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MODIFIED PROXIMITY CRITERIA FOR THE
ANALYSIS OF THE SOLVATION OF A
POLYFUNCTIONAL SOLUTE
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The proximity criterion of Mehrotra and Beveridge, that divides the region around a solute into the
Voronoi polyhedra defined by the solute atoms, has been modified to use the radical planes based on the
solute atom Van der Waals spheres, as suggested by Gellatly and Finney, or on the interaction strength
of the atom with the solvent. A comparison of these promiximity criteria is given using the aqueous
hydration of trans N-methyl acetamide.

KEY WORDS: Proximity criterion, hydration, Voronoi polyhedra.

I. INTRODUCTION AND BACKGROUND

The proximity criterion, introduced by Mehrotra and Beveridge [1] provides a unique
assignment of solvent molecules to solute atoms around a polyfunctional solute
molecule by assigning it to the nearest solute atom. Based on this assignment, the
statistical state of the system can be described in terms of various distribution
functions defined for a solute atom or a functional group [2,3]. In geometrical terms,
this assignment is equivalent to partitioning the space around the solute molecule into
the Voronoi polyhedra defined by the bisector planes between the solute atoms.

The Voronoi polyhedra of the solute atoms and solvent molecule centers have been
used by David and David [4] as a tool to analyse solvent structures around a solute.
The use of the Voronoi polyhedra for the partitioning of the space in a protein
molecule has also been discussed by Gellatly and Finney [5]. They pointed out that
the approach has the drawback that the differences among the sizes of the atoms are
neglected and proposed instead the partitioning of the space by the radical planes (see
next section) corresponding to the Van der Waals spheres of the atoms. Baranyai and
Ruff [6] used the same approach to partiton the space in a molten salt. Unlike the
proximity criterion, References 4 and 6 provide partitions of the space around the
solute that depend on the solvent coordinates.

In this note it will be shown that a minimal modification of the proximity criterion
leads to the partitioning of the space by the radical planes of spheres drawn around
the solute atoms. The difference between the two approaches will be explored through
a numerical example, using sphere radii based on both energetic and geometric
properties of the solute atoms.
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Figure 1 The division of space around two solute atoms based on the bisector and on the radical plane.
Heavy line: radical plane, broken line: bisector plane.

II. THEORY

Figure 1 shows in 2 dimensions the partition between two atoms of different radii
using both the bisector and the radical plane. The radical plane of two spheres is the
locus of points from which the length of the tangent to the two spheres are equal. It
is perpendicular to the line connecting the center of the two spheres but is displaced
from the bisector towards the smaller sphere by [R4 — R:]/(2D) where R, and Ry are
the radii of the spheres 4 and B, respectively, and D is the distance between their
centers. For spheres of equal radii the radical plane coincides with the bisector of the
sphere centers. Clearly, the radical plane partitioning assigns more space to the larger
atom than does the bisector partitioning.

At any point S the length square of the tangents are given as

Bs = Rs— R, ()

tzas = Rés - B%; 2
where R,s and Ry are the distances of the point S from the solute atoms 4 and B,
respectively. Whereas the original proximity criterion finds the side of the dividing
plane a solute atom is in by comparing R,s and Rgs (or R3s and Ris), the modified
proximity criterion proposed here makes the same decision by comparing ¢ and 3,
leading to the radical plane division.

The use of the modified proximity criterion may go beyond the original geometric
definition of the radical plane. For overlapping spheres the radical plane is the plane
in which the circle of intersection lies and it is not possible to draw tangents to the
spheres from the points of the radical plane that lie inside the spheres. However,
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Figure 2 Radical plane of two intersecting spheres.

the modified proximity criterion will still give the correct partition, as can be seen from
Fig. 2. By Pythagoras’ theorem we have

RR—-X' = R-Y 3)
and
Ris — X? = Ry, — Y2 4
Subtraction of Equation 3 from Equation 4 and use of Equations 1 and 2 gives
tf\s = Rf\s - fo = Rfas - R% = f%;s (%)

for any point s in the extension of the radical plane inside the spheres.

Care must be taken, however, for very large spheres. It is possible that the radical
plane does not fall between the two sphere centers (Figure 3a) or - in case on sphere
encloses the other - it falls outside both spheres but not between them (Figure 3b)!
This would lead to the unaccaptable partition where all points near the smaller sphere
belong to the atom with the larger sphere and the region assigned to the atom with
the smaller sphere starts far away from it.

It should be pointed out that nowhere in the discussion above was it assumed that
the spheres are actually the Van der Waals spheres. Therefore, the R,, Ry, ... values
can be chosen based on other atomic parameters, such as the strength of the contribu-
tion of the atom to the solute-solvent interaction and this possibility will be explored
in the present paper. To maintain an acceptable partition it is advisable to make sure
that the case depicted on Figure 3b (caused by the large difference between the radii
of two neighbouring atoms) does not occur.
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Figure 3 Examples of radical planes that do not lie between the centers of the two spheres.

IIT. CALCULATIONS

Recently, Monte Carlo calculations were perfomed [7] on the trans N-methyl aceta-
mide (NMA) based on the OPLS functions developed by Jorgensen and coworkers
for the solute-water interactions [8,9] and the TIP4P water-water potential [10,11].
Details of the calculations can be found in reference 7.

