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MOLECULAR PHYSICS, 1987, VOL. 61, NO. 3, 565-582 

Grand-canonical ensemble Monte Carlo study of dense liquid 

Lennard-Jones, soft spheres and water 

by MIHALY MEZEI 
Chemistry Department and Center for Study of Gene Structure and Function, 

Hunter College of the City University of New York, 
695 Park Avenue, New York, N.Y. 10021, U.S.A. 

(Received 27 October 1986; accepted 12 January 1987) 

The cavity biased Monte Carlo method for the (T, V,/~) ensemble has been 
tested on a system of Lennard-Jones particles near the triple point in the liquid 
and fluid state, on a system of dense soft spheres and on liquid water at room 
temperature. We demonstrate that the original (T, V,/~) algorithm of Adams is 
capable to provide accurate density at much higher densities than it was orig- 
inally thought possible. 

1. Introduction and background 
The purpose of this work is to study the capabilities of the cavity biased Monte 

Carlo method (in the following: CB/TVM) [1] for computing configurational aver- 
ages of dense liquids in the grand-canonical ensemble. Probably the most important 
advantage of simulations in the grand-canonical ensemble is that they can yield the 
excess chemical potential directly, making the calculation of the excess free energy 
possible. Since the computation of the free energy by computer simulation poses 
particular difficulties, this fact itself may make the additional effort of performing 
the simulation in the (T, V, #) ensemble worthwhile. Because of the importance of 
the free energy, special emphasis will be laid on this aspect of the results. 

The CB/TVM method is an extension of the method developed by Adams [2] 
and independently by Norman and Filinov [3] for Monte Carlo calculations in the 
grand-canonical ensemble (in the following: TVM). This method is derived from the 
canonical ensemble Metropolis algorithm [4] by supplementing the stochastic walk 
generated in the configuration space by random insertions and deletions of a parti- 
cle. Variations of this method were given by Rowley, Nicholson and Parsonage [5] 
and by Yao, Greenkorn and Chao [6]. A technique to compute the excess chemical 
potential in the canonical or microcanonical ensemble was originally suggested by 
Widom [7] and used in a simulation by Romano and Singer [8]. A variation of this 
method, called the 'inverse Widom' technique was proposed by Shing and Gubbins 
[9]. Recently, Powles, Evans and Quirke have observed that the Widom method 
gives good results even near the triple point of the LJ fluid when implemented in a 
molecular dynamics simulation [10]. Shing and Gubbins [11] derived and tested an 
improved version of this method using biased sampling. For the related problem of 
the computation of the excess free energy, several techniques exist: thermodynamic 
integration [12], the exponential formula with umbrella sampling (also called the 
perturbation method) [13], Bennet's method [14, 15] and the recently introduced 
overlap ratio method of Quirke and Jacucci [16]. Recent reviews of the problem of 
free-energy calculation can be found in [17-21]. 
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566 M. Mezei 

In w the CB/TVM method will be reviewed. Computational details can be 
found in Appendices 1-3. In w 3, CB/TVM and TVM calculations are presented for 
the Lennard-Jones liquid (L J) near the triple point in the liquid phase and in the 
fluid phase. By comparing the results of the CB/TVM run with existing data on the 
LJ fluid, we will establish that the CB/TVM method is able to give reasonably 
accurate results in this 'difficult' region of the phase space. By comparing the 
CB/TVM results with the TVM results, we will establish the quantities that we can 
expect to obtain with reasonable precision at low acceptance rates. In particular, we 
will demonstrate that the density can be calculated with sufficient accuracy that the 
excess chemical potential can be determined from it. Section 4 gives the result on the 
soft sphere system that was used as a reference to determine the excess free energy of 
the MCY water [22]. Section 5 presents results on the application of the CB/TVM 
method to water using the ST2 [23], SPC [24] and MCY [25] potentials. Where 
possible the excess free energy is compared with values recently calculated by ther- 
modynamic integration [22]. Section 6 discusses the results and comments on the 
relative efficiency of different techniques for free-energy calculation. 

2. Theory 
Computer simulation in the (T, V, #) ensemble can be performed by a method 

that is a direct generalization of the (T, V, N) metropolis Monte Carlo method [2, 
3]. A Markov chain of configurations is generated where successive members of the 
chain are generated from the preceding ones by any of the following three oper- 
ations: (a) displacement of a particle; ~b~ :nsertion of a particle; (c) deletion of a 
particle. The displacements are accepted using the rules appropriate to the (T, V, N) 
ensemble. In the present study force-biased displacements [26] were used for the LJ 
liquid and regular Metropolis displacements [4] for water. The recently introduced 
CB/TVM method attempts the insertion at positions where a cavity of suitable 
radius R c or larger exists and this attempt is accepted with probability. 

BiB = min (1, v'pN(r N) exp [(p + U(r N) - U(r N- l))/kT]/(N + 1)). (1) 

Here/ t  is the chemical potential, V' = VA 3, where A is the de Broglie wavelength, 
U(r n) is the potential energy of a system of N particles at the configuration r N and 
pN(rN) is the probability of finding a cavity of radius Rc or larger in the configu- 
ration r N. In Appendix 1 two methods are described that make the cavity search 
rather efficient for systems of hundreds of particles. Finally, the particle to be 
deleted is chosen randomly and the deletion attempt is accepted with probability 

/~c, = min (1, N exp [ ( - #  + V(r N) - U(rN-1))/kT-J/(v'pN-I(rN-1)). (2) 

The above expressions can be simplified for computational purposes [2] using the 
substitution 

I~' = k T e  - -  kT In (N),  (3) 

where #' is the excess chemical potential and the value of B is fixed at the beginning 
of the calculation. 

It is possible that no cavity is found in a given configuration and in this case a 
random insertion is performed. This affects the acceptance of the deletion step since 
it has to reflect the fact that not all insertions are made into cavities. As described in 
[1], this requires the estimate of the probability of these random insertions, n Pnocav �9 
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High density (T, V, #) simulation 567 

For the moderate density used in [1], 

N (1 NN, Pnor = -- Pc) (4) 

provided an adequate estimate. However, since in general <(1 _p~)N,> 3(1  
- -  (P~(rN)>) N', for the higher densities used in the present work it is necessary to 

estimate N Pnocav directly from the simulation. Fortunately, this required only a small 
extra effort. 

There is considerable freedom in choosing the order of the various types of trial 
perturbations. The present work, follows Adams [2], in performing displacement, 
insertion, displacement, deletion attempts in cycles. 

For particles that lack spherical symmetry (like water) the orientation of the 
particle has to be chosen at an insertion. In the present work we always chose a 
random orientation. It is possible, that by considering the torques at the insertion 
site selected, an efficient orientation selection, analogous to the gradient bias 
methods [26, 28], can be developed. 

2.1. Density limitations 
It is well known that at high densities the frequency of successful insertion in (T, 

V, #) simulations will become negligible since the attempted insertion will always 
cause an overlap with existing molecules. This limitation motivated the development 
of the cavity-biased algorithm and one of the goals of the present paper is to explore 
this limit. 

