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A new technique is proposed to compute by Monte Carlo (or molecular dynamics) computer
simulation the hydration free energy differences. The method, called finite difference
thermodynamic integration, is a combination of the thermodynamic integration and the
perturbation method. It was compared with thermodynamic integration over two different
paths and the perturbation method on computing the solvation free-energy difference between
the dilute aqueous solution of acetone and dimethyl amine. Finite difference thermodynamic
integration was found to have the best convergence characteristics among the methods tested.

I. INTRODUCTION

The calculation of free energy from computer simula-
tions presents special difficulties since the free energy is di-
rectly related to the partition function and the simulations
avoid computing the partition function. Several methods
have been proposed to circumvent this difficulty that have
been periodically reviewed in recent years.'-® Two methods
gained relatively wide usage: the thermodynamic integration
and the so-called perturbation method. The purpose of this
paper is to develop a variant of the thermodynamic integra-
tion where individual quadrature points are evaluated using
the perturbation method. This combined technique will be
compared with two different forms of thermodynamic inte-
gration and with the perturbation method to allow an assess-
ment of its performance. As a byproduct of these calcula-
tions a comparison between thermodynamic integration and
the perturbation method will be obtained as well.

il. BACKGROUND

The common feature of the methods calculating free
energy differences between two systems is that a path has to
be defined that connects the two systems in the configuration
space. In most cases a coupling parameter A is introduced
that varies from O to 1 and it continuously brings the initial
system O into the final system 1. Clearly, in general several
such paths exist. The thermodynamic integration (TI), ori-
ginated from Kirkwood’ considers the free energy as the
function of A and employs the fundamental theorem of cal-
culus

L34
A, — A, = AA dA, 1
1 0 J(; 3/1 ( )

where

AA) = —len{f Jexp[ —EN(/I)/kT]dVN],
(2)

where £ is the Boltzmann factor and T is the absolute tem-
perature. Substituting Eq. (2) into Eq. (1) gives
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1
AA.—_J- <‘9E”(’”> da, (3)
o oA i

where the subscript A implies a Boltzmann average based on
the function E; (4). In the following the subscript NV will be
dropped for simplicity. Most applications to date used an
important simple particular case where E(A) is linear in A:

EAQ)=(1—-A)Ey+ AE, =E,+ AAE 4)

giving the free energy difference as
1
A4 =f (AE),dA. (5)
0

Equation (3) or (5) is evaluated by carrying out a series
of simulations corresponding to successive discrete values of
A. The final integration over A is carried out by numerical
integration.

Equation (4) has been generalized by Mezei and Bever-
idge to decrease the rate of coupling of newly created parti-
cles®:

EA)=(1-A)E,+A"E,, (6)

defining a path that is nonlinear in 4. Use of TI on the path of
Eq. (6) will be called & th degree TI. The integrand of Eq.
(3) corresponding to the & th degree TI has been derived® as

—k(1 —A)*'E,+ kA*E,. (7)

k th degree TI has been used recently to determine the free
energy difference between the A and B forms of a DNA
tetramer duplex.®

It is also possible to transform linearly the coordinates
of the molecule(s) changed along with the potential coeffi-
cients, resulting in another nonlinear path [the dependence
of E(A) is nonlinear in 4]. For this path, at each 4 the co-
ordinates of the “hybrid molecule” are obtained as

R(A)=(1-A)R*+ AR5, (8)

where R* and RP are the coordinates of the original mole-
cules A and B, respectively. Similar coupling is performed
on the solute—solvent potential coefficients. Couplings of the
type of Eq. (8) have been proposed by Mezei and Bever-
idge,® Cross,” and tested by Cross on a model system.®
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An alternative expression for A4 can be obtained by
evaluating Eq. (2) at4 = Oand at A = 1 and inserting one as
exp(Ey/kT)exp( — Ey/kT). This leads to the equation'®!!

AA = — kTn {exp[ — (E, — Ey)/kT]),. 9

Reversing the role of systems 0 and 1 the mirror expression
of Eq. (9) is obtained:

A4 = kT In (exp[ — (E, — E|)/kT}]),. (10)

Bennett called Egs. (9) and (10) an infinite order perturba-
tion expansion.'? Use of these equations have been also re-
ferred to as the perturbation method (PM) by Lybrand,
Wipf, and McCammon'? and by Jorgensen and Ravimo-
han' in their recent work using the PM since E, and E,
differ by a small “perturbation” only in successful applica-
tion. They do not, however, correspond to a “perturbation
theory” in the usual sense of the word since they are exact
expressions.

