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Grand-canonical ensemble Monte Carlo study of dense liquid

Lennard-Jones, soft spheres and water

by MIHALY MEZEI

Chemistry Department and Center for Study of Gene Structure and Function,
Hunter College of the City University of New York,
695 Park Avenue, New York, N.Y. 10021, U.S.A.

(Received 27 October 1986; accepted 12 January 1987)

The cavity biased Monte Carlo method for the (T, V, u) ensemble has been
tested on a system of Lennard-Jones particles near the triple point in the liquid
and fluid state, on a system of dense soft spheres and on liquid water at room
temperature. We demonstrate that the original (T, V, y) algorithm of Adams is
capable to provide accurate density at much higher densities than it was orig-
inally thought possible.

1. Introduction and background

The purpose of this work is to study the capabilities of the cavity biased Monte
Carlo method (in the following: CB/TVM) [1] for computing configurational aver-
ages of dense liquids in the grand-canonical ensemble. Probably the most important
advantage of simulations in the grand-canonical ensemble is that they can yield the
excess chemical potential directly, making the calculation of the excess free energy
possible. Since the computation of the free energy by computer simulation poses
particular difficulties, this fact itself may make the additional effort of performing
the simulation in the (T, V, p) ensemble worthwhile. Because of the importance of
the free energy, special emphasis will be laid on this aspect of the results.

The CB/TVM method is an extension of the method developed by Adams [2]
and independently by Norman and Filinov [3] for Monte Carlo calculations in the
grand-canonical ensemble (in the following: TVM). This method is derived from the
canonical ensemble Metropolis algorithm [4] by supplementing the stochastic walk
generated in the configuration space by random insertions and deletions of a parti-
cle. Variations of this method were given by Rowley, Nicholson and Parsonage [5]
and by Yao, Greenkorn and Chao [6]. A technique to compute the excess chemical
potential in the canonical or microcanonical ensemble was originally suggested by
Widom [7] and used in a simulation by Romano and Singer [8]. A variation of this
method, called the ‘inverse Widom’ technique was proposed by Shing and Gubbins
[9]. Recently, Powles, Evans and Quirke have observed that the Widom method
gives good results even near the triple point of the LJ fluid when implemented in a
molecular dynamics simulation [10]. Shing and Gubbins [11] derived and tested an
improved version of this method using biased sampling. For the related problem of
the computation of the excess free energy, several techniques exist: thermodynamic
integration [12], the exponential formula with umbrella sampling (also called the
perturbation method) [13], Bennet’s method [14, 15] and the recently introduced
overlap ratio method of Quirke and Jacucci [16]. Recent reviews of the problem of
free-energy calculation can be found in [17-21].
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In §2 the CB/TVM method will be reviewed. Computational details can be
found in Appendices 1-3. In § 3, CB/TVM and TVM calculations are presented for
the Lennard-Jones liquid (LJ) near the triple point in the liquid phase and in the
fluid phase. By comparing the results of the CB/TVM run with existing data on the
LJ fluid, we will establish that the CB/TVM method is able to give reasonably
accurate results in this ‘difficult’ region of the phase space. By comparing the
CB/TVM results with the TVM results, we will establish the quantities that we can
expect to obtain with reasonable precision at low acceptance rates. In particular, we
will demonstrate that the density can be calculated with sufficient accuracy that the
excess chemical potential can be determined from it. Section 4 gives the result on the
soft sphere system that was used as a reference to determine the excess free energy of
the MCY water [22]. Section 5 presents results on the application of the CB/TVM
method to water using the ST2 [23], SPC [24] and MCY [25] potentials. Where
possible the excess free energy is compared with values recently calculated by ther-
modynamic integration [22]. Section 6 discusses the results and comments on the
relative efficiency of different techniques for free-energy calculation.

2. Theory

Computer simulation in the (T, V, u) ensemble can be performed by a method
that is a direct generalization of the (T, V, N) metropolis Monte Carlo method [2,
3]). A Markov chain of configurations is generated where successive members of the
chain are generated from the preceding ones by any of the following three oper-
ations: (a) displacement of a particle; (b) ‘nsertion of a particle; (c) deletion of a
particle. The displacements are accepted using the rules appropriate to the (T, V, N)
ensemble. In the present study force-biased displacements [26] were used for the LJ
liquid and regular Metropolis displacements [4] for water. The recently introduced
CB/TVM method attempts the insertion at positions where a cavity of suitable
radius R, or larger exists and this attempt is accepted with probability.

