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The Detailed Balance Energy-scaled Displacement Monte Carlo method that stems from the previously
published Energy Scaled Displacement Monte Carlo method is presented. The results of tests performed
" on a dense Lennard-Jones liquid and on two particles in one dimension are reported.
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INTRODUCTION

The Metropolis Monte Carlo algorithm (MMC) [1] forms the basis of several liquid
state computer simulation studies. The substantial computational effort it requires
inspired numerous attempts at improving its efficiency. In general, these efforts
involve replacing a random process in the algorithm by a more “informed” one based
on the knowledge of some aspect of the system under study. Examples of this are the
Force-Biased MMC (FBMC) of Rao, Pangali and Berne [2], and the Smart Monte
Carlo of Rossky, Doll and Friedman [3] where moves along the force acting on the
particle are sampled more frequently; the preferential sampling of Owicki and
Scheraga [4, 5] where particles in an inhomogeneous system are perturbed with a
frequency dependent on location; the method of Noguti and Go [6] where the stepsize
varies with the direction to reflect the anisotropy of the system; the cavity-biased (T,
V, u) ensemble method of Mezei [7, 8] where particle insertions are attempted only
into existing cavities and the virial-biased (T, P, N) ensemble method of Mezei [9] that
extends the idea of FBMC to the changes in volume. Although several of these
techniques involve significant additional computational expense, the overall saving is
usually still significant.

*On leave of absence from: Department of Physics, Banaras Hindu University, Varanasi — 221005,
India.
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A recent idea of Goldman [10] sought to improve the MMC by varying the stepsize
for the displacement as a function of the energetic environment of the molecule to be
moved. The procedure is based on the observation that, while for a particle in a low
energy position only small displacements are likely to be accepted, in a high-energy
environment the acceptance of larger steps may be more likely. The implementation
of this idea, the Energy-scaled Displacement Monte Carlo method (ESDMC), modi-
fied the MMC by making the stepsize a function of the total interaction energy of the
particle to be moved. Numerical examples on the Lennard-Jones (LJ) fluid and the
ST2 water models [11] showed that the inclusion of energy-scaled displacements into
MMC resulted in significant convergence improvements. Also, the asymptotic values
computed from MMC, FBMC and ESDMC were in agreement for several calcula-
tions (i.e. they fell within each other’s uncertainties) [12]). With some other calcula-
tions, however, significant discrepancies were found between the results of ESDMC
and those of MMC and FBMC [13]; these were attributed to insufficient equilibration
in Ref. 10. From subsequent work, however, it became clear that, because ESDMC
violated detailed balance, the self-correction presumed in Ref. 10 could not be
expected [14].

The purpose of this paper is to present the Detailed Balance Energy-Scaled Dis-
placement Monte Carlo method (subsequently to be referred to as the detailed
balance method for brevity). This method generates attempted moves for the particles
according to the ESDMC prescription, but modifies the acceptance probability
expression in order to maintain detailed balance. The convergence characteristics of
the method are demonstrated by application to a LJ fluid near its triple point. The
manifest effect of ESDMC’s violation of detailed balance is also examined by studying
a system of two particles in one dimension where high-precision results can be
obtained by numerical integration.

THE DETAILED BALANCE METHOD

Following the general ideas of the Metropolis Monte Carlo method, the detailed
balance method selects particles to be moved one at a time, but sets the maximum
displacement along any of the coordinate axes to be

A, exp [A(e, — <&>)/kT] if Ale, — <&))/kDkT < E,,,
Ay exp (E,..) otherwise

)

where k is the Boltzmann constant, T is the absolute temperature and <{é) is the
ensemble average of the total energy per particle that is continually updated during
the run (since, in general, its value is not known a priori). The total energy of the
moved particle is obtained from

N
e, = (Z 14,,,,)/2 2
g=1

where u,, is the interaction energy between particles p and gq.
We also examined the prescription

A = Afl + Btan '[d/(e, — <N/} &)

for the displacement, designed to eliminate some of the extreme step sizes that can be
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generated by Equation (1), and to make the variation in step size more nearly
symmetrical around a value of A, for which the acceptance rate is approximately 0.5.
From Equation (3), clearly Ay(1 — B) < A < A1 + B).

