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MODIFIED PROXIMITY CRITERIA FOR THE 
ANALYSIS OF THE SOLVATION OF A 

POLYFUNCTIONAL SOLUTE 

MIHALY MEZEI 

Department of Chemistry and Center for Study in Gene Structure and Function, 
Hunter College of the CUNY,  New York, N Y  10021, USA 

(Received May,  1987; in final form December, 1987) 

The proximity criterion of Mehrotra and Beveridge, that divides the region around a solute into the 
Voronoi polyhedra defined by the solute atoms, has been modified to use the radical planes based on the 
solute atom Van der Waab spheres, as suggested by Gellatly and Finney, or on the interaction strength 
of the atom with the solvent. A comparison of these promiximity criteria is given using the aqueous 
hydration of trans N-methyl acetamide. 

KEY WORDS: Proximity criterion, hydration, Voronoi polyhedra. 

I. INTRODUCTION AND BACKGROUND 

The proximity criterion, introduced by Mehrotra and Beveridge [ I ]  provides a unique 
assignment of solvent molecules to solute atoms around a polyfunctional solute 
molecule by assigning it to the nearest solute atom. Based on this assignment, the 
statistical state of the system can be described in terms of various distribution 
functions defined for a solute atom or a functional group [2,3]. In geometrical terms, 
this assignment is equivalent to partitioning the space around the solute molecule into 
the Voronoi polyhedra defined by the bisector planes between the solute atoms. 

The Voronoi polyhedra of the solute atoms and solvent molecule centers have been 
used by David and David [4] as a tool to analyse solvent structures around a solute. 
The use of the Voronoi polyhedra for the partitioning of the space in a protein 
molecule has also been discussed by Gellatly and Finney [5 ] .  They pointed out that 
the approach has the drawback that the differences among the sizes of the atoms are 
neglected and proposed instead the partitioning of the space by the radical planes (see 
next section) corresponding to the Van der Waals spheres of the atoms. Baranyai and 
Ruff [6] used the same approach to partiton the space in a molten salt. Unlike the 
proximity criterion, References 4 and 6 provide partitions of the space around the 
solute that depend on the solvent coordinates. 

In this note it will be shown that a minimal modification of the proximity criterion 
leads to the partitioning of the space by the radical planes of spheres drawn around 
the solute atoms. The difference between the two approaches will be explored through 
a numerical example, using sphere radii based on both energetic and geometric 
properties of the solute atoms. 
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I ’  
Figure 1 
Heavy line: radical plane, broken line: bisector plane. 

11. THEORY 

Figure 1 shows in 2 dimensions the partition between two atoms of different radii 
using both the bisector and the radical plane. The radical plane of two spheres is the 
locus of points from which the length of the tangent to the two spheres are equal. It 
is perpendicular to the line connecting the center of the two spheres but is displaced 
from the bisector towards the smaller sphere by [Rf ,  - Rk]/(2D) where RA and RB are 
the radii of the spheres A and B, respectively, and D is the distance between their 
centers. For spheres of equal radii the radical plane coincides with the bisector of the 
sphere centers. Clearly, the radical plane partitioning assigns more space to the larger 
atom than does the bisector partitioning. 

The division of space around two solute atoms based on the bisector and on the radical plane. 

At any point S the length square of the tangents are given as 

tis = R i s  - R i  (1) 
tiS = R ~ s  - PB (2)  

where RAs and RBs are the distances of the point S from the solute atoms A and B, 
respectively. Whereas the original proximity criterion finds the side of the dividing 
plane a solute atom is in by comparing RAS and RBs (or RiS and R;,), the modified 
proximity criterion proposed here makes the same decision by comparing & and tf , 
leading to the radical plane division. 

The usz of the modified proximity criterion may go beyond the original geometric 
definition of the radical plane. For overlapping spheres the radical plane is the plane 
in which the circle of intersection lies and it is not possible to draw tangents to the 
spheres from the points of the radical plane that lie inside the spheres. However, 
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Figure 2 Radical plane of two intersecting spheres. 

the modified proximity criterion will still give the correct partition, as can be seen from 
Fig. 2. By Pythagoras’ theorem we have 

Ra - X 2  = Rk - y 2  (3) 
and 

Ris - X 2  = R& - Y 2 .  (4) 
Subtraction of Equation 3 from Equation 4 and use of Equations 1 and 2 gives 

eS = Ris - Ri  = REs - R; = & ( 5 )  
for any point s in the extension of the radical plane inside the spheres. 

