonic weighting function [22]. 

The first test, transforming acetone into dimethylamine in dilute aqueous solution, 
allows for detailed comparison with several earlier calculations and gives the first 
indication as to the performance of the AUS-PRM method on a chemical transition. 

The second test system treats only conformational transformation, the change from 
C, to aR conformation of the alanine dipeptide, but it involves a larger change and 
thus provides information on the scaling properties of the methods compared. 
Previous studies [15, 211 (using the potential library of Clementi and coworkers [23] )  
have shown that the solvent effect prefers the uR conformation. Thus, the current 
study, besides providing information on the performance of the AUS-PRM method, 
will show the sensitivity of the calculated free energy difference to the choice of 
potentials. Comparisons with thermodynamic integrations along both paths des- 
cribed by Equations ( 5 ,  6) and with perturbation method calculations will be also 
given. 
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UMBRELLA SAMPLING 305 

3. CALCULATIONS 

The simulations used the Metropolis algorithm [24], modified by incorporating the 
force bias procedure [25 I and preferential sampling [26] for convergence acceleration. 
The energy calculations were based on the OPLS functions developed by Jorgensen 
and coworkers for the solute-water interactions [27. 281 and the TIP4P water-water 
potential [29, 301. These parameters were developed to represent the interactions 
between water and small amides; however, for lack of more specific parameters they 
were also used for acetone and dimethyl amine. Clearly, this I S  an extrapolation and 
thus for the acetone-dimethylamine problem the comparison with experimental data 
could be expected to be worse than usual with the OPLS potentials. 

The alanine dipeptide. AcAlaNHMe, is customarily described by the torsion angles 
I) (N-C-C-N) and 4 (C--N-C-C). The conformation preferred in the gas phase called 
C, corresponds to torsion angles + = 90°, 6 = - 90” and the conformation model- 
ing the a-helix, called xR is described here with torsion angles I) = -50” and 

The essence of the PRM is that the coupling parameter II  (defined for this study by 
Equation (5)) is also varied during the simulation. This work employed the adaptive 
umbrella method described in Reference [21]. In addition to the concerns raised in 
Reference [21], for the chemical transition care had to be taken to make sure that the 
coupling parameter never leaves the [0,1] interval. This is a consequence of the 
introduction of the coupling to the repulsive core term, whose sign could change upon 
the coupling parameter leaving the [0,1] interval, resulting in solvents being drawn 
onto the solute. This problem does not arise in PRM calculations where only con- 
formational changes are considered. 

The calculations described here used either 50 K iterations or 100 K iterations 
(1 K = 1000 attempted moves). The sampling of the whole interval was speeded up by 
using the extension scheme of Equation (19) of Reference 21 with C = 0 and the newer 
extension scheme described in Appendix I1 with c, = 1.1 and c, = 0.75. The estimate 
of the probability distribution was improved by the technique described in Equation 
( 2  I )  of Reference [2 11 with D W,,, = 5 kTand the technique described in Appendix 111. 
The iteration screening procedure described in Appendix I was also employed, but it 
screened out only one iteration. However, on trial runs with C = 0.2 kT (“strong en- 
couragement”) it was very efficient to screen out the obviously unequilibrated iterations 
that resulted from the application of the too small C value. Calculations were also 
performed where the input to the minimization procedure (the initial values of the 
normalization factors) were periodically recomputed (as opposed to using the values 
from the previous iteration), as described in Appendix IV. 

4 = -70”. 

4. RESULTS AND DISCUSSION 

Tables 1 and 2 summarize the computed free energy differences for the first test system 
(done without the regeneration of initial normalization factors) at  the middle and at 
the end of the calculation using the PM and the TI along the same coupling parameter 
path from Reference [8], some of the OR calculations from Reference [ 131 and with 
the PRM used here, along with the run lengths involved. The comparison is extended 
to the free energy differences computed between intermediate states. 

The 2000K long PRM runs (labeled PRMl and PRM2) already succeeded in 
sampling the full [0,1] interval and, except for the [0.9,1 .O] interval where the “crea- 
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306 M. MEZEI 

tion” of the oxygei atom has just started, gave results that are close to the TI, PM 
and OR values. at less than one third of the cost. In the [0.9,1.0] interval. however. 
the agreement was poor, due mainly to the general difficulty of simulating a creation 
regime and also to the finite coupling parameter gridsize (0.02) combined with the 
large gradient of W(2). Extending the calculation to 4000 K brought the cost close to 
the TI, PM or  OR costs since the fitting procedure becomes rather expensive as the 
number of iterations reach the one hundred range but the precision did not improve 
significantly in this range. 