Interestingly, at low densities a different kind of problem can arise. A state that 
lies inside the coexistence curve is metastable. Therefore, simulations at this point 
for sufficiently large systems and sufficiently long simulation length should separate 
into a liquid and a vapour phase. However, for smaller systems the liquid state 
appears to be artificially stabilized, and this has been observed in a large number of 
simulations in the (T, V, N) and (E, V, N) ensembles. Simulations in the (T, V, #) 
ensemble, however, are less stable at lower densities and the separation occurs 
rapidly even at small system sizes. An example of this phenomenon will be presented 
in w 

2.2. The estimation of P~(r N) 
The estimation of P~(r N) can be performed at several levels of approximation: 

(1) P~(r N) can be approximated by a configuration independent P~, see [1]. This 
is simple computationally and was found to be adequate for the supercritical 
LJ fluid at moderate density. In the present work results will be presented 
near the triple point of the fluid where it leads to a ~ 1 per cent error in (N) .  
Calculations using this method will be labelled CB/TVM/M (the suffix M 
indicates the use of the mean probabilities). 

(2) P~(r N) can be approximated by averaging the estimated probability of finding 
a cavity only over configurations that resulted in a successful insertion or 
deletion. The label CB/TVM/AM method will refer to this technique (the 
suffix AM indicates the use of the mean probabilities over accepted inser- 
tions and deletions). 

(3) The 'exact' procedure estimates P~(r s) separately at each configuration r v. 
This, however, is only workable if the estimate is precise enough, making it 
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568 M. Mezei 

impractical for the random cavity search involved with either C B f r V M / M  
or CBfI 'VM/AM. Its use requires a different approach. Following Owicki 
and Scheraga [27], we implemented a cavity search using a finite grid. Inser- 
tions are performed on a randomly selected ' f ree '  grid. This introduces a 
slight error into the limiting distribution of the Markov chain since the 
deletions can occur at any point in the box but the insertions are restricted 
to the gridpoints. The error decreases as the grid is refined. It will be demon- 
strated that the error is actually negligible with manageable gridsizes. Details 
of the algorithm are given in Appendix 3. The method using this grid algo- 
rithm will be labelled CB/TVM/GX. 

2.3. Calculation o f  the f ree  energy 

The excess free energy per particle A' can be obtained from the excess chemical 
potential and pressure using the expression 

A' = I~' -- p V / N  + k r  = k T [ B  -- In ( N )  -- p V / ( N k T )  + 1] (5) 

where p is the pressure of the liquid. It can be computed from the virial sum and a 
correction term due to the finite cutoff applied to the potential [2, 29, 30]. The 
configurational free energy per particle A~ is obtained using equation (5) as 

A~ = A' + kT(ln p - 1) = k T B  -- p V / ( N )  -- k T  In V. (6) 

2.4. Extrapolation to a target density 

(T, V, #) ensemble calculations provide only the excess chemical potential at a 
density that is obtained at the end of the calculation as an ensemble average. To 
obtain results at a preassigned density, it may be necessary to perform additional 
(T, V, #) simulations, and then interpolate. However, results from one run close to 
the density targeted should give a good estimate for the B value necessary to obtain 
the required ( N )  since A(N) /A# can be approximated by (O(N)/Op)r ,  v and [2] 

(c~(N)/c~#)r, v = ( (N2)  -- ( N ) 2 ) / k T .  (7) 

Using equation (3) we obtain 

(~(N)/c~B)T, v = ( 6 3 ( N ) / t ~ ] g ) T ,  iv  d#/dB = ( N  2) - ( N )  2. (8) 

Similarly, the internal energy and the pressure can be estimated from a run that 
gives ( N )  close to the requested value 

(t~U/d( N )  )r, v = (dU/dV)T, I~ d V / d (  N )  = (p - pk  T)/p. (9) 

and 

(dP/d(N))T,  v = (dp/dV)r, N d V / d ( N )  = k T p / ( ( N  2) - -  (N)2). (10) 

Equation (9) can be obtained in an analogous manner to the pressure equation [29] 
and equation (10) follows from the expression for the isothermal compressibility Z 
given by Adams [2] 

Z = -(dV/t~P)r,  N/V = (<N 2) -- < N ) 2 ) / p k T < N ) .  (11) 

A more general approach can yield the expectation value of any property Q at a 
chemical potential/~ which is different from the one used, #o through a weighted 
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High density (T, V, lz) simulation 569 

average over the configurations sampled: 

(Q)s, = (Q exp [N(#  - po)/kT])~,o/(ex p [ N ( #  - po)/kT])~, o . (12) 

Equation (12) is only limited by the fact that for very different/a and Po the precision 
of the averages involved would be rather low. 

3. Calculations and results on the Lennard-Jones fluid 

3.1. Liquid state near the triple point 

We selected the LJ fluid at T = 0.75, p = 0.8 for testing the TVM and the 
different CB/TVM methods at high density. (In describing the LJ results, the usual 
reduced units are used: kT/e  =:~ T, V /a  a =~ V, U/e =~ U, pt~S/e =~ p.) This system is in 
the liquid state near the triple point of the liquid and is a severe test of the methods. 
The configurational free energy per particle, Ac, was computed using thermodyna- 
mic integration by Hansen and Verlet [31] as - 4 . 2 7  + 0.04 and by Torrie and 
Valleau [13], using umbrella sampling, -4 .265  +_ 0-02. For  the pressure, Hansen 
and Verlet reported -0 .319__ 0.03 [31] and recently Mezei [32] -0 .281.  The 
system was modelled with a simulation cell of volume V = 125 a a with face-centred 
cubic periodic boundary conditions (FCC PBC) for all but the CB/TVM/GX calcu- 
lations. With N = 100 this corresponds to p = 0"8. The FCC PBC were chosen 
since about 30 per cent less particles are needed for a given inscribed sphere than for 
the usual simple cubic boundary conditions. The algorithm and computer code to 
determine the nearest image of a particle using FCC PBC is due to J. C. Owicki 
[33]. Appendix 2 provides an algorithm for efficient generation of uniformly distrib- 
uted random points in an FCC cell, required for the insertion step. For  reasons 
given in Appendix 3, the CB/TVM/GX calculations were performed in a simple 
cubic cell (SC PBC) with V = 212.5 a a. Here N = 170 corresponds to p = 0.8. These 
system sizes were chosen to obtain an inscribed sphere radius of ~ 3 a. The cavity 
radius was chosen to be 0.8 a. 

Substituting the previously computed Ac and p values into equation (6) we 
obtain B = -- 1.396 or B = -- 1.333 for N = 100 when the pressure values of [31] or 
[32] are used, respectively. For  N = 170, we obtain B = - 0 . 8 6 4  and -0.801,  
respectively. 

A spherical cutoff of 2.5 a was employed in all simulations and the energy, 
pressure and entropy for the LJ system were corrected to infinite system size, as 
described in [29]. Appendix 4 corrects [1] where incorrect long-range correction 
was used. 