The following structural indices were calculated: (a) radial distribution functions
for solvent molecules assigned to a given solute atom (called primary radial distribu-
tion function [1]) with the first peak height g,,,, and the corresponding distance R,,,,;
(b) first-shell coordination numbers K, the average number of solvent molecules
within a preassigned first shell radius R;; (c) first-shell solvent density ggg and (d) total
coordination number K;, giving the average number of solvent molecules in the total
area assigned to a solute atom. R, is usually defined by the first minimum in the
primary solute-solvent radial distribution function for each atom. The computed
energetic indices hydration shell water Vrg; (b) the solute-solvent pair energy in the
first shell &, = Vgs/K, and (c) solute-solvent binding energy from all water in the
proximity region ¥,. In addition, The volume of the first hydration shell }% is defined
as the volume of the proximity area (in either approach) that lies within the preas-
signed cutoff distance R.. The solvent-structure is characterized by the averaged
near-neighbour pair energy for water in the different proximity regions, &y .

IV. RESULTS AND DISCUSSION

Table 1 collects the resuits of the proximity analysis on each of the solute atoms using
both the original bisector partitioning (Voronoi polyhedra) and the partitionings by
radical planes, based on the (a) Van der Waals radii of the atoms, (b) atomic charge
parameter using

RA = 15 [qA]/qmax (6)

where g, is the charge parameter on solute atom A4 and g,,, is the largest charge



ANALYSIS OF SOLUTION 331

Table 1 Comparative proximity analysis of trans-NMA R_: First hydration shell radius; Vg: First hydra-
tion shell volume; K;: Coordination number; ggg: First hydration shell density; g,.,,: First maximum of the
primary radial distribution function; R,,,: Location of the first maximum; v¢: First hydration shell solute
binding energy; eps: First hydration shell solute pair energy; K;: Total coordination number; v;: Total
solute binding energy; ¢y, Solvent-solvent pair energy; BS: bisector plane divisions; RPI: radical plane
division using Van der Waals radii; and RP2: radical plane division using charge magnitudes. Distances
are in A and energies are in Kcal/mol.

R, Ves K5 ors Zmax  Riw  Vrs &g Ry v Ew
N BS 4.0 16 02 040 26 3.6 -02 -—1.14 1.3 -04 336
N PRI 4.0 10 0.1 041 25 37 -02 —133 0.8 —-03 -338
N PR2 4.0 SO0 06 035 20 3.7 -06 ~—1.03 3.9 -1 -339
H(N) BS 23 29 06 057 14 2.0 —-24 —~440 443 -72 =332
H(N) RP1 23 19 06 087 21 2.0 —-24 —440 385 —-6.2 =331
H(N) RP2 23 21 0.6 080 1.6 2.0 —-24 —440 450 -70 =332
Me(N) BS 53 286 8.1 085 20 3.5 -26 —032 550 —36 —346
Me(N) RPI 53 336 95 084 20 3.6 -35 =037 613 —46 —3.45
Me(N) RP2 53 252 74 089 20 3.6 —-22 =030 517 —-31 =346
C(CO) BS 43 20 04 056 30 3.7 —-04 —098 1.5 —-05 =334
C(CO) RPI 43 18 03 053 27 3.6 -03 —-097 1.2 -04 -332
C(CO) RP2 43 28 05 060 3.0 37 -05 -092 2.1 -0.7 -334
(0] BS 42 146 46 095 3.0 2.8 -10.8 —-233 548 —123 335
0 RPI 42 123 41 099 36 2.8 —-10.5 =250 500 -11.5 —-335
0 RP2 42 157 49 094 27 2.8 -110 =210 581 —127 —-336
Me(C) BS 53 288 85 088 22 3.7 -25 =029 58.1 —-33 =335
Me(C) RPI 53 334 97 087 2.1 3.7 —34 —035 64.1 —44 —335
Me(C) RP2 53 254 76 088 21 3.7 ~1.9 =026 542 -27 -335

(irrc/:;pective of sign) found in the solute molecule, giving R, values between 0 and
1.5A.

An examination of the computed first-shell volumes show that, compared with the
bisector partitioning (BS) the Van der Waals partition (RP]) will increase the primary
regions of the methyl groups at the expense of the polar groups and increase the
primary region of the oxygen at the expense of the hydrogen. The charge partition
(RP2), again compared with the BS partitioning, will increase the primary regions of
the polar groups at the expense of the methyl groups. Notice that this also means a
significant increase in the primary regions of the atoms “‘inside” the molecule.

The computed first shell densities show that the change in coordination numbers
can be explained very well by the change in the first shell volumes for the methyl
groups but less well for the carbonyl oxygen, while the amino hydrogen’s coordina-
tion number is insensitive to the volume change — a fact noted earlier [7].

The location of the first peak of the radial distribution function showed very little
change while the height of the first peak was anticorrelated with the available first shell
volume. The change in the height was significant for the hydrophylic atoms but small
for the central carbon and nitrogen as well as for the methy!l groups.

An interesting consequence of the change in the coordination number of the methyl
groups is a disproprotionate change in the binding energies as reflected in the solute-
solvent pair energies. This is a result of the reassignment of water between the methyl
groups and the neighbouring polar groups, and shows that water around the boun-
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daries examined is rather strongly bound. This tends to support the use of charge
partitioning. On the other hand, no significant change was found in the water-water
pair energies.

In summary, the results generally show little difference among the proximity criteria
examined - trends are well preserved. Apart from the expected change in the volumes
of the proximity areas and the concomittant change in the coordination numbers,
larger than expected changes were observed only in the peak height of the solute-
solvent radial distribution functions and in the first shell binding energies. The former
affected most the hydrophilic atoms N and H while the latter affected the hydrophobic
methy! groups. Based on the results on the solute-solvent energetics, it is concluded
that the charge-based radical plane partitioning conforms the best to chemical intui-
tion.
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