Pcg = min (1, V'PY(r") exp [(u + U@") — UG~ )/kTI/N + 1)). M

Here u is the chemical potential, ¥V’ = VA3, where A is the de Broglie wavelength,
U(r") is the potential energy of a system of N particles at the configuration r" and
PY(r") is the probability of finding a cavity of radius R_ or larger in the configu-
ration r". In Appendix 1 two methods are described that make the cavity search
rather efficient for systems of hundreds of particles. Finally, the particle to be
deleted is chosen randomly and the deletion attempt is accepted with probability

Pgg =min (1, N exp [(—p + UG™) — U™ HATIV'PY @), @

The above expressions can be simplified for computational purposes [2] using the
substitution

i = kTB — kT In (N, 3)

where y is the excess chemical potential and the value of B is fixed at the beginning
of the calculation.

It is possible that no cavity is found in a given configuration and in this case a
random insertion is performed. This affects the acceptance of the deletion step since
it has to reflect the fact that not all insertions are made into cavities. As described in
[1], this requires the estimate of the probability of these random insertions, PV

nocav *
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For the moderate density used in [1],
P z,ocav = (l ~P IcV)Nl (4)

provided an adequate estimate. However, since in general ((1 — PM)™) # (1
— {PYxM>)™, for the higher densities used in the present work it is necessary to
estimate PY .. directly from the simulation. Fortunately, this required only a small
extra effort.

There is considerable freedom in choosing the order of the various types of trial
perturbations. The present work, follows Adams [2], in performing displacement,
insertion, displacement, deletion attempts in cycles.

For particles that lack spherical symmetry (like water) the orientation of the
particle has to be chosen at an insertion. In the present work we always chose a
random orientation. It is possible, that by considering the torques at the insertion
site selected, an efficient orientation selection, analogous to the gradient bias
methods [26, 28], can be developed.

2.1. Density limitations

It is well known that at high densities the frequency of successful insertion in (T,
V, u) simulations will become negligible since the attempted insertion will always
cause an overlap with existing molecules. This limitation motivated the development
of the cavity-biased algorithm and one of the goals of the present paper is to explore
this limit.

Interestingly, at low densities a different kind of problem can arise. A state that
lies inside the coexistence curve is metastable. Therefore, simulations at this point
for sufficiently large systems and sufficiently long simulation length should separate
into a liquid and a vapour phase. However, for smaller systems the liquid state
appears to be artificially stabilized, and this has been observed in a large number of
simulations in the (T, V, N) and (E, V, N) ensembles. Simulations in the (T, V, p)
ensemble, however, are less stable at lower densities and the separation occurs
rapidly even at small system sizes. An example of this phenomenon will be presented
in §3.3.

2.2. The estimation of PY(x™)
The estimation of PY(r") can be performed at several levels of approximation:

(1) PY¥@™) can be approximated by a configuration independent PY, see [1]. This
is simple computationally and was found to be adequate for the supercritical
LJ fluid at moderate density. In the present work results will be presented
near the triple point of the fluid where it leads to a ~ 1 per cent error in (N ).
Calculations using this method will be labelled CB/TVM/M (the suffix M
indicates the use of the mean probabilities).

(2) PY¥(™) can be approximated by averaging the estimated probability of finding
a cavity only over configurations that resulted in a successful insertion or
deletion. The label CB/TVM/AM method will refer to this technique (the
suffix AM indicates the use of the mean probabilities over accepted inser-
tions and deletions).

(3) The ‘exact’ procedure estimates PY(r") separately at each configuration r".
This, however, is only workable if the estimate is precise enough, making it
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impractical for the random cavity search involved with either CB/TVM/M
or CB/TVM/AM. Its use requires a different approach. Following Owicki
and Scheraga [27], we implemented a cavity search using a finite grid. Inser-
tions are performed on a randomly selected ‘free’ grid. This introduces a
slight error into the limiting distribution of the Markov chain since the
deletions can occur at any point in the box but the insertions are restricted
to the gridpoints. The error decreases as the grid is refined. It will be demon-
strated that the error is actually negligible with manageable gridsizes. Details
of the algorithm are given in Appendix 3. The method using this grid algo-
rithm will be labelled CB/TVM/GX.