The rules governing the acceptance of a trial configuration are established from the
condition for detailed balance. This requires that if / and j represent two system states
then the number of systems in the ensemble making the transition from i to j be equal
to the number of those making the reverse transition from j to i. Thus, if f; is the
normalized limit (equilibrium) distribution, and p; is the probability of the system
undergoing the transition from state i to state j, detailed balance requires that

Jfipi = fipi- 4)

Writing p; as the product of an a prior normalized transition probability p¥ and the
acceptance probability a;, gives the condition

fpia; = fpra;. &)

Considering only single particle moves means that the two states i and j differ only
in the location of one particle. Equations (1) and (2) restrict the new location of the
moved particle to be within a cube of edge length 2A centered at the old position. Since
the constraining cubes drawn around a particular particle in states / and j usually
differ in size, there are, in principle, three possibilities for their overlap. These
correspond to the conditions: (1) p¥ > 0 and p} > 0 (complete overlap): (2) either
py > 0Oand pf = 0orpf > 0and pf = 0 (partial overlap); and (3) p} = p¥ = 0
(zero overlap). Each of these conditions will lead to a rule in the algorithm for
determining the acceptance probability a;.

Note that the partial overlap occurs when the constraining cube around the particle
in the trial location is too small to encompass the center of the cube around that same
particle in the initial state. Also, the zero overlap case does not arise operationally,
but its introduction is necessary if one were to construct the full transition matrix of
the system.

To satisfy Equation (5) for the case of complete overlap we rearrange it to the form:

aij ./] pjT

S _ LA 6)

a; fi P;’" (
and use the fact that

Py 4

gio _ i 7

24 V @

where ¥, and V] are the volumes of the constraining cubes in states / and j, respectively.
Combining Equations (6) and (7) results in

@ LV _
a Az R. (8)
This leads to the following rule: if R > 1, accept the new state, i.e. set g, = R™' and
a; = 1;if R < 1, accept the new state with probability R, i.e.seta; = landa; = R.

For partial overlap, we always reject the new state and count the initial state again
in the averaging process, i.e. we satisfy Equation (5) by setting a; = a; = 0. Finally,
the zero overlap condition automatically satisfies detailed balance.
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CALCULATIONS AND RESULTS
{a) Lennard-Jones Fluid near its Triple Point

We applied the detailed balance method, using both Equation (1) and Equation (3),
to a dense Lennard-Jones system at T* = 1.5 and ¢* = 0.85. Face-centered cubic
periodic boundary conditions were applied. The cutoff on the potential was 2.5¢ and
no contributions from interactions beyond the cutoff distance were estimated. For
comparison, we also performed MMC, FBMC and ESDMC calculations on the same
system. In each case we started from the same equilibrated configuration. Our resuits
for the various algorithms are collected in Table 1. We found that all the algorithms,
except ESDMC, converge to the internal energy value —4.89 within 0.2%. The
ESDMC algorithm results in an internal energy that is about 1% above this value.
Except for ESDMC, all the pressure results were within 1% of 4.99, while the
ESDMC runs fell within 0.4% of 5.14. We also found that both the MMC and FBMC
converge to the reduced heat capacity value of 0.9 within 1%. The ESDMC algorithm
converges to values that are approximately 20% above this, while all the calculations

Table 1 Excess reduced energies and heat capacities and the pressure from various Monte Carlo algorithms
for a [00-particle Lennard-Jones fluid at 7* = (kT/0) = 1.5, p* = go* = 0.85.

Unscaled Energy scaled displacement Run
displacement len.
With detailed balance No detailed
halance
Eq. (1) Eq. (3)
E,.. 20 1.0 3.0 20
A 0.35 0.35 0.35 0.35
B 0.50 0.75
A 0.0 0.50 1.0 0.0 0.0 0.0 0.0 0.0 0.0
A, 0.12 0.135 0.125 0.12 0.12 0.12 0.12 0.12 0.12

