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The Detailed Balance Energy Scaled Displacement Monte Carlo method that stems from the previously
published Energy Scaled Displacement Monte Carlo method is presented. We report the results of tests
performed on a dense Lennard-Jones liquid and on two particles in one dimension.
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INTRODUCTION

The Metropolis Monte Carlo algorithm (MMC) [1] forms the basis of several liquid state
computer simulation studies. The substantial computational effort it requires inspired nu-
merous attempts for improving its efficiency. In general, these efforts involve replacing a
random process in the algorithm by a more “informed” one based on the knowledge of some
aspect of the system under study. Examples of this are the Force-Biased MMC (FBMC) of
Rao, Pangali and Berne [2], and the Smart Monte Carlo of Rossky, Doll and Friedman [3]
where moves along the force acting on the particle are sampled more frequently; the prefer-
ential sampling of Owicki and Scheraga [4,5] where particles in an inhomogeneous system are
perturbed with a frequency dependent on location; the method of Noguti and Go [6] where
the stepsize varies with the direction to reflect the anisotropy of the system; the cavity-biased
(T,V,µ) ensemble method of Mezei [7,8] where particle insertions are attempted only into
existing cavities and the virial-biased (T,P,N) ensemble method of Mezei [9] that extends
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the idea of FBMC to the changes in volume. Although several of these techniques involve
significant additional computational expense, the overall saving is usually still significant.

A recent idea of Goldman [10] sought to improve the MMC by varying the stepsize for the
displacement as a function of the energetic environment of the molecule to be moved. The
procedure is based on the observation that while for a particle in a low energy position only
small displacements are likely to be accepted, in a high-energy environment the acceptance
of larger steps may be more likely. The implementation of this idea, the Energy-scaled
Displacement Monte Carlo method (ESDMC), modified the MMC by making the stepsize a
function of the total interaction energy of the particle to be moved. Numerical examples on
the Lennard Jones (LJ) fluid and on the ST2 water model [11] showed that the inclusion of
the energy-scaled displacements into MMC resulted in significant convergence improvements.
Also, the asymptotic values computed from MMC, FBMC and ESDMC were in agreement
for several calculations (i.e. they fell within each other’s uncertainties) [12]. With some other
calculations, however, significant discrepancies were found between the results of ESDMC
and those of MMC and FBMC [13]; these were attributed to insufficient equilibration in Ref.
10. From subsequent work, however, it became clear that because ESDMC violated detailed
balance, the self-correction presumed in Ref. 10 could not be expected [14].

The purpose of this paper is to present the Detailed Balance Energy-Scaled Displacement
Monte Carlo method (subsequently to be referred to as the detailed balance method for
brevity). This method generates attempted moves for the particles according to the ESDMC
prescription but modifies the acceptance probability expression in order to maintain detailed
balance. The convergence characteristics of the method are demonstrated by application to
a LJ fluid near its triple point. The manifest effect of ESDMC’s violation of detailed balance
is also examined by studying a system of two particles in one dimension where high-precision
results can be obtained by numerical integration.

THE DETAILED BALANCE METHOD

Following the general ideas of the Metropolis Monte Carlo method, the detailed balance
method selects particles to be moved one at a time but sets the maximum displacement
along any of the coordinate axes to be

∆ =
{

∆0 exp[A(ep − 〈e〉)/kT ] if A(ep − 〈e〉)/kT < Emax
∆0 exp(Emax) otherwise

(1)

where k is the Boltzmann constant, T is the absolute temperature and 〈e〉 is the ensemble
average of the total energy per particle that is continually updated during the run (since, in
general, its value is not known a priori). The total energy of the moved particle is obtained
from

ep =

 N∑
q=1

upq

 /2 (2)

where upq is the interaction energy between particles p and q.

We also examined the prescription

∆ = ∆0{[1 + B tan−1[A/(ep − 〈e〉)]/(π/2)} (3)
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for the displacement, designed to eliminate some of the extreme step sizes that can be
generated by Equation (1), and to make the variation in step size more nearly symmetrical
around a value of ∆0 for which the acceptance rate is approximately 0.5. From Equation (3),
clearly ∆0(1−B) ≤ ∆ ≤ ∆0(1 + B).