2.3. Calculation of the free energy

The excess free energy per particle 4’ can be obtained from the excess chemical
potential and pressure using the expression

A =y — pV/N + kT = kT[B — In (N> — pV/(NKT) + 1] (5)

where p is the pressure of the liquid. It can be computed from the virial sum and a
correction term due to the finite cutoff applied to the potential [2, 29, 30]. The
configurational free energy per particle 4, is obtained using equation (5) as

A=A +kT(ln p—1)=kTB — pV/{N> — kT In V. (6)

2.4. Extrapolation to a target density

(T, V, w) ensemble calculations provide only the excess chemical potential at a
density that is obtained at the end of the calculation as an ensemble average. To
obtain results at a preassigned density, it may be necessary to perform additional
(T, V, p) simulations, and then interpolate. However, results from one run close to
the density targeted should give a good estimate for the B value necessary to obtain
the required (N since ACN)/Au can be approximated by (0{N>/dp)r,y and [2]

(ONY/oWr, vy = (KN?)> — (NY?)/KT. M
Using equation (3) we obtain
(0(N>/0B)z,y = (0N )/0p)r, y dp/dB = (N*) — (N)>. ®)

Similarly, the internal energy and the pressure can be estimated from a run that
gives (N close to the requested value

(OU/O{N D)1,y = (0U/dV)y, y dV/d{N) = (p — pkT)/p. ©
and
(Op/O<N ), v = (8p/0V)r, y AV /A{N) = kTp/({N*> — (N>?). (10)

Equation (9) can be obtained in an analogous manner to the pressure equation [29]
and equation (10) follows from the expression for the isothermal compressibility y
given by Adams [2]

x = —(@V/0p)r, 5/V = ({N?> — {ND*)/pkT{N>. (n

A more general approach can yield the expectation value of any property Q at a
chemical potential u which is different from the one used, p, through a weighted
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average over the configurations sampled:

<@, = <Q exp [Ny — po)/kT1),o/<exp [Nt — p0)/kTT),- (12)

Equation (12) is only limited by the fact that for very different u and y, the precision
of the averages involved would be rather low.

3. Calculations and results on the Lennard-Jones fluid

3.1. Liquid state near the triple point

We selected the LJ fluid at T =075, p = 0-8 for testing the TVM and the
different CB/TVM methods at high density. (In describing the LJ results, the usual
reduced units are used: kT/e = T, V/6> = V, U/e = U, pa®/e = p.) This system is in
the liquid state near the triple point of the liquid and is a severe test of the methods.
The configurational free energy per particle, A., was computed using thermodyna-
mic integration by Hansen and Verlet [31] as —4-27 1 0-04 and by Torrie and
Valleau [13], using umbrella sampling, —4-265 + 0-02. For the pressure, Hansen
and Verlet reported —0-319 + 0-03 [31] and recently Mezei [32] —0-281. The
system was modelled with a simulation cell of volume V = 125 ¢* with face-centred
cubic periodic boundary conditions (FCC PBC) for all but the CB/TVM/GX calcu-
lations. With N = 100 this corresponds to p = 0-8. The FCC PBC were chosen
since about 30 per cent less particles are needed for a given inscribed sphere than for
the usual simple cubic boundary conditions. The algorithm and computer code to
determine the nearest image of a particle using FCC PBC is due to J. C. Owicki
[33]. Appendix 2 provides an algorithm for efficient generation of uniformly distrib-
uted random points in an FCC cell, required for the insertion step. For reasons
given in Appendix 3, the CB/TVM/GX calculations were performed in a simple
cubic cell (SC PBC) with ¥V = 212-543, Here N = 170 corresponds to p = 0-8. These
system sizes were chosen to obtain an inscribed sphere radius of ~3 0. The cavity
radius was chosen to be 0-8 ¢.

Substituting the previously computed A, and p values into equation (6) we
obtain B = —1:396 or B = —1-333 for N = 100 when the pressure values of [31] or
[32] are used, respectively. For N = 170, we obtain B = —0-864 and —0-801,
respectively.

A spherical cutoff of 2-5¢6 was employed in all simulations and the energy,
pressure and entropy for the LJ system were corrected to infinite system size, as
described in [29]. Appendix 4 corrects [1] where incorrect long-range correction
was used.

Three simulations were performed using B = —1:396: a run of 3 x 10° steps
using Adams” TVM method, a run of 1 x 10° steps using the CB/TVM/M method
and a run of 1 x 10° steps using CB/TVM/AM method. In the CB/TVM/M and
CB/TVM/AM calculations 200 test points were generated at each insertion step.
The corresponding calculations using the CB/TVM/GX method were performed
using B = —0-865 with gridsizes 0-3 6, 0-15 ¢ and 0-106. The acceptance probability
of the insertion/deletion step was 0-001 and 0-02 for the TVM and CB/TVM
methods, respectively. The {(N) values obtained were 99-8 + 0-6, 98-7 &+ 0-8 and
99-4 + 0-7 for the TVM, CB/TVM/M and CB/TVM/AM methods, respectively.
(The error bounds were obtained by the method of batch means [34].) The CB/
TVM/GX method gave {(N) = 1669 + 1-0, 169-1 + 0-4 and 169-2 + 0-6, for grid-
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sizes 030, 0-150 and 0-100, respectively. For gridsizes 0-15¢ and 0-100 the
calculations were repeated with slightly different setup parameters, giving
(N> =1691 + 0-5 and (N) = 168-9 + 0-6, respectively. The various thermodyna-
mic parameters and run characteristics at successive stages of the runs are collected
in tables 1 and 2. The numbers in the tables printed in bold face correspond to the
results at the end of a run. The same quantities at intermediate stages of the
calculation are also given in these tables to show the convergence characteristics of
the various quantities. Part of the data will be discussed in § 6.