Care must be taken, however, for very large spheres. It is possible that the radical 
plane does not fall between the two sphere centers (Figure 3a) or - in case on sphere 
encloses the other - it falls outside both spheres but not between them (Figure 3b)! 
This would lead to the unaccaptable partition where all points near the smaller sphere 
belong to the atom with the larger sphere and the region assigned to the atom with 
the smaller sphere starts far away from it. 

It should be pointed out that nowhere in the discussion above was it assumed that 
the spheres are actually the Van der Waals spheres. Therefore, the R A ,  R B ,  ... values 
can be chosen based on other atomic parameters, such as the strength of the contribu- 
tion of the atom to the solute-solvent interaction and this possibility will be explored 
in the present paper. To maintain an acceptable partition it is advisable to make sure 
that the case depicted on Figure 3b (caused by the large difference between the radii 
of two neighbouring atoms) does not occur. 



D
ow

nl
oa

de
d 

B
y:

 [N
ew

 Y
or

k 
U

ni
ve

rs
ity

] A
t: 

18
:4

6 
16

 J
ul

y 
20

07
 

330 M. MEZEI 

A B 

Figure 3 Examples of radical planes that do not lie between the centers of the two spheres. 

111. CALCULATIONS 

Recently, Monte Carlo calculations were perfomed [7] on the trans N-methyl aceta- 
mide (NMA) based on the OPLS functions developed by Jorgensen and coworkers 
for the solute-water interactions [8,9] and the TIP4P water-water potential [ 10,111. 
Details of the calculations can be found in reference 7. 

The following structural indices were calculated: (a) radial distribution functions 
for solvent molecules assigned to a given solute atom (called primary radial distribu- 
tion function [l]) with the first peak height g,,, and the corresponding distance R,,,; 
(b) first-shell coordination numbers the average number of solvent molecules 
within a preassigned first shell radius R,; (c) first-shell solvent density eFs and (d) total 
coordination number I?T, giving the average number of solvent molecules in the total 
area assigned to a solute atom. R, is usually defined by the first minimum in the 
primary solute-solvent radial distribution function for each atom. The computed 
energetic indices hydration shell water iFs; (b) the solute-solvent pair energy in the 
first shell EFS = i F s / K s  and (c) solute-solvent binding energy from all water in the 
proximity region is .  In addition, The volume of the first hydration shell VFs is defined 
as the volume of the proximity area (in either approach) that lies within the preas- 
signed cutoff distance R,. The solvent-structure is characterized by the averaged 
near-neighbour pair energy for water in the different proximity regions, E W .  

IV. RESULTS AND DISCUSSION 

Table 1 collects the results of the proximity analysis on each of the solute atoms using 
both the original bisector partitioning (Voronoi polyhedra) and the partitionings by 
radical planes, based on the (a) Van der Waals radii of the atoms, (b) atomic charge 
parameter using 

R A  = [qA]/qmax (6)  
where qA is the charge parameter on solute atom A and qmax is the largest charge 
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Table 1 Comparative proximity analysis of trans-NMA R,: First hydration shell radius; VFs: First hydra- 
tion shell volume; &: Coordination number; eFs: First hydration shell density; g,,,: First maximum of the 
primary radial distribution function; R,,,: Location of the first maximum; vFs: First hydration shell solute 
binding energy; cFS: First hydration shell solute pair energy; KT: Total coordination number; vT: Total 
solute binding energy; cW: Solvent-solvent pair energy; BS: bisector plane divisions; RPI: radical plane 
division using Van der Waals radii; and RP2: radical plane division using charge magnitudes. Distances 
are in A and energies are in Kcal/mol. 