The poor performance of the calculations on the creation region prompted an 
additional calculation where the coupling parameter was limited to the [0.85,1 .O] 
range (labeled PRM3). 50K iterations were used. Due to the restriction on A, most 
iterations sampled the whole [0.9, 1 .O] interval. As seen in Table 2, the agreement with 
the previous results improved significantly but some discrepancy still remained. I t  can 
be probably attributed to the fact that the calculation used a 0.02 gridsize to collect 
the coupling parameter distribution and the steep drop at  the A = 0 end (cca 1 kcalj 
mol difference between the gridpoints centered a t  0.97 and 0.99) makes the results 
sensitive to the choice of grids and less certain the extrapolation from 0.99 to 1 .O. This 
could only be improved by the use of a finer grid. 

Since the PRM3 run showed that the method is capable to give results close to the 
TI. PM and OR results, it was thought that the possibility of the nonlinear minimim- 
tion reaching a local minimum that is too far from the global minimum may bc a 
factor in the poorer performance of the PRMl and PRM2 runs on the [0.9.l.0] 
coupling parameter interval. To test this hypothesis, the normalization factors were 
recalculated for the run PRM2 with the procedure described in Appendix fV. This 
produced a W(2) that was virtually identical with the previously obtained one over the 
[0.0.0.9] interval but on the critical [0.9,1 .O] interval the calculated free energy dif- 
ference changed by 0.3 kcal/mol (in the right direction). This prompted two new 
calculations (labeled by PRM4 and PRMS) where the minimization started from a 
fresh initial estimate a t  every 2nd or 5th iteration, respectively. 100 K iterations were 
used to allow lotig runs without having to solve the minimization problem with ton 
many  iterations even though the 50 K iteration run performed bettcr on the critical 
interval. Each calculation gives the free energy difference within a few tenth of a 
kcal!mol to the results with the other methods. The behaviour on the [0.9.1 .O] 
coupling parameter interval is about as good as that of the PRM? run. The com- 
parisons on the subintervals, however still show- larger deviations from the other runs  
and the change as the calculation progresses is larger than the corresponding change 
in either of the other runs over comparable length of the calculation indicating slower 
convergence. The calculation regenerating the starling point at  every other iteration 
appcars t o  perform somewhat worse than the one that regenerates the starting point 
o n l y  ;it every 5th iteration. 

For the alanine dipeptide, the AUS-PRM calculation was performed in two siepa. 
the first step sampled the coupling parameter interval [0.0.55] while the second was 
restricted on the [0.45,1.0] interval. As an  additional test, a calculation was also done 
o n  the [0.35.0.65] interval. These calculations used 50 K iterations and their length was 
between 3200 and 3600 K .  The calculated potential of mean force is shown in Figure 
I. The solvent contribution to the frcc cnergy difference between the two conforma- 
tion is obtained as  12.5 kcalimol, favoring aR. based on the three calculations (match- 
ed at the center of the overlapping segments) and as 12.8 kcal/mol using only the first 
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Figure 1 Potential of mean force for the C,-xR transformation of the alanine dipeptide. . . . . : FDTI; 
+ + + +: PRM on the [0.0.,0.55] interval; 0000: PRM on the [0.35,0.65] interval; xxxx: PRM on the 
[0.45,1.0] interval. 

two runs. Based on the comparison of the potential of mean force estimates over the 
same d interval, the uncertainty of these can be put at 1-2 kcaljmol. The direction of 
the difference is in agreement with both previous calculations [15,21] and experiment- 
al estimates. Its magnitude, however, is significantly larger. Reference [ 151 calculated 
3.6 kcal/mol that was revised in Reference [21] to I .8 kcal/mol. The previous calcula- 
tions used the potentials of Clementi and coworkers that assigned different charge 
parameters to different conformations. It is suspected that the large free energy 
difference is mainly due to the conformation independent charges used by the OPLS 
potentials. This issue is currently under investigation. 

The adequate assessment of the performance of the AUS-PRM method required 
calculations on the same problem using different methods. Thus we calculated the free 
energy difference by thermodynamic integration over the path used by the PRM 
calculations described by Equation (5) and over the "nearly linear" path described by 
Equation (6). The integrand of Equation (2a) as approximated by a finite difference 
ratio of AA and A2 where A2 was chosen to be 0.02 and AA was computed by the PM. 
This technique, called finite difference thermodynamic integration, (FDTI) was sug- 
gested in Reference [S]. The potential of mean force calculated from TI is also shown 
on Figure 1. In addition, Table 3 gives the free energy differences at the quadrature 
points and the corresponding calculated conformational free energy differences cal- 
culated as the calculation progressed while Table 4 gives the TI integrands and 
calculated free-energy differences in a similar fashion. 