The use of the PM involves essentially a simulation car-
ried out based on the energy function £, (or £,), in which £,
(or E,) is also computed at each step and the average of
exp[ F (E, — Ey)/kT] is formed. Successful numerical cal-
culation of the ensemble average of exp[ F (E, — Ey)/kT]
via simulations requires that states 0 and 1 be not too dissimi-
lar. In the event of difficulties with the direct application of
Egs. (9) and (10) itis possible to use the coupling parameter
approach to define a numerically viable path between states
Oand 1 [using, for example, Eq. (8) ] involving intermediate
states that are sufficiently close to each other and compute
the free energy difference as
AA=Z — kT In {exp[ — (E;,, — E))/kT]),. (11)

The advantage of T1 lies in the fact that it is based on the
ensemble average of the energy (and possibly its derivative)
that are known to converge relatively fast and it is able to
take interpolate between the state points chosen. Further-
more, for the case of linear A dependence, the integrand in
Eq. (5) is a monotonic function of 4 ' making the interpo-
lation inherent in the numerical integration rather reliable.
Its main weakness lies in the possible divergence of the inte-
gral for certain (mostly linear) paths,®! necessitating the
use of nonlinear paths.®® This, at least in principle, would
make the interpolation less reliable since the guaranteed
monotonicity of the integrand is lost.

The PM is very appealing due to its conceptual simpli-
city. For systems that are very similar, the free-energy differ-
ence can be obtained from a single simulation.'> However,
Egs. (9) and (10) are very sensitive to fluctuations in
E, — E,, requiring in general several intermediate states due
to the presence of the exponential in the quantity to be aver-
aged requires that the “neighboring” states be rather close.

A third approach to calculate free-energy differences is
based on the fundamental relation

ALY = —kTIln P(4). (12)

It has been used to compute free energy differences first on a
conformational problem.'® Currently calculations are under
way to test its efficiency on chemical changes.

The proposed method, called finite difference thermo-

dynamic integration (FDTI), is a combination of TT and
PM. Write the free-energy difference between two states as
the function of the coupling parameters:

A4) —AWU) =A(A 4, = 4)). (13)
Clearly,
n—1
Ad = z A(/li’;t’i+l "'1:') (14)

i=1

forA, =0<«<A,< " <4, = 1. By multiplying and dividing
each term by A,,, —A; and decreasing the difference
between the successive 4,’s, Eq. (1) is recovered through the
definition of the derivative and the definition of the integral.
Furthermore, substituting Eq. (9) into Eq. (13) and letting
the differences between the successive A,’s become arbitrar-
ily small leads to

A(AA) ~ (E(A,AD)),, (15)

where E(A,AA) is defined analogously to 4(4,A1). Thus
Eq. (3) can also be recovered at the small A4 limit. The
suggested FDTI would evaluate 4(A4,AA) using Eqgs. (9)
and (10) for a small A at selected A, values and extrapolate
for the rest of the interval. This extrapolation is most conve-
niently done if the A; values are selected by some quadrature
prescription and the quadrature is used to evaluate the inte-
gral in Eq. (1). In this case the computed 4 (4,A4) values
aredivided by AA to provide finite difference approximation
to the integrand of Eq. (1). It is also possible (although not
done in this work) to compute 4 (4,A4) with several differ-
ent A1 values to give an estimate of the higher order deriva-
tives of A(A) that would improve the precision of the nu-
merical integration.

For larger A4, FDTI is related to the graphic interpola-
tion idea of Bennett.'® In the limit of infinitesimal A4, the
nonlinear TI is recovered. The conceptual advantage of
FDTI over a general nonlinear TI®® lies in the fact that inte-
gration in general smoothes a function; therefore, local fluc-
tuations and the nonmonotonicity of the integrand of Eq.
(3) are likely to cause less damage. Also, the analytical
evaluation of the A derivatives is eliminated, thereby saving
programming time. Finally, the author suspects that the
convergence characteristics of 4(A4,A1) are likely to be bet-
ter than those of (JE(A))/dA ), although this remains to be
demonstrated.