—(E> 4.895 4.884 4.876 4918 4.891 4.878 4.864 4.865 4.827 4
4.888 4.884 4.895 4915 4.889 4.881 4.872 4.860 4.837 8

4.892 4.892 4.894 4.895 4.879 4.876 4.853 4.840 12
4.886 4.891 4.886 4.893 4.882 4.881 4.846 4.839 16
4.894 4.883 20
4.896 4.884 24
(P 4.949 5.006 5.036 4.821 4971 5.040 5.092 5.051 5.209 4
4.982 5.003 4.984 4.860 4.890 5.020 5.054 5.060 5.169 8
4.969 4.963 4.957 4956 5.031 5.035 5.091 5.158 12
4.995 4971 4.998 4958 5.013 5.011 5.127 5.159 16
4953 5.012 20
4.941 5.006 24
KC, 0.997 0.879 0.879 0.947 0.802 0.758 1.085 1.013 1.075 4
0.898 0.900 0.901 0.935 0.815 0.765 0.990 1.044 1.106 8
0.893 0.909 0.989 0.829 0.800 0.987 1.082 1.105 12
0.897 0.909 0.984 0.868 0.812 0.993 1.085 1.096 16
0.856 0.823 20
0.873 0.828 24
P 0.43 0.66 0.64 0.34 0.35 0.39 0.39 0.45 0.45

E, o defined in Equation (1), 4: defined in Equation (1); B: defined in Equation (3); 4: the force-bias parametcr[l] (4 = Ois the MMC}; Ay

the step-size parameter; P, _: the average acceptance rate; run length: number of attempted moves x 1077
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with our detailed balance algorithms produced heat capacities within ~ 10% of the
MMC-FBMC value, depending on the choice of the biasing parameters 4 and B. This
spread indicates that they converge slowly in this application. As for comparing the
use of Equation (1) and Equation (3) for the determination of the stepsize, despite
Equation (3) yielding higher acceptance rates, the corresponding heat-capacity cal-
culation converges slower.

(b) Two Particles in One Dimension

We carried out calculations for this simple system to get around the two uncertainties
that almost always arise in many-particle Monte Carlo simulations — namely, not
knowing the exact results and not knowing whether an algorithm has run long enough
to converge to the equilibrium distribution. Our system here consisted of two particles
interacting through the continuous, soft, repulsive potential u(x) = x~*. We took the
sample size to be of unit length, k7 = 1, and applied the usual periodic boundary
conditions. Unlike the calculations on the Lennard-Jones fluid, all these calculations
used the true ensemble-averaged energy taken from the quadrature for (&) in Equa-
tion (1). E,,, and A, in Equation (1) were 2 and 0.1, respectively, giving acceptance
rates of approximately 0.6. For this system the total reduced configurational energy
and heat capacity, found by one-dimensional quadratures, were 4.783 and 0.647,
respectively.

Figure 1 displays the computed internal energy ((£>) and constant-volume heat
capacity ({(C,)) as functions of the scaling parameter A for both the detailed balance
method (with Equation (1)) and ESDMC; 4 = 0 represents the MMC method.
Calculations with 10°, 10%, 5 x 10° trial steps at acceptance rates of 0.6 all gave
essentially the same results, a fact indicating convergence with each algorithm at each
point. It is clear from Figure 1 that for this system both MMC and the detailed
balance method give the same correct (£ ) and {C, ) values, while the ESDMC results
oscillate around the exact value as A is varied. Furthermore, the non-zero values of
A at which the ESDMC results for the energy and the heat capacity agree with the
exact ones are different, dashing all hope of finding a single non-zero 4 value that
would give the correct result with ESDMC. Extensions of these calculations to
systems of several particles in one dimension gave similar results, although the
discrepancy with ESDMC tended to decrease as the number of particles increased.
The reason for this remains unclear.

DISCUSSION AND SUMMARY

Using long runs on different systems, we have tested the detailed balance energy-
scaled Monte Carlo algorithm that is designed to produce convergence to the correct
limiting distribution function. The additional computational expense incurred by the
use of the algorithm in a conventional Metropolis program is negligible; thus, the
potential benefits were expected to be significant. Disappointingly, however, for a
dense Lennard-Jones fluid slower convergence was found than with the conventional
MMC algorithm. Since the ESDMC algorithm, while not exact, produces only small
errors and since it is efficient in the early part of a walk, we feel there is still some
advantage in using the original ESDMC algorithm to speed up the initial phase of a
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Figure 1 (A) Internal energy of 2-particles in one dimension on a unit length interacting through the
potential #(x) = x 2. 4 is the scaling parameter in Equation (1). The horizontal line is the quadrature
result. x = detailed balance method; © = ESDMC. Each point is the result of 10° trials. (B) As for Figure
1A, C, is the system heat capacity.

simulation. Of course, the final phase, during which the actual equilibrium results are
collected, should be run with another algorithm that satisfies detailed balance.
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