The FDTI calculation, based on a 5-point Gaussian quadrature, gave the free 
energy difference as 8.9 f 4.6kcal/mol while the nearly linear TI gave 
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309 UMBRELLA SAMPLING 

Table 4 Description of the nearly linear TI calculations. 

1: 0.0469 0.2308 0.5 0.7692 0.9531 A A 

1000 K 204.38 62.839 3.5468 - 54.599 - 126.29 11.7 
2000 K 209.69 61.163 1.8278 ~ 41.434 - 136.09 12.6 
3000 K 205.34 63.948 0.7734 - 46.662 ~ 135.87 12.6 
4000 K 200.02 62.532 0.9297 - 48.057 - 134.15 12.6 

The AA values are the calculated fret energy dlfferences. The orher table entnes arc the TI inregrands at the quadraturc points; all energies 
are In kcal:mol. 

12.6 3.0 kcal/mol. A somewhat shorter FDTI calculation using a 3-point quadra- 
ture gave 9.37 kcal/mol. The error estimates were obtained from the error estimates 
for the integrand at each quadrature point, calculated based on block averages. From 
the stability of the calculated free energy differences these estimates appear to be 
somewhat conservative although not out of line from the usual precision obtained on 
solute-solvent properties for such a solute size. The larger discrepancy between the 
FDTI and the other two results is likely due to interpolation error since the potential 
of mean force as calculated by the PRM appears to have a more complex shape. 

Finally, two additional simulations attempted the calculation of the free energy 
difference over the [0.0,0.1] and [O.O, 0.151 intervals using the PM, to estimate the 
number of PM runs that would be needed to calculate the free energy difference 
adequately. The simulations used a Hamiltonian that corresponded to a state that is 
the average of the two endpoints, as described in Reference [S]. After 1500 K MC steps 
the free energy difference settled at 1.9 and 2.0 kcal/mol, respectively. These numbers 
are quite inconsistent with the estimate obtained from the PM calculations over the 
0.02 i intervals at i = 0.046 and 2 = 0.1 1,  as both of them gave over 0.52 kcal/mol, 
suggesting 2.6 kcal/mol for just the [O.O,O.l] interval. A closer inspection of the PM 
calculations showed that the smallest and largest energy differences sampled spread 
over 14.8 and 19.2 kcal/mol. respectively, indicating that the smallest and largest 
terms contributing to Equation (3) would differ by factors of exp(14.8/ 
kT) = 5.2 x 10" and exp(l9.2/kT) = 7.9 x 

The calculations reported here present the probability ratio method with adaptive 
umbrella sampling as a competitive alternative to the OR, PM or TI for the calcula- 
tion of solvation free energy differences involving small chemical change, although its 
slower convergence results in somewhat lower precision at comparable cost. However, 
the self-checking nature of the method ensures that the error is never too large since 
a significantly incorrect estimate for W(A) will lead to inadequate sampling of the 
coupling parameter space. It is also an advantage that the need to set up several 
individual calculations is absent (or, for more complex problems, largely reduced). 

For the larger change examined in this study, the PRM and the nearly linear TI 
showed equally good performances; the other TI technique, FDTI, appeared to show 
some quadrature error and the PM was found to require too many steps and thus was 
deemed uneconomical. 

respectively! 
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310 M. MEZET 

APPENDIX I .  A-POSTERIORI REJECTION OF ADAPTIVE UMBRELLA 
SAMPLING ITER4TIONS 

In  Reference [21] i t  was suggested that upon reaching a new coupling parameter 
region the corresponding iteration(s) be dropped since these are likely to correspond 
t o  an "uncquilibratcd" state. I t  was also rcmarkcd that this procedure nccds improvc- 
inent since it is not clear a-priori. just how many iterations really nee< tc be dropped. 

This appendix describes a more sophisticated procedure that has been applied in the 
present work. At the end of every iteration, all iterations are compared with the 
subsequent ones. Those that are found to be followed by iterations sampling the same 
region but giving significantly different distribution are dropped. The term "signifi- 
cantly different" is given quantitative meaning as follows. For t w o  iterations i and j 
the range of overlap [p,q] is determined first (p and q are the limiting gridpoints 
corresponding to the coupling parameter region sampled by both iterations). Itera- 
tions that are onry marginally overlapping, that is. when q - p < N:,,". are not 
compared. NO,,, was chosen to be 4, corresponding to a coupling parameter interval 
of length 0.08 in the simulation. For gridpoints p < s < q the ratio 

r, = p:@, ( A l . l )  

and the weight 

ti', = (N::": + N:iNi)(N: + IVJ) ( A I . ? )  

were computed where p: is the probability distribution value at gridpoint s in iteration 
i and N: is the number of times the gridpoint s was sampled in iteration i .  The 
deviation index I,, was obtained as 

Clearly, for distributions that are identical. ID is zero and larger deviations will give 
larger I , ,  values. The fundamental assumption in this screening procedure is that later 
interactions are less likely to be unequilibrated. On this basis the following rejection 
criterion was established: Drop any iteration that gives I , ,  > c;'" values with more 
than PC""" percent of the subsequent iterations. After some experimentation. the 
values C;ln = 0.9 and PC""" = 20% was chosen. 