The PM calculation described here between the states
E(A,) and E(A,,,) used a reference state with
[E(4;) + E(4;,,)]/2. Simultaneous use of Egs. (9) and
(10) gave the free-energy difference A(4,.,) —A(4;).
This technique is formally equivalent® to the half-umbrelia
sampling by Scott and Lee'” who arrived at the same expres-
sion by using Eq. (9) only (that is, looking for averages in
the { ), ensemble) but employing non-Boltzmann (umbrel-
la) sampling with a weighting function exp{ — [E(4,,,)
— E(4,)]/2kT}.

An alternative to the half-umbrella sampling computes
A(A;,,) —A(4,) by running a simulation using E(1")
where A ' falls between A, and 4, , and using Eqgs. (9) and
(10)."*  Assuming, however, that both [E(4,)

+ E(A,,,)]/2 and E(4 ") sample the configuration space
adequately, the half-umbrella sampling would in general
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provide smaller energy differences than the use of E(4")
since

E(A; 1) —EQA")+EQX") —EWA;)

=E(4,,,)—E1), (16)
|[E(A; ) —E@A) |+ [E(A") —E4,)]

>2|[E(4;,1) — E(4)]/2]. (17
Also,
max[lE(’ii+1) —E(4 ')ME(/1 B —‘E(/ix)l]

}l[E(/li+1)—E(/1i)]/2|. (18)

Therefore, the half-umbrella sampling is expected to have
better convergence properties (although the difference is
probably rather small). Also, the use of the intermediate
state A ' requires an additional solute—solvent energy term.

The FDTI method was tested and compared with linear
and nonlinear TI and with the PM on computing the differ-
ence between the solvation free energy of the aqueous solu-
tion of acetone and dimethylamine. In problems of this kind,
the total energy of the system, E,, (4 ), can be separated into
two terms: one for the solute-solvent interactions and an-
other, much larger term for the solvent—solvent interactions.
Since the solvent-solvent term is independent of A, it will
drop from consideration whenever E, — E, or dE(A1)/dA is
formed. Therefore, all the methods discussed above are ex-
pected to have good convergence characteristics.

The test system chosen involves significant reorganiza-
tion of the solvent around the solute during the transition
between the two states, necessitating the use of several inter-
mediate states. It is an interesting problem since the free-
energy difference between the two systems models the rela-
tive contributions of the >CO and > NH groups to the
hydration free energy of biomolecules. Successful reproduc-
tion of the experimental result would increase the confidence
in the accuracy of computer simulation results on aqueous
solution of peptides (using this potential).

lll. CALCULATIONS

The Metropolis algorithm,'® modified by incorporating
the force bias procedure'® and preferential sampling?® for
convergence acceleration, shown to have a synergistic ef-
fect,?! was employed. The system for $tudy in each case was
comprised of 216 rigid molecules; one solute and 215 water
molecules. The size of the simulation cell was chosen based
on the experimentally determined partial molar volumes of
acetone, dimethylamine and water, 67,22 61,2 and 18.02 ml/
mol, respectively, the average of the two solute molar vol-
umes, 64 ml/mol was used. The condensed phase environ-
ment of the simulation cell was provided by face-centered
cubic periodic boundary conditions. The solute-water inter-
actions were treated under the minimum image convention
while a 7.75 A spherical cutoff was applied on the water—
water interactions. Individual simulations involved at least
1000 K configurations (after equilibration). Calculations of
this length with the force biased technique are equivalent to
20004000 K configurations generated by the regular Me-
tropolis method, %

All simulations were based on the OPLS functions de-

M. Mezei: Finite difference thermodynamic integration

veloped by Jorgensen and co-workers for the solute-water
interactions?>?® and the TIP4P water-water potential 2”2
The OPLS potentials contain 6-12 interactions between the
solute atoms and the water oxygen and electrostatic terms
between the solute atoms and water hydrogens as well as
between the solute atoms and a negative center near the wa-
ter oxygen. Methyl groups are represented by a single center
(united atom representation). In this calculation the methyl
group charge on the dimethylamine was chosen to be 0.1 to
maintain electroneutrality—a necessary, but to some extent
arbitrary, deviation from the original OPLS parameter set.
The molecular geometry used for acetone is from Herzberg®
and for dimethylamine from Beagley and Hewitt.*°