Runs of similar length using B = —1-23 were also performed. For the insertion/
deletion step the acceptance probability was 0-001 and 0-02 for the TVM and
CB/TVM/M methods, respectively. The TVM and CB/TVM/M methods gave

Table 1. Thermodynamic parameters and run characteristics for the Lennard-Jones system at
T = 0-75 targeting p = 0-8, N = 100.

B (N> -U —-p -5 v o B ¥ By/a p  dN NMC

v

VM
—1-396 996 576 0317 321 252 091 015 2-7 046 099 15 1000
99-8 577 0302 320 252 068 011 53 091 081 15 2000
996 577 0314 321 251 062 011 63 108 074 17 3000
Eq. state 0-275 070 0-13 51

CB/TVM/M
—1396 986 566 0433 338 248 078 014 S5 096 077 16 250
989 572 0408 333 244 068 012 63 109 070 18 500
990 574 0375 329 245 070 012 61 105 073 22 750
987 573 0380 329 246 072 013 60 104 073 26 1000
Eq. state 0-339 074 015 55
CB/TVM/AM
—1396 997 575 0296 317 256 091 015 45 068 091 28 200
987 570 0353 321 248 087 015 32 055 093 29 500
99-5 574 0307 317 247 091 015 22 037 101 26 700
994 574 0314 318 244 088 015 30 051 094 28 1000
Eq. state 0-290 071 015 66
TVM
—123 1013 584 0164 321 253 119 020 —63 —1.04 168 20 1000
1015 586 0167 323 257 094 015 —09 —016 130 21 2000
1013 585 0194 327 256 082 013 18 030 109 21 3000
Eq. state 0-139 063 014 55
CB/TVM/M
—123 999 577 0272 330 251 051 009 58 105 077 16 250
99-5 577 0304 337 247 063 011 54 096 078 17 500
997 579 0302 339 247 064 011 54 094 078 18 750
998 577 0288 334 246 065 011 58 099 076 18 1000
Eq. state 0-260 069 013 52

B, the parameter in equation (3); U, p, computed internal energy and external pressure, cor-
rected to infinite potential cutoff; s, ¢,, computed excess entropy and constant volume heat
capacity, uncorrected for the potential cutoff; «, B, y, expansivity, isothermal compressibility and
the pressure coefficient, uncorrected for the potential cutoff; p’, density computed from fluctuations
[2]; dN, range of N values sampled in the segment of the run starting from the point the previous
line in the table refers to; NMC, number of compound Monte Carlo steps/1000; the data in the
lines of Eq. state was obtained from the equation given in [40].
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Table 2. Thermodynamic parameters and run characteristics for the Lennard-Jones system at
T = 0-75 targeting p = 0-8 and N = 170.

B (N ~U -p -5 ¢ o B y By/e p dN NMC

CB/TVM/GX, g = 0-30¢
—0865 1667 568 048 343 245 072 013 42 077 084 18 200
1670 570 0491 345 244 102 019 -—09 —017 122 31 500
1667 569 0493 344 244 096 018 04 —007 119 23 700
1669 569 0483 343 242 084 016 16 031 103 22 1000
Eq. state 0375 076 015 49

CB/TVM/GX, g = 0-150 (1st)
—0-865 1692 575 0358 328 245 047 008 82 142 057 18 200
1688 574 0394 333 243 062 O11 53 093 077 26 500
1689 575 0377 331 244 062 012 38 069 090 22 700
1691 576 0361 328 249 062 011 44 079 087 22 1000
1691 575 0362 327 248 062 011 42 076 088 23 1250
Eq. state 0284 070 014 52
CB/TVM/GX, g = 0-150 (2nd)
0865 1689 575 0393 334 245 049 009 67 121 067 18 250
1688 574 0394 333 243 062 O11 53 093 077 26 500
1691 577 0363 330 247 063 011 36 066 092 22 750
169-1 576 0361 328 249 062 011 44 079 087 21 1000
1691 575 0362 327 248 062 011 42 076 088 23 1250
1691 575 0353 327 347 061 011 41 075 089 20 1500
Eq. state 0284 070 014 52