The rules governing the acceptance of a trial configuration are established from the con-
dition for detailed balance. This requires that if i and j represent two system states then
the number of systems in the ensemble making the transition from i to j be equal to the
number of those making the reverse transition from j to i. Thus if fi is the normalized limit
(equilibrium) distribution, and pij is the probability of the system undergoing the transition
from state i to state j detailed balance requires that:

fipij = fjpji. (4)

Writing pij as the product of an a-priori normalized transition probability p∗ij and the ac-

ceptance probability aij , gives the condition

fip
∗
ijaij = fjp

∗
jiaji. (5)

Considering only single particle moves means that the two states i and j differ only in the
location of one particle. Equations (1) and (2) restrict the new location of the moved particle
to be within a cube of edge length 2∆ centered at the old position. Since the constraining
cubes drawn around a particular particle in states i and j usually differ in size there are, in
principle, three possibilities for their overlap. These correspond to the conditions: (1) p∗ij > 0

and p∗ji > 0 (complete overlap); (2) either p∗ij > 0 and p∗ji = 0 or p∗ij = 0 and p∗ji > 0 (partial

overlap); (3) p∗ij = p∗ji = 0 (zero overlap). Each of these conditions will lead to a rule in the

algorithm for determining the acceptance probability aij .

Note that partial overlap occurs when the constraining cube around the particle in the
trial location is too small to encompass the center of the cube around that same particle in
the initial state. Also, the zero overlap case does not arise operationally, but is necessary to
introduce if one were to construct the full transition matrix of the system.

To satisfy Equation (5) for the case of complete overlap we rearrange it to the form:

aij

aji
=

fj

fi

p∗ji
p∗ij

(6)

and use the fact that
p∗ji
p∗ij

=
Vi

Vj
(7)

where Vi and Vj are the volumes of the constraining cubes in states i and j, respectively.
Combining Equations. (6) and (7) results in

aij

aji
=

fj

fi

Vi

Vj
= R (8)

which leads to the following rule. If R > 1, accept the new state i.e. set aji = R−1 and
aij = 1 . If R < 1, accept the new state with probability R i.e. set aji = 1 and aij = R.
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For partial overlap, we always reject the new state and count the initial state again in
the averaging process i.e. we satisfy Equation (5) by setting aij = aji = 0. Finally, the zero
overlap condition automatically satisfies detailed balance.

CALCULATIONS AND RESULTS

(a) Lennard-Jones Fluid near its Triple Point

We applied the detailed balance method using both Equation (1) and Equation (3) to a dense
Lennard-Jones system at T ∗ = 1.5 and ρ∗ = 0.85. Face-centered cubic periodic boundary
conditions were applied. The cutoff on the potential was 2.5σ and no contributions from
interactions beyond the cutoff distance were estimated. For comparison, we also performed
MMC, FBMC and ESDMC calculations on the same system. In each case we started from
the same equilibrated configuration. Our results for the various algorithms are collected in
Table 1. We found that all the algorithms, except ESDMC, converge to the internal energy
value -4.89 within 0.2% . The ESDMC algorithm results in an internal energy that is about l%
above this value. Except for ESDMC, all the pressure results were within 1.0% of 4.99 while
the ESDMC runs fell within 0.4% of 5.14 . We also found that both the MMC and FBMC
converge to the reduced heat capacity value of 0.90 within 1% . The ESDMC algorithm
converges to values that are approximately 20% above this, while all the calculations with
our detailed balance algorithms produced heat capacities within ∼10% the MMC-FBMC
value, depending on the choice of the biasing parameters A and B. This spread indicates
that they converge slowly in this application. As for comparing the use of Equation (1)
and Equation (3) for the determination of the stepsize, despite Equation (3) yielding higher
acceptance rates, the corresponding heat-capacity calculation converges slower.