Three simulations were performed using B = -1 .396:  a run of 3 x 10 6 steps 
using Adams' TVM method, a run of 1 x 10 6 steps using the CB/TVM/M method 
and a run of 1 x 10 6 steps using CB/TVM/AM method. In the CB/TVM/M and 
CB/TVM/AM calculations 200 test points were generated at each insertion step. 
The corresponding calculations using the CB/TVM/GX method were performed 
using B = -0-865 with gridsizes 0.3 a, 0.15 a and 0-10 a. The acceptance probability 
of the insertion/deletion step was 0.001 and 0.02 for the TVM and CB/TVM 
methods, respectively. The ( N )  values obtained were 99-8 +_ 0-6, 98.7 + 0.8 and 
9 9 . 4 _  0.7 for the TVM, CB/TVM/M and CB/TVM/AM methods, respectively. 
(The error bounds were obtained by the method of batch means [34].) The CB/ 
TVM/GX method gave ( N )  = 166.9 _+ 1.0, 169.1 _+ 0.4 and 169.2 _+ 0.6, for grid- 
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570 M. Mezei 

sizes 0.3tr, 0.15tr and 0-10tr, respectively. For  gridsizes 0.15tr and 0.10tr the 
calculations were repeated with slightly different setup parameters,  giving 
( N )  = 169.1 + 0.5 and ( N )  = 168.9 + 0.6, respectively. The various the rmodyna-  
mic parameters  and run characteristics at successive stages of  the runs are collected 
in tables 1 and 2. The numbers  in the tables printed in bold face correspond to the 
results at the end of  a run. The same quantities at intermediate stages of  the 
calculation are also given in these tables to show the convergence characteristics of  
the various quantities. Par t  of  the data  will be discussed in w 6. 

Runs of  similar length using B = - 1 . 2 3  were also performed. For  the insertion/ 
deletion step the acceptance probabil i ty was 0-001 and 0-02 for the T V M  and 
C B / T V M / M  methods,  respectively. The T V M  and C B / T V M / M  methods  gave 

Table 1. Thermodynamic parameters and run characteristics for the Lennard-Jones system at 
T = 0.75 targeting p = 0"8, N = 100. 

B ( N )  - -  U - p  - s '  c' v ct fl ~, fl),/~ p '  d N  NMC 

TVM 
-1-396 99.6 5'76 0.317 3.21 2.52 0.91 0.15 2.7 0.46 0.99 15 1000 

99-8 5-77 0-302 3-20 2.52 0"68 0.11 5-3 0'91 0-81 15 2000 
99"6 5"77  0-314 3"21 2-51 0"62  0"11 6"3 1-08 0"74 17 3000 

Eq. state 0.275 0.70 0.13 5.1 

CB/TVM/M 
-1-396 98.6 5"66 0.433 3"38  2.48 0.78 0.14 5.5 0"96 0-77 16 250 

98"9 5"72  0.408 3'33 2.44 0"68 0.12 6.3 1"09 0.70 18 500 
99.0 5.74 0.375 3-29 2.45 0.70 0.12 6.1 1.05 0-73 22 750 
98-7 5-73 0-380 3"29  2.46 0-72 0-13 6"0 1-04 0"73 26 1000 

Eq. state 0.339 0.74 0.15 5.5 

CB/TVM/AM 
--1"396 99-7 5-75 0-296 3-17 2-56 0"91  0-15 4'5 0"68 0"91 28 200 

98-7 5"70 0-353 3.21 2"48  0.87 0-15 3.2 0-55 0-93 29 500 
99.5 5.74 0.307 3.17 2.47 0.91 0.15 2.2 0.37 1-01 26 700 
99-4 5-74 0-314 3"18  2-44 0-88 0.15 3"0 0-51 0"94 28 1000 

Eq. state 0.290 0-71 0.15 6.6 

TVM 
-1.23 101.3 5.84 0.164 3.21 2.53 1.19 0.20 -6 .3  -1 .04  1.68 20 1000 

101-5 5-86 0-167 3.23 2-57 0-94 0.15 - 0 . 9  -0-16 1.30 21 2000 
101-3 5-85 0-194 3-27 2-56 0.82 0.13 1.8 0.30 1.09 21 3000 

Eq. state 0-139 0-63 0.14 5.5 

CB/TVM/M 
-1.23 99.9 5.77 0.272 3.30 2.51 0.51 0-09 5.8 1-05 O.77 16 250 

99-5 5-77 0.304 3-37 2.47 0.63 0.11 5.4 0.96 0.78 17 500 
99.7 5.79 0.302 3.39 2.47 0.64 0.11 5.4 0.94 0.78 18 750 
99-8 5-77 0-288 3-34 2-46 0-65 0.11 5"8 0-99 0"76 18 1000 

Eq. state 0-260 0-69 0-13 5.2 

B, the parameter in equation (3); U, p, computed internal energy and external pressure, cor- 
rected to infinite potential cutoff; s', c'v, computed excess entropy and constant volume heat 
capacity, uncorrected for the potential cutoff; g, fl, ~,, expansivity, isothermal compressibility and 
the pressure coefficient, uncorrected for the potential cutoff; p', density computed from fluctuations 
[2]; d N ,  range of N values sampled in the segment of the run starting from the point the previous 
line in the table refers to; NMC, number of compound Monte Carlo steps/1000; the data in the 
lines of Eq. state was obtained from the equation given in [40]. 
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Table 2. 

Hioh densi ty  (T, V,/2) simulation 571 

Thermodynamic parameters and run characteristics for the Lennard-Jones system at 
T = 0-75 targeting p = 0.8 and N = 170. 

B <N> - U - p  - s '  c', r fl ~ fly~or p' dN NMC 

-0-865 

Eq. state 

-0-865 

Eq. state 

-0 .865 

Eq. state 

--0-865 

Eq. state 

-0 .865 

Eq. state 

CB/TVM/GX, O = 0-30or 
166"7 5"68 0"486 3"43 2"45  0"72 0"13 4"2 0-77 0"84 18 200 
167"0 5"70  0"491 3"45  2"44 1 " 0 2  0"19 -0"9  --0"17 1-22 31 500 
166.7 5.69 0.493 3.44 2.44 0.96 0-18 --0.4 -0 .07  1.19 23 700 
166.9 5-69 0.483 3-43 2"42 0-84 0.16 1-6 0"31 1-03 22 1000 

0.375 0-76 0.15 4.9 

CB/TVM/GX, O = 0.15 tr (lst) 
169"2 5"75 0-358 3"28 2-45 0-47 0"08 8-2 1"42 0-57 18 200 
168"8 5-74 0'394 3"33 2"43  0"62 0.11 5"3 0-93 0"77 26 500 
168"9 5"75 0"377 3"31 2-44 0-62 0"12 3-8 0"69 0-90 22 700 
169-1 5"76  0"361 3-28 2"49  0"62 0-11 4"4 0"79 0-87 22 1000 
169.1 5-75 0.362 3.27 2.48 0.62 0.11 4.2 0-76 0.88 23 1250 

0.284 0.70 0-14 5.2 

CB/TVM/GX, g = 0.15 a (2nd) 
168.9 5.75 0.393 3.34 2-45 0.49 0.09 6.7 1.21 0.67 18 250 
168.8 5.74 0-394 3-33 2-43 0.62 0.11 5.3 0.93 0.77 26 500 
169.1 5.77 0.363 3.30 2-47 0.63 0.11 3-6 0-66 0-92 22 750 
169.1 5.76 0.361 3.28 2.49 0.62 0.11 4.4 0.79 0.87 21 1000 
169.1 5-75 0.362 3.27 2.48 0.62 0-11 4.2 0-76 0.88 23 1250 
169"1 5"75  0"353 3"27 3"47 0"61 0-11 4"1 0"75 0"89 20 1500 