CB/TVM/GX, g = 01 ¢ (1st)
—0-865 1686 575 0438 341 245 064 Oll1 9-1 1-53 051 23 200
169-6 577 0326 324 244 065 011 43 076 086 25 500
169-5 575 0334 322 245 070 012 52 086 08 24 1000
1692 576 0347 326 245 068 0-12 52 09 080 20 1250
Eq. state 0-281 070 0-14 52
CB/TVM/GX, g = 0-1 ¢ (2nd)
—~0-865 1702 579 0287 320 243 063 011 67 112 068 20 200
168-9 575 0379 331 242 071 013 22 039 100 22 500
168-9 575 0389 333 245 075 013 2:3 042 101 22 800
1686 574 0402 336 244 073 013 24 043 101 22 1000
168-8 575 0395 334 245 073 013 2-3 042 101 22 1200
1689 575 0387 332 246 074 013 22 040 102 25 1500
Eq. state 0-291 071 014 52

B, the parameter in equation (3); U, p, computed internal energy and external pressure, cor-
rected to infinite potential cutoff; s, ¢/, computed excess entropy and constant volume heat capac-
ity, uncorrected for the potential cutoff; a, B, y, expansivity, isothermal compressibility and the
pressure coefficient, uncorrected for the potential cutoff; p’, density computed from fluctuation [2];
dN, range of N values sampled in the segment of the run starting from the point the previous line
in the table refers to; NMC, number of compound Monte Carlo steps/1000; the data in the line of
Eq. state was obtained from the equation given in [40]; g, gridsize for the insertion algorithm.

{N)=101-3 4+ 08 and 99-7 + 0-9, respectively. The various thermodynamic
parameters and run characteristics at successive stages of the runs are given in table 1.

For the CB/TVM/M method, the B and p values can be extrapolated for p = 0-8
as B= —1-18 and p = —0-260. Significantly, the use of equations (8) and (10) gave
the same result. Table 3 contains the B parameter and the pressure extrapolated to
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Table 3. LJ simulation results at T = 0-75 extrapolated to p = 0-80.

g B (N> Lp> p B* P A,
TVM ~1396 996 07968 —0-314 —137 —0296 —428
CB/TVM/M —1-396 987 07896 —0380 —118 —0260 -—4-18
CB/TVM/AM ~1:396 994 07952 —0-314 —133 —0354 —423

CB/TVM/GX (Ist) 015 —0-865 169-1 0-7958 —0-362 —0-785 —0-314 —4-22
CB/TVM/GX (2nd) 015 -—0-865 169-1 07959 —0-353 —0-784 —0-305 —4-23
CB/TVM/GX (Isty 010 —0-865 1692 0-7962 —0-347 —0-799 -—0-308 —4-23
CB/TVM/GX (2nd) 0-10 —0-865 1689 07950 —0-387 —0-781 -—0-337 —421

The superscript x indicates extrapolation to p = 0-80.

p =0-8 and the configurational free energy values computed. Based on the suc-
cessful use of the extrapolation formulae for the CB/TVM/M calculations we
employed equations (8) and (10) to obtain these results. The error estimate for A4, is
obtained using equation (8) from the error estimate computed for (N). The error in
A, should also have a contribution from p, but the two contributions are likely to be
correlated and simple addition of the error squares would lead to an overestimate.

The most striking result is that while the acceptance rate of an insertion/deletion
step for the TVM method is about 20 times less than for the CB/TVM methods, the
density is accurate to within 1 per cent, implying that even at such a low acceptance
rate reasonable accuracy can be obtained for the density. This result has been
arrived at independently by Quirke [35].

The differences between the calculated configurational free energies and the
previously computed values are all within the stated error limits with the CB/TVM/
M result giving the largest deviation. The pressure values generally fall between the
two previously published values, the exception again is the CB/TVM/M result.