The free-energy calculations were performed along
three different paths. A five-point Gaussian quadrature was
used on the linear path [Eq. (4)] to evaluate Eq. (5). The
function 4 (4,A1) was also estimated on a 0.02 wide interval
around the quadrature points selected. Next, third degree T1
calculations were carried out using the same quadrature as
for the linear path. On the third path, defined by Eq. (8),
both PM and FDTI calculations were performed. The FDTI
calculations again used the same five A values as the linear
TI. The PM calculations used as wide intervals as appeared
possible. Two consistency checks were applied on the PM
calculations: (1) The expectation values (E(A;)), were
computed for the endpoints 4, of the PM intervals from both
runs'* whose endpoint is A; and (2) for some PM calcula-
tions, the interval was split up two and independent calcula-
tions were performed on both segments whose sum should
give the same result as on the full interval.

{V. RESULTS AND DISCUSSION

The results using the TI and FDTI with the five-point
Gaussian quadrature are collected in Tables I and II. Plots of
the computed E, — E, and 4(A,A41) (not shown) indicate
that both have an inflexion point, thus the minimum number
of quadrature point to reproduce the correct shape of the
integrand is 4 in this case. Table I gives the results at the end
of 500, 1000, and 2000 K (1 K represents 1000 attempted
moves) on the linear path to give an assessment of the con-
vergence of the results. The results of FDTI calculations on
the nonlinear paths described by Eq. (8) and of the third

TABLE 1. Linear TI results. ¢;: quadrature coefficients. The numbers in
parentheses give the change in the contribution to the integral as the number
of steps were doubled. All energies are in kcal/mol. 4 = 0: acetone, A = 1:
dimethylamine.

El - EO
A [ 500K 1000 K 2000 K
0.046910 0.118 463 13.63 14.86(0.14) 14.43(0.05)
0.230765 0.239314 8.45 10.21(0.42) 9.49(0.17)
0.5 0.284 444 2.69 3.04(0.10) 3.49(0.07)
0769235 0.239314 —2.01 —1.87(0.03) —2.45(0.14)
0.953089 0.118463 —17.29 —14.27(0.36) — 13.40(0.07)
AA: 1.87 2.93 2.80
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TABLE II Nonlinear TI results. All energies are in kcal/mol. The numbers in parentheses give the change in
the contribution to the integral as the number of steps were doubled. A = 0: acetone, A = 1: dimethylamine.

FDTI Third degree TI
A(4; +0.01) —A4(4; —0.01) T1 integrand
A, 500K 1000 K 500 K 1000 K
0.046 910 0.2712 0.2727(0.0002) 42.36 44.08(0.20)
0.230 765 0.2046 0.2060(0.0004) 16.33 16.90(0.14)
0.5 0.0605 0.0624(0.0005) —0.81 — 1.01(0.06)
0.769 235 —0.0722 —0.0767(0.0011) —13.48 — 13.73(0.06)
0.953 089 ~0.3232 — 0.3181(0.0006) —30.25 — 32.55(0.27)
AA: 2.14 2.17 1.89 1.84

degree TI calculations at 500 and 1000 K are shown in Table
IL

The free-energy difference is obtained as 2.80, 1.84,
2.17, and 2.11 kcal/mol (favoring acetone) using linear TI,
third degree TI, FDTI, and the PM, respectively. The value
obtained by the FDTI displayed the most stable behavior
when the intermediate results are compared with the final
results on each of the contributing simulations, as demon-
strated by the change in the contributions to the integrand
from the individual simulations as the number of steps is
doubled (also shown in Tables I and IT). The magnitude of
these changes indicate also that the uncertainty of the esti-
mated integral is larger than one would estimate it based on
the changes in the integral alone. The convergence charac-
teristics of the linear TI are the worst, in accordance with the
fact that the value obtained with linear TI differs most from
the others.

The various PM calculations along the nonlinear path
are described in Table III. Again, the convergence can be
assessed by comparing the results at 500 and 1000 K. The
polynomial fitting obtained from the FDTI calculation was
integrated for the various A intervals and also displayed in

Table II for comparison. The values obtained from integrat-
ing the Gaussian fit generally agree with the values obtained
from the PM calculation within the observed uncertainties.

The comparison of the computed (E(A) ), at the end of
the various A intervals used in PM calculations show that
they are a rather stringent indicator of the adequacy of sam-
pling: Really good agreement was found only at A =0.95
between the (0.95,1.0) and (0.9,0.95) runs and at 4 = 0.6
between the (0.3,0.6) and (0.1,0.3) runs. The comparison at
A = 0.9 is particularly instructive: the agreement with the
value from the (0.9, 0.95) run progressively gets worse as the
interval is lengthened.