0-284 0'70 0"14 5"2 

CB/TVM/GX, 0 = 0"1 a (lst) 
168"6 5"75 0"438 3.41 2"45  0"64 0.11 9"1 1'53 0"51 23 200 
169"6 5-77 0"326 3-24 2.44 0"65 0.11 4"3 0"76 0"86 25 500 
169-5 5"75  0-334 3-22 2-45 0"70 0"12 5-2 0"86 0-80 24 1000 
169-2 5"76  0-347 3"26  2-45 0-68 0"12 5"2 0"90 0-80 20 1250 

0"281 0-70 0"14 5"2 

CB/TVM/GX, 0 = 0" 1 a (2nd) 
170-2 5.79 0.287 3.20 2-43 0.63 0.11 6.7 1.12 0"68 20 200 
168.9 5.75 0.379 3.31 2"42 0.71 0-13 2.2 0.39 1.00 22 500 
168.9 5.75 0.389 3.33 2.45 0.75 0.13 2.3 0-42 1.01 22 800 
168.6 5.74 0-402 3-36 2.44 0.73 0.13 2-4 0.43 1-01 22 1000 
168-8 5.75 0-395 3-34 2.45 0.73 0.13 2-3 0.42 1.01 22 1200 
168"9 5"75  0"387 3-32 2"46  0 " 7 4  0"13 2"2 0"40 1"02 25 1500 

0"291 0"71 0"14 5-2 

B, the parameter in equation (3); U, p, computed internal energy and external pressure, cor- 
rected to infinite potential cutoff; s', < ,  computed excess entropy and constant volume heat capac- 
ity, uncorrected for the potential cutoff; ct, /~, y, expansivity, isothermal compressibility and the 
pressure coefficient, uncorrected for the potential cutoff; p', density computed from fluctuation [2]; 
dN, range of N values sampled in the segment of the run starting from the point the previous line 
in the table refers to; NMC, number of compound Monte Carlo steps/1000; the data in the line of 
Eq. state was obtained from the equation given in [40]; O, gridsize for the insertion algorithm. 

<N> = 101.3 + 0 . 8  and  99-7 + 0 - 9 ,  respectively.  The  var ious  t h e r m o d y n a m i c  
pa rame te r s  and  run  character is t ics  a t  successive stages of the  runs  are  given in table  1. 

F o r  the C B / T V M / M  method ,  the B and  p values can  be ex t r apo la t ed  for p = 0.8 
as B = - 1.18 and  p = - 0 . 2 6 0 .  Significantly,  the use of equa t ions  (8) and  (10) gave 
the same result.  Tab le  3 conta ins  the B p a r a m e t e r  and  the pressure  ex t r apo la t ed  to  
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572 M. Mezei 

Table 3. LJ simulation results at T = 0.75 extrapolated to p = 0-80. 

O B <N> <p> p Bx pX ao 

TVM -1.396 99 -6  0.7968 -0-314 --1.37 -0-296 -4.28 
CB/TVM/M -1.396 98.7 0-7896 -0-380 -1.18 -0.260 --4.18 
CBfrVM/AM -1.396 99-4 0.7952 -0-314 -1-33 -0.354 -4.23 
CB/TVM/GX(lst) 0.15 -0-865 169.1 0-7958 -0-362 -0-785 -0-314 -4.22 
CBfFVM/GX(2nd) 0-15 -0.865 169.1 0-7959 -0-353 -0-784 -0.305 -4.23 
CB/TVM/GX(lst) 0"10  -0-865 169'2 0.7962 -0"347 --0"799 -0"308 -4 '23  
CB/TVM/GX(2nd) 0-10 -0.865 168.9 0.7950 -0.387 -0"781 -0-337 -4-21 

The superscript x indicates extrapolation to p = 0-80. 

p = 0.8 and the configurational free energy values computed. Based on the suc- 
cessful use of the extrapolation formulae for the CBfFVM/M calculations we 
employed equations (8) and (10) to obtain these results. The error estimate for A, is 
obtained using equation (8) from the error estimate computed for <N>. The error in 
Ar should also have a contribution from p, but the two contributions are likely to be 
correlated and simple addition of the error squares would lead to an overestimate. 

The most  striking result is that while the acceptance rate of an insertion/deletion 
step for the TVM method is about  20 times less than for the C B f r V M  methods, the 
density is accurate to within 1 per cent, implying that even at such a low acceptance 
rate reasonable accuracy can be obtained for the density. This result has been 
arrived at independently by Quirke [35]. 

The differences between the calculated configurational free energies and the 
previously computed values are all within the stated error limits with the CB/TVM/ 
M result giving the largest deviation. The pressure values generally fall between the 
two previously published values, the exception again is the CB/TVM/M result. 

3.2. Fluid state near the triple point 

The free energy of the LJ fluid at T = 0.903 and p = 0.835 was computed by 
Torrie and Valleau 1-13] as A c = - 3 . 9 6 6  + 0.02 and the pressure has been obtained 
by McDonald  and Singer [36] as 1-09. Using a system of 178 particles requires a 
simple cubic cell of 5.9737 a edge, easily accommodating the 2.5 a cutoff for the 
potential. The previously computed free energy and pressure values suggest 
B = 2.27. The initial configuration for the (T, V, p) ensemble simulation was first 
equilibrated in the (T, V, N) ensemble, giving U = - 5 . 8 4 + 0 . 0 1  and 
p = 1.08 __+ 0.07, in good agreement with the values given by McDonald and Singer. 
(T, V, p) ensemble simulations were performed using the TVM, CB/TVM/M (Re = 
0.7tr and Re = 0.8tr) and the CB/TVM/GX (Re = 0-8tr) method with a 0 .10a grid. 
The acceptance probabilities for the insertion/deletion steps was 0.0004 for the 
TVM method and 0.004 and 0.015 for the CB/"I'VM/M method using R~ = 0.7tr 
and 0.8 tr, respectively. The results at the successive stages of the runs are sum- 
marized in table 4. For  the average number of particles we obtained 
<N> = 178.0 __+ 1.5, 177.5 _+ 1.1, 178-3 ___ 1.7 and 178.8 ___ 0.7 using the TVM, CB/ 
TVM/M,  CB/TVM/M and CB/TVM/GX methods, respectively. The pressure was 
computed as p = 1.02 -t- 0.10, 0.97 ___ 0.08, 1.03 ___ 0.11 and 1.07 ___ 0.08 using the 
TVM, CB/TVM/M,  CB/TVM/M and C B f r V M / G X  methods, respectively. 
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Table 4. 

High density (T, V, #) simulation 573 

Thermodynamic parameters and run characteristics for the Lennard-Jones system 
at T = 0-903 targeting p = 0"835 and N = 178. 