3.2. Fluid state near the triple point

The free energy of the LJ fluid at T = 0-903 and p = 0-835 was computed by
Torrie and Valleau [13] as A, = —3-966 + 0-02 and the pressure has been obtained
by McDonald and Singer [36] as 1-09. Using a system of 178 particles requires a
simple cubic cell of 59737 ¢ edge, easily accommodating the 2-5¢ cutoff for the
potential. The previously computed free energy and pressure values suggest
B = 2-27. The initial configuration for the (T, V, u) ensemble simulation was first
equilibrated in the (T, V, N) ensemble, giving U= —584+0-01 and
p = 1-08 + 0-07, in good agreement with the values given by McDonald and Singer.
(T, V, u) ensemble simulations were performed using the TVM, CB/TVM/M (R, =
076 and R_ = 0-8¢) and the CB/TVM/GX (R, = 0-8 ) method with a 0-10¢ grid.
The acceptance probabilities for the insertion/deletion steps was 0-0004 for the
TVM method and 0-004 and 0-015 for the CB/TVM/M method using R, = 0-7¢
and 0-8 0, respectively. The results at the successive stages of the runs are sum-
marized in table 4. For the average number of particles we obtained
{N>=178-0+1-5, 1775 + 1-1, 178-3 + 1-7 and 178-8 + 0-7 using the TVM, CB/
TVM/M, CB/TVM/M and CB/TVM/GX methods, respectively. The pressure was
computed as p = 1-02 + 0-10, 0-97 + 0-08, 1-03 + 0-11 and 1-07 + 0-08 using the
TVM, CB/TVM/M, CB/TVM/M and CB/TVM/GX methods, respectively.
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Table 4. Thermodynamic parameters and run characteristics for the Lennard-Jones system
at T = 0-903 targeting p = 0-835and N = 178.

B (N -=U p -5  d o B Y By/x p dN NMC

TVM
2-47 1780 586 1-000 345 257 027 0046 82 1336 063 12 1000
1783 5-86 1-043 3-40 2-53 042 0-071 37 1-41 102 17 2000
1780 585 1020 3-42 252 043 0071 36 061 103 15 3000
Eq. state 1-060 0-39 0069 57
CB/TVM/GX, R, =080,9g=010¢
2-47 1790 588 1-137 330 239 045 0074 2-4 039 109 21 200
179-4 587 1-132 330 245 052 0087 —-00 —-0-00 135 24 500
178-6 586 1100 3-33 2:53 0-56 0-092 02 004 135 18 700
1787 585 1070 336 251 049 0-081 2-1 034 1-118 14 1000
Eq. state 1-118 0-38 0067 57
CB/TVM/M, R =070
2447 1761 580 0868 356 255 026 0-049 71 1-33 069 13 200
177-0 583 0913 3-54 257 037 0-064 53 092 088 17 500
177-5 585 0961 350 2-58 041 0-067 56 092 086 16 700
177-5 584 0967 349 255 046 0077 35 059 104 19 1000
Eq. state 1-019 0-39 0070 57
CB/TVM/M, R, = 08¢
2-47 1779 586 0962 350 2:38 049 0-082 24 041 107 22 200
178-1 587 1037 341 236 039 0065 45 074 08 19 500
178-4 5-85 1-040 3-40 245 039 0-062 58 093 080 16 700
1783 586 1035 341 245 036 0058 64 103 074 18 1000
Eq. state 1-084 039 0068 57

B, the parameter in equation (3); U, p, computed internal energy and external pressure,
corrected to infinite potential cutoff; §', ¢, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; «, B, 7, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuation [2]; dN, range of N values sampled in the segment of the run starting from
the point the previousl line in the table refers to; NMC, number of compound Monte Carlo
steps/1000; the data in the line of Eq. state was obtained from the equation given in [40]; g,
gridsize for the insertion algorithm.

Extrapolation to p = 0-835 gave p* = 1-02, 1-00, 1-00 and 1-02 using the TVM,
CB/TVM/M, CB/TVM/M and CB/TVM/GX methods, respectively. Substituting
into equation (6) yields the configurational free energy as A, = —3-83, —3-77,
—3-85 and —3-89 using the TVM, CB/TVM/M, CB/TVM/M and CB/TVM/GX
methods, respectively.

3.3. Liquid state at medium density and low temperature

The free energy of the LJ fluid at T = 0-75 and p = 0-6 was computed by Torrie
and Valleau [13] as 4, = —3-966 in good agreement with Hansen and Verlet [13]
who reported 4, = —3-9 and p = —0:9234. Use of a 128 particle system requires a
simple cubic cell of 597526 edge, easily accommodating the 2-5¢ cutoff on the
potential. The previously computed free energy and pressure values suggest
B ="—1916. A short (T, V, N) ensemble run started from a random configuration
provided the initial configuration for the (T, V, u) ensemble simulation.
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The simulation of this system, however, is unstable. Calculations using
B < —1-15 finish with no particle in the box after only 3 x 10° configurations.
Calculations with B > —1-08, on the other hand, filled the box with over 200
particles, again within 3 x 10° configurations.