(b) Two Particles in One Dimension

We carried out calculations for this simple system to get around the two uncertainties that
almost always arise in many- particle Monte Carlo simulations — namely not knowing the
exact results, and not knowing whether an algorithm has run long enough to converge to
the equilibrium distribution. Our system here consisted of 2 particles interacting through
the continuous, soft, repulsive potential u(x) = x−2. We took the sample size to be of unit
length, kT = 1 and applied the usual periodic boundary conditions. Unlike the calculations
on the Lennard-Jones fluid, all these calculations used the true ensemble-averaged energy
taken from the quadrature for 〈e〉 in Equation (1). Emax and ∆0 in Equation (1) were 2 and
0.10, respectively, giving acceptance rates of approximately 0.6. For this system the total
reduced configurational energy and heat capacity, found by one-dimensional quadratures,
were 4.783 and 0.647, respectively.

Figure 1 displays the computed internal energy (〈E〉) and constant-volume heat capacity
(〈Cv〉) as functions of the scaling parameter A for both the detailed balance method (with
Equation (1)) and ESDMC; A = 0 represents the MMC method. Calculations with 105,
106, 5 × 106 trial steps at acceptance rates of 0.6 all gave essentially the same results, a
fact indicating convergence with each algorithm at each point. It is clear from Figure 1
that for this system both MMC and the detailed balance method give the same correct 〈E〉
and 〈Cv〉 values while the ESDMC results oscillate around the exact value as A is varied.
Furthermore, the values of A at which the ESDMC results for the energy and the heat
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Table 1. Excess reduced energies and heat capacities and the pressure from various
Monte Carlo algorithms for a 100-particle Lennard-Jones fluid at T ∗ = (kT/θ) = 1.5, p∗ =
ρσ3 = 0.85.

Unscaled Energy scaled displacement Run
displacement len.

With detailed balance No detailed
balance

Eq. (1) Eq. (3)

Emax: 2.0 1.0 3.0 2.0
A: 0.35 0.35 0.35 0.35
B: 0.50 0.75
λ 0.0 0.50 1.0 0.0 0.0 0.0 0.0 0.0 0.0
∆0: 0.12 0.135 0.125 0.12 0.12 0.12 0.12 0.12 0.12
−〈E〉 4.895 4.884 4.876 4.918 4.891 4.878 4.864 4.865 4.827 4

4.888 4.884 4.895 4.915 4.889 4.881 4.872 4.860 4.837 8
4.892 4.892 4.894 4.895 4.879 4.876 4.853 4.840 12
4.886 4.891 4.886 4.893 4.882 4.881 4.846 4.839 16

4.894 4.883 20
4.896 4.884 24

〈P 〉 4.949 5.006 5.036 4.821 4.977 5.040 5.092 5.051 5.209 4
4.982 5.003 4.984 4.860 4.890 5.020 5.054 5.060 5.169 8
4.969 4.963 4.957 4.956 5.031 5.035 5.091 5.158 12
4.995 4.971 4.998 4.958 5.013 5.011 5.127 5.159 16

4.953 5.012 20
4.941 5.006 24

〈Cv〉 0.997 0.879 0.879 0.947 0.802 0.758 1.085 1.013 1.075 4
0.898 0.900 0.901 0.935 0.815 0.765 0.990 1.044 1.106 8
0.893 0.909 0.989 0.829 0.800 0.987 1.082 1.105 12
0.897 0.909 0.984 0.868 0.812 0.993 1.085 1.096 16

0.856 0.823 20
0.873 0.828 24

Pacc 0.43 0.66 0.64 0.34 0.35 0.39 0.39 0.45 0.45

Emax: defined in Equation (1); A: defined in Equation (1); B: defined in Equation (3); λ: the force-bias
parameter [2] (λ = 0 is the MMC); ∆0: the step-size parameter; Pacc: the average acceptance rate; Run
length: number of attempted moves ×10−5.

capacity agree with the exact one are different, dashing all hope of finding a single non zero
A value that would give the correct result with ESDMC. Extensions of these calculations to
systems of several particles in one dimension gave similar results, although the discrepancy
with ESDMC tended to decrease as the number of particles increased. The reason for this
remains unclear.