B ( N )  - U p - s '  c'v ot fl 7 fly/~ p' dN NMC 

TVM 
2-47 178.0 5.86 1-000 3.45 2.57 0.27 0.046 8.2 1.36 0.63 12 1000 

178.3 5.86 1.043 3.40 2.53 0.42 0.071 3-7 1.41 1.02 17 2000 
178-0 5-85 1"020 3-42 2"52 0-43 0"071 3"6 0"61 1-03 15 3000 

Eq. state 1.060 0-39 0.069 5.7 

CB/TVM/GX, Re = 0.8tr, g = 0.1a 
2.47 179.0 5.88 1-137 3.30 2-39 0.45 0.074 2.4 0"39 1.09 21 200 

179.4 5-87 1.132 3-30 2.45 0.52 0-087 -0 -0  -0 .00  1.35 24 500 
178-6 5'86 1.100 3.33 2.53 0.56 0-092 0.2 0"04 1.35 18 700 
178-7 5-85 1"070 3"36 2-51 0"49 0-081 2-1 0"34 1"18 14 1000 

Eq. state 1.118 0-38 0.067 5-7 

CB/TVM/M, Re = 0-7 tr 
2.47 176.1 5"80 0-868 3.56 2.55 0.26 0"049 7.1 1.33 0.69 13 200 

177-0 5.83 0.913 3.54 2.57 0.37 0-064 5.3 0"92 0"88 17 500 
177-5 5'85 0-961 3.50 2-58 0.41 0"067 5.6 0"92 0.86 16 700 
177-5 5"84 0"967 3"49 2-55 0"46 0"077 3"5 0"59 1-04 19 1000 

Eq. state 1.019 0.39 0-070 5.7 

CB/TVM/M, R c = 0.8 tr 
2.47 177"9 5"86 0'962 3"50 2"38 0-49 0"082 2.4 0"41 1-07 22 200 

178-1 5'87 1'037 3"41 2-36 0"39 0-065 4"5 0.74 0"88 19 500 
178-4 5-85 1.040 3-40 2'45 0-39 0"062 5"8 0"93 0-80 16 700 
178.3 5"86 1"035 3-41 2"45 0.36 0"058 6.4 1-03 0-74 18 1000 

Eq. state 1-084 0.39 0.068 5.7 

B, the parameter in equation (3); U, p, computed internal energy and external pressure, 
corrected to infinite potential cutoff; s', c' v, computed excess entropy and constant volume 
heat capacity, uncorrected for the potential cutoff; ct, fl, ~, expansivity, isothermal compress- 
ibility and the pressure coefficient, uncorrected for the potential cutoff; p', density computed 
from fluctuation [2]; dN, range of N values sampled in the segment of the run starting from 
the point the previousl line in the table refers to; NMC, number of compound Monte Carlo 
steps/1000; the data in the line of Eq. state was obtained from the equation given in [40]; g, 
gridsize for the insertion algorithm. 

Extrapolat ion to /9 = 0-835 gave pX= 1.02, 1.00, 1.00 and 1-02 using the TVM, 
C B / T V M / M ,  C B / T V M / M  and C B f I ' V M / G X  methods,  respectively. Substituting 
into equat ion (6) yields the configurational  free energy as A c = - 3 " 8 3 ,  - 3 . 7 7 ,  
- 3 . 8 5  and - 3 - 8 9  using the TVM, C B / T V M / M ,  C B / T V M / M  and C B / T V M / G X  
methods,  respectively. 

3.3. Liquid state at medium density and low temperature 

The free energy of  the LJ fluid at T = 0.75 and p = 0.6 was computed  by Torrie 
and Valleau [13] as A c = - 3 . 9 6 6  in good  agreement with Hansen and Verlet [131 
who reported Ac = - 3 . 9  and p = -0 .9234 .  Use of  a 128 particle system requires a 
simple cubic cell of  5.9752 ~ edge, easily accommoda t ing  the 2-5 tr cutoff  on the 
potential. The previously computed  free energy and pressure values suggest 
B = - - 1 . 9 1 6 .  A short  (T, V, N) ensemble run started from a r andom configurat ion 
provided the initial configurat ion for the (T, V, #) ensemble simulation. 
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574 M. Mezei 

The simulation of  this system, however, is unstable. Calculations using 
B ~< - 1 . 1 5  finish with no particle in the box after only 3 x 10 6 configurations. 
Calculations with B t > -  1-08, on  the other  hand, filled the box with over 200 
particles, again within 3 x 106 configurations. 

4. Calculations and results on soft spheres 

The excess free energies of  several water models were obtained previously by 
the rmodynamic  integration [22] using the soft-sphere fluid at p(e/kT) TM = 0.74 as a 
reference state. We performed (T, V, #) ensemble calculations on this system. [36] 
gives the excess free energy per particle of  this soft-sphere system as A' = 7.035 kT  
and p V / N k T  = 15.395 [37]. An a t tempt  to use the original T V M  method met with 
complete failure: in 5 x 106 configurations not  a single insertion a t tempt  was 
accepted. Calculat ions with the C B / T V M / M  method using B = 26.19 and B = 25-5 
were performed using F C C  PBC and targeting ( N )  = 64. The cavity radius chosen 
was again 0 .8a  (the volume was 61-16ira). With B = 25.5 we also performed a 
calculation using a cavity radius of  0.75 a. The results of  the C B / T V M / M  runs are 
given in table 5. They gave ( N )  = 65.2 +__0-3 and 64.1 + 0.3, pV/ 
N k T  = 15-34 __+ 0.3 and 15.39 ___ 0.2, respectively. Extrapolat ion to ( N )  = 64 gives 
A ' =  6-91 + 0.3kT and 6.96 __+ 0.3kT, respectively, in good  agreement with the 
value in [37]. The corresponding C B / T V M / G X  calculations targeted N = 91, using 
B = 26.54 corresponding to the B = 26.19 calculation, employing 0.11 tr and 0-07 tr 
grids. The results of  the C B / T V M / G X  calculations are summarized in table 6. They 

Table 5. Thermodynamic parameters and run characteristics for the soft sphere system 
targeting p(e/kT) TM = 0.74 and N = 64. 

B (N)  U pV/NkT --s' c; ot fl ~ fl),/~t p' dN NMC 

CB/TVM/M, Rc = 0-8 tr 
26.19 63.92 3.58 16-00 4-14 3-14 0.10 0.014 4-5 0.64 0-77 17 250 

65-37 3-79 17-28 3-05 3-04 0.31 0.044 29.3 4.11 2-70 5 500 
65.19 3-76 17.09 3.22 3.02 0.23 0-035 22.6 3-39 2.18 6 750 
65.23 3-76 17-11 3.20 2-95 0.20 0.030 18.3 2.78 1-88 5 1000 

Eq. state 15.07 0.13 0.019 6-7 

CB/TVM/M, R c = 0.8 a 
25-5 64.09 3-60 15.40 3.36 3.07 0.12 0-018 5.6 1.18 1.04 10 225 

64.09 3"57 15-34 3.45 2.97 0.12 0"018 7-0 1.04 1-03 8 500 
Eq. state 14.46 0-13 0-020 6.4 

CB/TVM/M, R c = 0-725 a 
25.5 64.05 3.59 15.37 3.40 2.96 0.16 0-021 7.2 0.91 1.05 13 300 

64.06 3"59  15.39 3"38 2.90 0-15 0.020 7"1 0.96 1.06 7 500 
Eq. state 14.15 0.13 0-020 6.4 

B, the parameter in equation (3); U, p, computed internal energy and external pressure, 
corrected to infinite potential cutoff; s', c~, computed excess entropy and constant volume 
heat capacity, uncorrected for the potential cutoff; ~t, fl, y, expansivity, isothermal compress- 
ibility and the pressure coefficient, uncorrected for the potential cutoff; p', density computed 
from fluctuation [2] (N = 64 corresponds to p = 1"05); dN, range of N values sampled in the 
segment of the run starting from the point the previous line in the table refers to; NMC, 
number of compound Monte Carlo steps/1000; the data in the line of Eq. state was obtained 
from the equation given in [40]; g, gridsize for the insertion algorithm. 
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Table 6. 