4. Calculations and results on soft spheres

The excess free energies of several water models were obtained previously by
thermodynamic integration [22] using the soft-sphere fluid at p(e/kT)"/* = 0-74 as a
reference state. We performed (T, V, u) ensemble calculations on this system. [36]
gives the excess free energy per particle of this soft-sphere system as 4’ = 7-035kT
and pV/NkT = 15-395 [37]. An attempt to use the original TVM method met with
complete failure: in 5 x 10° configurations not a single insertion attempt was
accepted. Calculations with the CB/TVM/M method using B = 26-19 and B = 25-5
were performed using FCC PBC and targeting (N) = 64. The cavity radius chosen
was again 0-8¢ (the volume was 61-16¢3). With B = 25-5 we also performed a
calculation using a cavity radius of 0-75¢. The results of the CB/TVM/M runs are
given in table 5. They gave (N)>=6524+03 and 641+03, pV/
NkT = 1534 4+ 0-3 and 15-39 4 0-2, respectively. Extrapolation to (N) = 64 gives
A"'=691 + 0-3kT and 696 + 0-3kT, respectively, in good agreement with the
value in [37]. The corresponding CB/TVM/GX calculations targeted N = 91, using
B = 26-54 corresponding to the B = 26-19 calculation, employing 0-11 ¢ and 0-07 ¢
grids. The results of the CB/TVM/GX calculations are summarized in table 6. They

Table 5. Thermodynamic parameters and run characteristics for the soft sphere system
targeting p(e/kT)'* = 0-74 and N = 64.

B (N> U PpV/NKT -5 ¢ o B y Byla p° dN NMC
CB/TVM/M, R, = 08¢

2619 6392 358 1600 414 314 010 0014 45 064 077 17 250
65-37 379 1728 305 304 031 0044 293 411 270 5 500
6519 376 1709 322 302 023 0035 226 339 218 6 750
6523 376 1711 320 295 020 0-030 183 278 188 5 1000

Eq. state 15-07 013 0019 67
CB/TVM/M, R, =0-8¢ )

255 6409 3-60 1540 336 307 012 0018 56 1-18 104 10 225

6409 357 1534 345 297 o012 0018 70 104 103 8 500
Eq. state 14-46 0-13 0020 64

CB/TVYM/M, R, =0-725¢

255 6405 359 1537 340 296 016 0021 72 091 105 13 300

6406 359 1539 338 290 015 0020 71 09 106 7 500
Eq. state 14-15 013 0020 64

B, the parameter in equation (3); U, p, computed internal energy and external pressure,
corrected to infinite potential cutoff; s, ¢,, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; «, f, y, expansivity, isothermal compress-
ibility and the pressure coeflicient, uncorrected for the potential cutoff; p’, density computed
from fluctuation [2] (N = 64 corresponds to p = 1-05); dN, range of N values sampled in the
segment of the run starting from the point the previous line in the table refers to; NMC,
number of compound Monte Carlo steps/1000; the data in the line of Eq. state was obtained
from the equation given in [40]; g, gridsize for the insertion algorithm.



High density (T, V, p) simulation 575

Table 6. Thermodynamic parameters and run characteristics for the soft sphere system
targeting p(e/kT)/* = 0-74 and N = 91.

B (N U pV/NKT -s ¢, o B y Byla p  dN NMC

CB/TVM/GX, g =0-11¢
2654 922 372 1682 344 246 009 0013 17 026 080
925 376 1705 322 280 008 0012 23 035 075
Eq. state 14-97 013 0019 66
CB/TVM/GX, g =0-07¢
26-54 928 376 1712 321 2773 O11 0017 69 107 111 8 300
925 375 1701 327 278 017 0025 128 1-86 154 8 600
925 373 1793 336 281 014 0020 81 116 1118 7 1000
Eq. state 1497 0-13 0019 66

300
600

[ ]

B, the parameter in equation (3); U, p, computed internal energy and external pressure,
corrected to infinite potential cutoff; s, ¢, computed excess entropy and constant volume
heat capacity, uncorrected for the potential cutoff; «, 8, y, expansivity, isothermal compress-
ibility and the pressure coefficient, uncorrected for the potential cutoff; p’, density computed
from fluctuation [2] (N = 91 corresponds to p = 1-05); dN, range of N values sampled in the
segment of the run starting from the point the previous line in the table refers to; NMC,
number of compound Monte Carlo steps/1000; the data in the line if eq. state was obtained
from the equation given in [40]; g, gridsize for the insertion algorithm.

gave (N> =92-5 £+ 0-5 and 92-5 + 0-5, respectively, and pV/nkT = 17-05 £+ 0-4 and
1693 + 0-3, respectively, in good agreement with the CB/TVM/M run. The prob-
ability of successful insertion/deletion was only 0-002-0-003 for all of the runs,
comparable to the TVM calculations on the LY T = 0-75, p = 0-8 system.