91



DISCUSSION AND SUMMARY

Using long runs on different systems, we have tested the detailed balance energy-scaled Monte
Carlo algorithm, that is designed to produce convergence to the correct limiting distribution
function. The additional computational expense incurred by the use of the algorithm in a
conventional Metropolis program is negligible thus the potential benefits were expected to
be significant. Disappointingly though, for a dense Lennard- Jones fluid slower convergence
was found than with the conventional MMC algorithm. Since the ESDMC algorithm, while
not exact, produces only small errors, and since it is efficient in the early part of a walk, we
feel there still is some advantage in using the original ESDMC algorithm to speed up the
initial phase of a simulation. Of course, the final phase, during which the actual equilibrium
results are collected, should be run with an other algorithm that satisfies detailed balance.

Acknowledgements.

One of us (SG) would like to thank Bernie Nickel for his very helpful discussions. We
are also grateful to the Natural Sciences and Engineering Research Council of Canada for
financial assistance, to the University of Guelph and its Computing and Communications
Services department for their continuing support of the Special Computing Project and the
Array Processor. This research was also supported by NIH Grant GM-24149 and NSF Grant
CHE-8203501

References

[1] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, “Equation
of State Calculation by Fast Computing Machines,” J. Chem. Phys., 21, 1087 (1953).

[2] M. Rao, C. Pangali, and B.J. Berne, “On the Force Bias Monte Carlo Simulation of Water:
Methodology, Optimization and Comparison with Molecular Dynamics,” Mol. Phys., 37,
1773 (1979).

[3] P.J. Rossky, J.C. Doll and H. Friedman,“Brownian Dynamics as Smart Monte Carlo
Simulation,” J. Chem. Phys., 69, 4628 (1978).

[4] J.C. Owicki and H.A. Scheraga, “Preferential Sampling Near Solutes in Monte Carlo
Calculations on Dilute Solutions,” Chem. Phys. Lett., 47, 600 (1979).

[5] J.C. Owicki, “Optimization of Sampling Algorithms in Monte Carlo Calculations of Flu-
ids,” in Computer Modeling of Matter, P.G. Lykos, ed., (American Chemical Society, Wash-
ington, D.C., 1987).

[6] T. Noguti and N. Go, “Efficient Monte Carlo Method for Simulation of Fluctuating
conformations of Native Proteins,” Biopolymers, 24, 527 (1985).

[7] M. Mezei, “A Cavity-biased (T,V,µ) Monte Carlo Method for the Computer Simulation
of Fluids,” Mol. Phys., 40, 901 (1980).

[8] M. Mezei, “Grand-canonical Ensemble Monte Carlo Study of Dense Liquids: Lennard-
Jones, Soft Spheres and Water,” Mol Phys., submitted.

[9] M. Mezei, “Virial-bias Monte Carlo Methods. Efficient Sampling in the (T,P,N) Ensem-
ble,” Mol. Phys., 48, 1075 (1983).

92



[10] S. Goldman, “A Simple New Way to Help Speed up Monte Carlo Convergence rates:
Energy-scaled Displacement Monte Carlo,” J. Chem. Phys., 79, 3938 (l983).

[11] F.H. Stillinger and A. Rahman, “Improved Simulation of Liquid Water by Molecular
Dynamics,” J. Chem. Phys., 60, 1545 (1974).

[12] See for example the energies and heat capacities entered in Tables III and IV of Reference
10.

[13] We are referring to the ESDMC A=1.0 energy tracing in Figure 5, and the heat capacities
curves shown in Figure 7 of Reference 10. Note also that subsequent to the publication
of Reference 10, we have found that the distortion indicated in Figures 3 and 4 for the
FBMC λ = 1 algorithm were the result of an error in those rdf calculations. The distortion
disappeared when the error was corrected.

[14] S. Goldman, “Erratum to Ref. 10,” J. Chem. Phys., 84, 1952 (1986).

93



file://///Winone/PCMacEx/Mezei/ESDMCFG.HTM

  

  

  Figure 1 (A) Internal energy of 2-particles in one dimension on a unit length interacting through the 
potential u(x)=x-2. A is the scaling parameter in Equation (1). The orizontal line is the quadrature result. 
x =detailed balance method; o = ESDMC. Each point is the result of 106 trials. (B) As for Figure 1A. Cv, 

is the system heat capacity. 
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