Hioh density (T, V, #) simulation 575 

Thermodynamic parameters and run characteristics for the soft sphere system 
targeting p(e/kT) TM = 0-74 and N = 91. 

B (N}  U pV/NkT - s '  p' c'v ~ fl y fl?/a dN NMC 

26-54 92.2 
92-5 

Eq. state 

26.54 92.8 
92.5 
92-5 

Eq. state 

CB/TVM/GX, O = 0" 11 tr 
3.72 16.82 3.44 2-46 0.09 0.013 1.7 0.26 0.80 7 300 
3"76 17"05 3"22 2-80 0"08 0"012 2-3 0"35 0"75 6 600 

14-97 0"13 0.019 6-6 
CB/TVM/GX, g = 0"07 tr 

3.76 17-12 3.21 2.73 0.11 0-017 6.9 1.07 1-11 8 300 
3.75 17.01 3-27 2-78 0.17 0.025 12-8 1-86 1.54 8 600 
3"73 17"93 3"36 2"81 0-14 0"020 8"1 1"16 1"18 7 1000 

14"97 0-13 0"019 6-6 

B, the parameter in equation (3); U, p, computed internal energy and external pressure, 
corrected to infinite potential cutoff; s', c'v, computed excess entropy and constant volume 
heat capacity, uncorrected for the potential cutoff; ~,/~, ?, expansivity, isothermal compress- 
ibility and the pressure coefficient, uncorrected for the potential cutoff; p', density computed 
from fluctuation [2] (N = 91 corresponds to p = 1-05); dN, range of N values sampled in the 
segment of the run starting from the point the previous line in the table refers to; NMC, 
number of compound Monte Carlo steps/1000; the data in the line if eq. state was obtained 
from the equation given in [40]; g, gridsize for the insertion algorithm. 

gave ( N }  = 92-5 __+ 0.5 and 92.5 __+ 0.5, respectively, and pV/nkT  = 17.05 +__ 0.4 and 
16-93 +__ 0.3, respectively, in good agreement with the CB/TVM/M run. The prob- 
ability of successful insertion/deletion was only 0.002-0.003 for all of the runs, 
comparable to the TVM calculations on the LJ T = 0.75, p = 0.8 system. 

5. Calculations and results on liquid water 

CB/TVM simulations were also performed on liquid water at the experimental 
density at 25~ where the excess free energy has been recently calculated by ther- 
modynamic integration for three different water models [22]. Preliminary calcu- 
lations using different potentials showed that using the original TVM method no 
accepted insertions or deletions occurred during 5 x 104 trial runs for the MCY 
[23] and SPC [24] models and only 30 accepted insertions or deletions for the ST2 
[25] water. However, most  insertions were quickly deleted again, resulting in the 
sampling of the narrow N range 95-97. The CB/TVM method was able to produce 
~0.001 acceptance probability at liquid water density for the ST2 and the SPC 
potentials (comparable to the soft sphere calculations) but again there were no 
accepted insertions or deletions for the MCY potential. The excess free energies of 
these water models were obtained as -16 -57kJ /mol ,  - 2 2 . 5 9 k J / m o l  and -18 .45  
kJ/mol for the MCY, ST2 and SPC waters, respectively (using FCC PBC with 64 
molecules where the inscribed sphere radius is 6.9653 A). Separate (T, V, N) ensem- 
ble calculations for this system size gave the pressure as p = 545atm and 
p = - 301 atm, respectively, suggesting B = - 5.64 and B = - 4.04 for the ST2 and 
SPC waters, respectively. 

For  the CB/TVM/GX calculations, performed on the ST2 and SPC waters, the 
corresponding SC PBC requires 91 molecules in a box of side 13.9623 A. The B 
values reproducing the earlier calculated excess free energy and pressure values are 
B = --5-29 and B = - 3 . 7 2  for the ST2 and SPC waters, respectively. For  the SPC 
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Table 7. Cumulative averages of the number of molecules during the water simulations. 

Model: SPC SPC SPC SPC SPC ST2 ST2 
B: -4 .8  -4-5 -4-3 -4-7 -4-5 -3-8 -3"5 
g: 0-12a 0-12~ 0"12a 0-8a 0-8a 0.12~ 0.12a 

5 x 10 s 90-4 88.4 94.4 93.1 92.5 88-8 93.4 
10 x 10 s 89-2 90.4 93"4 91"5 92.6 89"7 92-4 
15 x 105 91-3 91-1 89"8 90-9 
20 x 10 s 91-4 91.2 90"6 91-3 
25 x 105 91-2 91-6 90-2 91.4 
30 x 105 90-9 91"4 
(N2)-(N)2:  1-7 6-0 4.3 5.9 8"5 10-4 8'6 

B, the parameter in equation (3); g, gridsize for the insertion algorithm. 

waters, calculations were performed using g = 0-24a (a = 2.8A), g = 0 .12a and 
g = 0.8a. Using g = 0 . 2 4 a  and B = - 5 . 1  kept ( N )  well under 91 and using 
B = - 4 . 8  kept ( N )  above 93.0. The g = 0 - 1 2 a  calculations used B = - 4 . 8 ,  
B = - - 4 - 5  and B = - 4 . 3 ,  giving (N)=89 .2__+1 .3 ,  ( N ) = 9 1 . 2 _ 1 . 1  and 
( N )  = 93.8 + 0.8, respectively. The calculations with the finest grid g = 0.08 a used 
B = --4.7 and B = - 4 . 5 ,  giving ( N )  = 89-4 ___ 1-5 and ( N )  = 91.6 ___ 1.1, respec- 
tively. Successive cumulative averages of ( N )  are given in table 7 for the different 
runs. The cumulative averages clearly show that the ( N )  values undergo large 
fluctuations. Successive 5 x 105 averages may actually differ by as much as 4 par- 
ticles. The B value corresponding to the experimental density is estimated as 
B = - 4 . 6 ,  giving -20 .63  kJ/mol for the excess free energy of the SPC water. 

For  the ST2 water CB/TVM/GX calculations were performed using a 0-12 tr grid 
since the SPC results showed no statistically significant difference in the computed 
( N )  when the finer grid was used. The cavity radius was chosen as Re = 2.6A. 
Using B = - 4 . 6  and B = - 4 - 2  the density turned out to be significantly lower than 
the experimental value. Calculations with B = - 3 . 8  and B = - 3 . 5  gave 
( N )  = 90-9 + 1-3 and 91.4 + 1.2, respectively. The successive cumulative averages 
for ( N )  are displayed in table 7. The B value corresponding to the experimental 
density is estimated as B = - 3 . 6 ,  giving the excess free energy of the ST2 water as 
- 19.37 kJ/mol. 