Rc “FS K S  @FS g m a x  Rmax ‘FS KT ‘5 EW 

BS 4.0 16 0.2 0.40 2.6 3.6 
PRI 4.0 10 0.1 0.41 2.5 3.7 
PR2 4.0 50 0.6 0.35 2.0 3.7 

BS 2.3 29 0.6 0.57 1.4 2.0 
RP1 2.3 19 0.6 0.87 2.1 2.0 
RP2 2.3 21 0.6 0.80 1.6 2.0 

BS 5.3 286 8.1 0.85 2.0 3.5 
RP1 5.3 336 9.5 0.84 2.0 3.6 
RP2 5.3 252 7.4 0.89 2.0 3.6 

BS 4.3 20 0.4 0.56 3.0 3.7 
RPI 4.3 18 0.3 0.53 2.7 3.6 
RP2 4.3 28 0.5 0.60 3.0 3.7 

BS 4.2 146 4.6 0.95 3.0 2.8 
RPI 4.2 123 4.1 0.99 3.6 2.8 
RP2 4.2 157 4.9 0.94 2.7 2.8 

BS 5.3 288 8.5 0.58 2.2 3.7 
RP1 5.3 334 9.7 0.87 2.1 3.7 
RP2 5.3 254 7.6 0.88 2.1 3.7 

- 0.2 
- 0.2 
- 0.6 

- 2.4 
- 2.4 
- 2.4 

- 2.6 
- 3.5 
- 2.2 

- 0.4 
- 0.3 
- 0.5 

- 10.8 
- 10.5 
- 11.0 

- 2.5 
- 3.4 
- 1.9 

- 1.14 
- 1.33 
- 1.03 

- 4.40 
- 4.40 
- 4.40 

- 0.32 
- 0.37 
- 0.30 

- 0.98 
- 0.97 
- 0.92 

- 2.33 
- 2.50 
-2.10 

- 0.29 
-0.35 
- 0.26 

1.3 
0.8 
3.9 

44.3 
38.5 
45.0 

55.0 
61.3 
51.7 

I .5 
I .2 
2.1 

54.8 
50.0 
58. I 

58.1 
64. I 
54.2 

- 0.4 
- 0.3 
- 1 . 1  

- 7.2 
- 6.2 
- 7.0 

- 3.6 
- 4.6 
- 3.1 

-0.5 
- 0.4 
- 0.7 

- 12.3 
- 11.5 
- 12.7 

- 3.3 
- 4.4 
- 2.7 

- 3.36 
- 3.38 
- 3.39 

- 3.32 
- 3.31 
- 3.32 

- 3.46 
- 3.45 
- 3.46 

- 3.34 
- 3.32 
- 3.34 

- 3.3s 
- 3.35 
- 3.36 

- 3.35 
- 3.35 
- 3.35 

(irrespective of sign) found in the solute molecule, giving RA values between 0 and 
1.5 A. 

An examination of the computed first-shell volumes show that, compared with the 
bisector partitioning (BS) the Van der Waals partition (RPI) will increase the primary 
regions of the methyl groups at  the expense of the polar groups and increase the 
primary region of the oxygen at the expense of the hydrogen. The charge partition 
(RP2), again compared with the BS partitioning, will increase the primary regions of 
the polar groups at the expense of the methyl groups. Notice that this also means a 
significant increase in the primary regions of the atoms “inside” the molecule. 

The computed first shell densities show that the change in coordination numbers 
can be explained very well by the change in the first shell volumes for the methyl 
groups but less well for the carbonyl oxygen, while the amino hydrogen’s coordina- 
tion number is insensitive to the volume change - a fact noted earlier [7]. 

The location of the first peak of the radial distribution function showed very little 
change while the height of the first peak was anticorrelated with the available first shell 
volume. The change in the height was significant for the hydrophylic atoms but small 
for the central carbon and nitrogen as well as for the methyl groups. 

An interesting consequence of the change in the coordination number of the methyl 
groups is a disproprotionate change in the binding energies as reflected in the solute- 
solvent pair energies. This is a result of the reassignment of water between the methyl 
groups and the neighbouring polar groups, and shows that water around the boun- 
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332 M. MEZEI 

daries examined is rather strongly bound. This tends to support the use of charge 
partitioning. On the other hand, no significant change was found in the water-water 
pair cnergies. 

In summary, the results generally show little difference among the proximity criteria 
examined - trends are well preserved. Apart from the expected change in the volumes 
of the proximity areas and the concomittant change in the coordination numbers, 
larger than expected changes were observed only in the peak height of the solute- 
solvent radial distribution functions and in the first shell binding energies. The former 
affected most the hydrophilic atoms Nand H while the latter affected the hydrophobic 
methyl groups. Based on the results on the solute-solvent energetics, it is concluded 
that the charge-based radical plane partitioning conforms the best to chemical intui- 
tion. 
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