APPENDIX 11. A NEW SCHEME T O  GIJTDE THE STMIJLATION TOWARD 
UNSAMPLED REGIONS 

In the procedure described in Reference [21], the "abandonment" of a coupling 
parameter region triggered the introduction of a modification of the umbrella sam- 
pling weights designed to drive back the simulation whenever the overall sampling 
rate of the abandoned region was below a threshold value. Thc modification wa4 
always by a constant factor, given on input. This inflexibility reduced the efficiency 
of the procedure since too small change was ineffective while too large values resulted 
in clearly unequilibrated iterations. While the screening procedure described in App- 
endix I was rather successfull in removing these unequilibrated iterations during trial 
runs, i t  resulted in the deletion of too many iterations. In the present work a more 
flexible alternative has been employed as follows. 
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An array of additional biasing factors S(lL,) is established and initialized to 1. At 
the end of each iteration, the array elements corresponding to unsampled gridpoints 
are multiplied by a constant c, (> I )  and for sampled gridpoints raised to the power 
of c, (< I ) ,  an other constant. The biasing weights computed from the E,, values just 
calculated are then multiplied by S .  This way, unsampled grids become progressively 
more attractive while sampling of a grid will eliminate this added “attraction” in a few 
iterations. The ratio of the smallest and largest values in S also gives an indication of 
accuracy of the computed probability distribution - the larger this ratio, the stronger 
distortion of the computed E, was required to obtain full sampling. 

APPENDIX 111. ELIMINATION OF SPURIOUS PEAKS FROM w ( A )  

In Reference [21] it was suggested that the ratio of ~ ( 3 . )  values (e.g. difference between 
&,(A) values) corresponding to neighbouring grids be limited to a threshold value to 
screen out spurious jumps in E,(L). In the present work an additional filter of the 
same vein has been introduced as follows. 

For three consecutive gridpoints I , , + ,  , lb,, JLI+, , the value of w(A,) will be modified 
whenever it is outside of the interval 

(A3.1) [0.75 w(j.l-l) + 0.25 w(; . ,+~ ) ,  0.25 N J ( ~ - ~ )  + 0.75 ~(i,-~)], 

the “middle half’ of the interval [~(i+~), ~ ( l - ~ + ~ ) ]  That is, if 

Iwl(Al) - 4 L i ) l  < lw~(j-,+i) - ~~(2,+1)1/4 (A3.2) 

then ~ ( 2 , )  is replaced by 

W G - J  + [w1+,) - ~ ~ - , ) 1 / 4  (A3.3) 

and if 

Iw@J - ~ ~ ( ~ , + , ) l  < Iw(~-,+,) - ~ ( L ) I / 4  (A3.4) 

then w(l.,) is replaced by 

wG,+ I 1 + bO,+ I 1 - W -  I )IP. (A3.5) 

The underlying assumption in this procedure is that the grid is fine enough so that 
~ ( 2 , )  is a rather smooth function. This assumption is also important when a “legiti- 
mate” peak is encountered, since in that case the elimination of the peak introduces 
a small error. Actually, if this assumption is not fulfilled then the calculated w(1) 
would be sensitive to the gridsize and the position of the grid. 

APPENDIX IV. GENERATING NEW STARTING VALUES FOR THE 
MINIMIZATION PROBLEM 

The alternative to using the normalization coefficients from the previous iterations as 
a starting point for the minimization is based on the assumption that for iterations 
that cover the same coupling parameter range the normalization factors can be 
determined to a good approximation by the one-step optimization procedure des- 
cribed in Reference 21 where only the last iteration’s normalization factor is allowed 
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to vary. The new anproach starts with defining a center for each iteration i as 

i”,, = X ti(;+ ) ih Z n ( i L  ) (A4.1) 

where n ( & )  is the number of configurations with coupling parameter value falling inlo 
the grid centered at 2,. The iterations are sorted in the order of increasing &,,, the first 
iteration is assigned normalization factor 1 .  After that, the normalization factor ot  
each successive iteration is determined by the one-step optimimtion process. 
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