6. Discussion 

It  has been shown that the CB/TVM method is capable of simulating the LJ 
fluid near the triple point. This is a significant improvement over previous grand- 
canonical ensemble calculations where the highest density used was p = 0.64 [2], 
p = 0.68 [38] and p = 0.6325 [6]. Similarly, accurate results have been obtained for 
the excess free energy of the soft-sphere system at high density (or, equivalently, at 
low temperature). It has also been demonstrated that the original TVM method, in 
spite of the very low acceptance rate of insertions or deletions, is still capable of 
producing reasonably accurate results for the LJ systems studied but failed for the 
dense soft spheres and for liquid water. It  has also been demonstrated that simula- 
tions in the (T, V, #) ensemble produce phase separations more easily than in the 
(T, V, N) or (E, V, N) ensembles. 
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High density (T, V,/~) simulation 577 

For the dense atomic fluids, the precision of the calculated ( N )  values with runs 
of 1 x 106-2 x 106 steps is about 0.5-1 per cent. This gives an estimated error of 
the order of 0.1 kT  in the free energy. This is somewhat larger than the ~0.03-  
0-05 kT  quoted in the literature for the LJ fluid when thermodynamic integration or 
the perturbation method with umbrella sampling is used. The calculated statistical 
uncertainties for ( N )  in the liquid water simulations are 1-2 per cent. Here the 
convergence characteristics are markedly worse than for the model liquids, making 
the free energy results less reliable. The likely reason for this is the heavy depen- 
dence of the deletion probability on the high energy wing of the binding energy 
distribution: Monte Carlo runs on water show long range energy correlations [26, 
39] and the effects are most pronounced at the extremes of the energy distributions. 

The ranges of N sampled (shown in the tables as dN) show no significant 
difference between different segments of a run and were essentially the same for 
TVM as for CB/TVM for the LJ systems simulated, consistently well over 10 per 
cent. For the SS system studied, however, dN was generally below 10 per cent and 
showed larger fluctuations over the various segments of the run. This confirms the 
earlier finding that this SS system is more difficult to simulate in the (T, V, /~) 
ensemble than the LJ systems tried. 

The excess entropy s' and excess constant volume heat capacity c'v were com- 
puted using expressions given by Adams [2]. The heat capacity shows consistently 
good convergence behaviour, which is better than the convergence for the entropy. 
This is surprising, since earlier work on liquid water (albeit in the (T, V, N) 
ensemble) found its convergence rather poor [26, 39]. 

The program also computed the fluctuation-dependent thermodynamic proper- 
ties: the expansivity (~), isothermal compressibility (/~) and the pressure coefficient (y) 
using the expressions given by Adams [2] that are related to each other by the 
simple relation fly/~ = 1. For the LJ fluid, the accurate equation of state of Nicolas 
et al. [40] was used to estimate 0t,/~ and ~. The values computed from the simulation 
and estimates from the equation of state are also shown in tables 1, 2 and 4. While 
the /~ /~  = 1 relation is usually strongly violated, the computed ~t and fl values are 
generally close to the values from the equation of state. Furthermore, they vary 
monotonously with the density, except for the CBV/TVM/AM calculation. This 
gives some grounds for considering them to be reasonably accurate. On the other 
hand, the calculated y values show no such trend and the value calculated at various 
stages of a given simulation often varies by factors of two. This is not surprising, 
since ~ is the only fluctuation property that depends on cross-fluctuation. For the 
soft sphere fluid, the equation of state given by Hoover et al. [37] was used to 
estimate ct,/~ and ~. Here the accuracy of all three of them is markedly worse than 
for the LJ systems studied. Again, ~ is the least reliable. As an additional assessment 
on the precision of the results an alternative expression for the density, expressed in 
terms of fluctuations (equation (9) of [2]), has also been evaluated and shown in the 
tables. The conclusions are in agreement with the conclusions from the By/~ check. 

Comparison of the different approximations for P~(r N) shows that (1) the CB/ 
TVM/M method gives ~ 1 per cent error in the density; (2) the density obtained by 
the CB/TVM/AM method appears to be essentially correct but the fluctuation 
properties are less accurate. The calculations with the CB/TVM/GX method give 
progressively better results as the cavity-search grid is refined. In particular, the 
0.15 tr and 0.10 tr grids both gave essentially the correct density. 

The B and p values that were extrapolated to p = 0.8 for the LJ fluid were 
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obtained using the extrapolation formulae equations (8, 10). The same results are 
obtained if linear extrapolation is used based on the two CB/TVM/M runs using 
different Bs. Thus the extrapolation formulae can be used for changes involving 
,~0.5 per cent in the density. 

The failure of the CB/TVM method to produce any density fluctuation with the 
MCY potential is most likely a consequence of the high pressure of this water model 
(6000atm 1-30]) at the experimental density. For the ST2 and SPC waters, the 
CB/TVM/GX method produced stable densities with about 5 per cent fluctuation. 
The computed (N2) - (N)  2, also shown in table 7, range from 1-7 to 10.4, with the 
smaller values belonging to the shorter runs. Due to the relatively large error 
bounds equation (8) is of little use for consistency checks. The computed excess free 
energies, however, differed from the earlier values from thermodynamic integration 
by 2.2 kJ/mol and 4-2 kJ/mol, for the SPC and ST2 waters, respectively. Errors of 
this magnitude cannot be attributed to statistical uncertainties. To make matters 
worse, the deviations are in the opposite direction, giving a 6-4 kJ/mol discrepancy 
with the excess free energy difference between the two models previously computed 
directly by thermodynamic integration 1-21]. The source of this discrepancy is the 
subject of further investigations. It probably lies in the difference in the two sta- 
tistical ensembles since the system sizes applied are rather small. 

The computer time requirements on the LJ system of the various techniques can 
be summarized as follows. Taking the regular canonical ensemble simulation time as 
one unit, the original TVM technique takes 1.5 units, the CB/TVM/M or CB/TVM/ 
AM methods with N t -----200 take 4-1 units and the CB/TVM/GX technique takes 
2.0 and 3-2 units for using 403 (g = 0-15a) and 603 (g = 0.1 a) gridpoints, respec- 
tively. However, the memory requirement of the CB/TVM/GX method is 1-5 and 
2.7 times the other methods using 403 and 603 gridpoints, respectively. The over- 
head involved in the various CB/TVM techniques are about 50 per cent less for the 
water calculations since this overhead is independent of the potential used. 

The comparison of the TVM and CB/TVM methods again demonstrated that 
the CB/TVM method produces ~ 10 times greater acceptance probabilities for the 
insertion/deletion step than the TVM method. However, for the LJ systems this 
difference did not significantly affect the accuracy of the computed configurational 
averages. On the other hand, for the simulation of the dense soft spheres and liquid 
water the TVM method was shown to fail while the CB/TVM method produced 
stable results. 

Finally, two novel applications of the (T, V, /~) ensemble simulations are sug- 
gested: 

(1) The initial configuration for simulation in any ensemble can be generated 
from scratch very efficiently in the (T, V, #) ensemble. In our experience, the 
filling of an empty simulation box and obtaining a reasonably equilibrated 
configuration is 2-3 times faster in the (T, V,/~) ensemble than the equili- 
bration of a completely random configuration in the (T, V, N) ensemble. 