The AE_,, values listed give the difference between the
smallest and largest sampled valuesof E(4;, ;) — E(4,). 1t
follows then that the smallest and largest terms in the Monte
Carlo average of Eq. (6) differ by a factor of exp(AE ./
2kT). The PM run between 0.8 and 1.0 shows that AE,
values over 12 kcal/mol introduce large fluctuations into the
Monte Carlo average and thus are to be avoided.

The differences between the computed 4(4,A4) and
E(A,AA) values (not shown) were consistently below 1%
for both paths, showing that in this system Eq. (11) holds to

TABLE III. Perturbation method calculations. A_, A, are the endpoint coupling parameter values. A4, _ is
the free-energy difference computed between 4, and A_. U(A_) is {E(A_)), and U(1,) is (E(1,)};;
AE,,, is the maximum of the sampled |E, — E,| values. A4, is the frec-energy difference for the interval
obtained by integration, the polynomial of the Gaussian quadrature computed from FDTI. All energies are in

kcal/mol. A = O: acetone, A == 1: dimethylamine.

500 K results 1000 K results

A_ Ay UA) UA,) AE,, M,  UA_) UA,) AE,, A4, _ AAd,
0.0 0.1 —~17.12 —1434 37 145 —1590 —12.93 4.0 1.34 1.35
0.1 0.3 — 1421 -9.61 7.1 209 —14.03 -9381 1.5 2.09 2.20
0.3 0.6 —974 1721 9.2 128 -—948 —17.03 9.2 1.26 1.33
0.6 0.9 —-7.09 —-873 112 —089 -7.12 —-876 119 —0.88 -—1.13
0.7 0.9 —-7.05 —-8.72 9.4 -1.12  -706 -—877 9.4 —1.00 —1.11
0.8 0.9 —7.80 —~8.67 45 —051 —757 —852 5.7 —053 —-0.79
0.8 1.0 —-726 —-971 120 —159 —-741 —12.62 162 —228 —237
0.9 0.95 —825 -—-9.72 42 —059 —828 —932 4.5 —0.50 —0.66
0.95 1.0 —-9.19 —12.56 122 —145 —934 —12.16 122 - 130 —0.92
0.9 1.0 — 839 -12.08 9.6 —1.67 —849 —11.74 9.6 —1.70 —1.58
AA: 2.25 2.11
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a good approximation for A4 = 0.02. Therefore, on the lin-
ear path, both TI and FDTI gives the same result (within
1%).

Experimentally, the free-energy difference between the
dilute aqueous solutions of dimethylamine and acetone is
computed from the data in Ref. 31 as — 0.21 kcal/mol (fa-
voring dimethylamine), showing a discrepancy of at least 2
kcal/mol between theory and experiment. In light of the
recent sucess of Jorgensen and Ravimohan in closely repro-
ducing the free-energy difference between the aqueous solu-
tions of ethane and ethanol with potentials from the same
library, this discrepancy is surprisingly large. It should be
kept in mind, however, that the parameter set was extended
without checking the exact consequences of this extension
(even if it was done in a “reasonable” way). Also, dimethy-
lamine is likely to undergo larger conformation changes due
to solvent effects than acetone and as a consequence the cor-
respondence between the simulated system and the experi-
mental system is worse for dimethylamine than for acetone.

V.SUMMARY AND CONCLUSIONS

Free-energy Monte Carlo simulations have been per-
formed to compute the difference between the free energy of
aqueous hydration of acetone and dimethylamine using sev-
eral techniques: Linear TI, integration, & th degree TI, the
PM, and FDT], the method suggested in the present paper.

The comparison of the different techniques lead to the
following conclusions: (a) the interpolation inherent in any
TI technique appears to work well; (b) the convergence of
the linear TI is surprisingly slow; (c) the proposed FDTI
was found to converge significantly faster than the other
techniques tried.

For systems involving a change larger than the one
treated here, the number of PM calculations required in-
creases rapidly due to the limitation of AE,,, , making the TI
techniques in general preferable. In view of the comparison
of the performance of the various T1I techniques and the rela-
tive simplicity of its implementation, the recommended
technique for problems of this kind is FDTL
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