(2) The removal and subsequent insertion of a particle can be considered as a 
very large step in a canonical ensemble simulation. This can be of signifi- 
cance when the system consists of disjoint or narrowly connected areas 
where exchange of particles would be nonexistent or extremely rare. Such 
situation can arise in the simulation of crystal hydrates. 
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Appendix 1 

Computational details of the cavity search used in the CB/TVM/M and 
CB/TV M/AM calculations 

For large systems, consisting of several hundred particles, some form of neigh- 
bour list is essential for an efficient cavity search. For the relatively small systems 
that we worked with, we found that direct calculation with all particles is possible. 
There are two simple tricks, however, that are essential in achieving the current 
speed. 

First, the need to find nearest images, any time the distance of a particle from a 
test point is computed, is eliminated by generating the test points in a reduced cell 
whose walls are R c away from the simulation cell's walls. In order to sample all 
areas of the cell during the simulation, for every insertion attempt the centre of the 
simulation cell is first translated to a randomly selected point in the simulation cell. 

Second, as the distance square between the test point and the particles is com- 
puted, an immediate check is made to see if the partial sum exceeds R 2 or not. 
While in some instances the algorithm performs several tests instead of just one, the 
gain in leaving the loop at an early point far outweighs this disadvantage. In fact, 
implementation of this second trick made the program run nearly twice as fast for 
the 100 LJ particles with 200 random points generated for each insertion. For larger 
systems (or higher dimensions) this gain is even larger. 

Appendix 2 

Generating uniformly distributed points in an FCC cell 

The CB/TVM/M and CB/TVM/AM algorithms require the generation of a large 
number of points uniformly distributed in the simulation cell. Calculation described 
here used the FCC lattice because the image to image distance is the largest with a 
fixed number of particles. A simple procedure would generate random points in a 
cube containing the simulation cell and then examine if the point is also in the 
simulation cell itself. This results on the average four boundary condition exami- 
nations per random points. To avoid this extra work, we developed here a simple 
procedure that generates the points directly. 

The view of the unit cell from the x-y bisector is shown in figure A 1. Here the 
plane of the rhombus ABCD is parallel to the plane of the hexagon EFGHIJ.  The 
distance between the two planes is l/x/2. 

The algorithm first selects a plane parallel to these two and lying between them. 
In general, this carves out a hexagon from the cell labelled in the figure by 
KLMNOP.  The probability of selecting a plane should be proportional to the area 
of the hexagon carved out, 2r + 2/x/r , where r is the distance of the selected plane 
from the plane of the rhombus ABCD. 
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Figure A 1. 

F 

A C 

H 

I 

The unit cell of the FCC PBC viewed from the bisector of the x-y coordinate 
a x e s .  

Next, a random point is selected in the hexagon KLMNOP.  Figure A 2 shows 
this hexagon with its dimensions as a function of r. A random point will be selected 
if one first selects a random point in the rectangle KMQR. If the point falls below 
the ON line, it is translated by ( -  l/x/2, 1/2 + rx/2 ) into the triangle KLS and if the 
point falls below the OP line, it is translated by (l/x/2, 1/2 + rx/2 ) into the triangle 
LMS. 

In the last step, the point is replaced by its mirror image with respect to the 
plane of the hexagon EFGHIJ  with a probability of 0-5. Finally, the coordinates just 
obtained have to be scaled with the actual size of the cell. Also, in the present 
implementation the point is rotated by 45 per cent around the z axis since the FCC 
PBC image search routine of Owicki uses a coordinate system where the coordinate 
axes go through the vertices of the simulation cell. Implementation of this algorithm 
gave a ~20 per cent improvement in the overall simulation time over the trivial 
algorithm for the LJ system using 100 particles and generating 200 random points 
per insertion. 

1 + r..L_ 

( -1 , . . - r )  

,/2 ,/'2 

-1 -1 .-r) 
( ~ " T  4-2 o(o ,~  ./z:z-) 

Figure A 2. 

N ('~2' ~--) 

(1__ -__L r 

The unit cell of the FCC PBC cut by a plane perpendicular to the bisector of 
the x-y  coordinate axes. 
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Appendix 3 

The cavity search usinff the grid aloorithm 

The algorithm was developed assuming simple cubic periodic boundary condi- 
tions. At the outset, an array N~ov(I, J, K) is initialized to count the number of 
particles that are closer than R C to the grid point (E0 + I*EN 8, EO + J*E/Ng, 
EO + K*E/N~), where E is the edge of the simulation cube, E0 = - E l 2  - E/(2*N~) 
and Ng is the number of grid points along each axis. At each step, P~(r s) is approx- 
imated by N~av/Na~. The gridsize discussed earlier is E/Ng. Grid points that are not 
covered are considered to be cavities. A second array L~a v contains a list of the 
cavities, in the form 1"2~~ + J ' 2 5 +  K. The length of the list L . . . .  Nea~ varies 
during the simulation. Finally, the location of a cavity (I, J, K) is stored in the array 
Nco~ (with negative sign to distinguish it from the cover counter values). 

When a particle is removed: 

(1) For all gridpoints covered by this particle, decrement Ncov(l, J, K). 

(2) If the decremented N~o~(l, J, K) became zero, add (I, J, K) to the cavity list 
L~a~ and increment N~v. 

When a particle is added: 

(1) For each gridpoint covered by this particle that was already covered, 
increment N~o~(I, J, K). 

(2) For each cavity covered by this particle, set Ncov(I, J, K) to one and remove 
(I, J, K) from the cavity list. This consists of the following steps: 
2.1. Transfer the information stored in the N~v-th element of the list to the 

place of the cavity to be removed (obtained from the Nco~(l, J, K) corre- 
sponding to the cavity); 

2.2. Update the information in the Noov(I, J, K) corresponding to the cavity 
transferred; 

2.3. Decrement N ~ .  

A simple displacement can be represented by a removal and an addition 
although for finer grids it is a rather wasteful procedure. 

The main advantage of this algorithm is that the addition or removal of a 
particle only affects the gridpoints covered by the particle thus the computer time is 
independent of the system size. The main problem is that the storage requirement 
increases strongly as the grid is refined. 

The restriction of the algorithm to simple cubic cells was necessary to be able to 
find the cavities covered by a particle without examining the boundary conditions 
for each gridpoint under study. 

Appendix 4 
A correction to [1] 

All calculations reported in [1] used a correction term to the energy that was 
double the correct value. As a result, for the system where comparison was made 
with results of Adams [2] (T -- 2.0, p = 0-6408, (N)  = 160.2), a small but notice- 
able discrepancy was found in the calculated (N)  that was erroneously attributed 
to possible problems with the random number generator used in 2. Repeating the 
calculation (1 x 1 0  6 steps) for this system with the correct correction term, we 
obtained ( N ) =  160-0 to be compared with 160.2, obtained by Adams. Similar 
agreements were found for all the properties given in [2]. 
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Note added in proof.--Ruff, Baranyai, Palinkas and Heinzinger published a new 
version of the CB/TVM/M method where the cavity search is based on the vertices 
of the Dirichlet-Voronoi polyhedra of the particles and the cavity correction in the 
acceptance probability is replaced by an energy criterion [41]. 
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