5. Calculations and results on liquid water

CB/TVM simulations were also performed on liquid water at the experimental
density at 25°C where the excess free energy has been recently calculated by ther-
modynamic integration for three different water models [22]. Preliminary calcu-
lations using different potentials showed that using the original TVM method no
accepted insertions or deletions occurred during 5 x 10* trial runs for the MCY
[23] and SPC [24] models and only 30 accepted insertions or deletions for the ST2
[25] water. However, most insertions were quickly deleted again, resulting in the
sampling of the narrow N range 95-97. The CB/TVM method was able to produce
~0-001 acceptance probability at liquid water density for the ST2 and the SPC
potentials (comparable to the soft sphere calculations) but again there were no
accepted insertions or deletions for the MCY potential. The excess free energies of
these water models were obtained as —16-57kJ/mol, —22-:59kJ/mol and —18-45
kJ/mol for the MCY, ST2 and SPC waters, respectively (using FCC PBC with 64
molecules where the inscribed sphere radius is 6-9653 A). Separate (T, V, N) ensem-
ble calculations for this system size gave the pressure as p = 545atm and
p = —301 atm, respectively, suggesting B = —5-64 and B = —4-04 for the ST2 and
SPC waters, respectively.

For the CB/TVM/GX calculations, performed on the ST2 and SPC waters, the
corresponding SC PBC requires 91 molecules in a box of side 139623 A. The B
values reproducing the earlier calculated excess free energy and pressure values are
B = —5-29 and B = —3-72 for the ST2 and SPC waters, respectively. For the SPC
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Table 7. Cumulative averages of the number of molecules during the water simulations.

Model: SPC SPC SPC SPC SPC ST2 ST2
B: —4-8 —45 —43 —47 —4-5 —38 -35
g 0120 0120 0-12¢ 08¢ 08¢ 0120 0120
5 x 10° 90-4 88-4 94-4 93-1 92-5 88-8 93-4
10 x 10° 89-2 90-4 93-4 91-5 92-6 89-7 92-4
15 x 10° 913 91-1 89-8 90-9
20 x 10° 91-4 91-2 90-6 91-3
25 x 10° 91-2 91-6 90-2 914
30 x 10° 90-9 91-4
(NN 17 60 43 59 85 10-4 8-6

B, the parameter in equation (3); g, gridsize for the insertion algorithm.

waters, calculations were performed using g = 0-24¢ (6 = 2:8A), g =0-12¢ and
g=080. Using g =024 and B= —51 kept {(N) well under 91 and using
B= —4-8 kept (N> above 93-0. The g = 0-12¢ calculations used B = —4-§,
B=—-45 and B= —43, giving (N)>=1892+13 (N)>=912+11 and
{N) =93-8 + 0-8, respectively. The calculations with the finest grid g = 0-08 5 used
B= —47 and B= —4-5, giving (N> = 89-4 + 1-5 and (N> =91-6 + I-1, respec-
tively. Successive cumulative averages of (N) are given in table 7 for the different
runs. The cumulative averages clearly show that the (N) values undergo large
fluctuations. Successive 5 x 10° averages may actually differ by as much as 4 par-
ticles. The B value corresponding to the experimental density is estimated as
B = —4-6, giving —20-63 kJ/mol for the excess free energy of the SPC water.

For the ST2 water CB/TVM/GX calculations were performed using a 0-12 ¢ grid
since the SPC results showed no statistically significant difference in the computed
(N> when the finer grid was used. The cavity radius was chosen as R, = 2:6A.
Using B = —4-6 and B = —4-2 the density turned out to be significantly lower than
the experimental value. Calculations with B= —3-8 and B= —35 gave
{N>=90-9 + 1-3 and 91-4 + 1-2, respectively. The successive cumulative averages
for {N) are displayed in table 7. The B value corresponding to the experimental
density is estimated as B = —3-6, giving the excess free energy of the ST2 water as
—19-37kJ/mol.

6. Discussion

It has been shown that the CB/TVM method is capable of simulating the LJ
fluid near the triple point. This is a significant improvement over previous grand-
canonical ensemble calculations where the highest density used was p = 0-64 [2],
p = 0-68 [38] and p = 0-6325 [6]. Similarly, accurate results have been obtained for
the excess free energy of the soft-sphere system at high density (or, equivalently, at
low temperature). It has also been demonstrated that the original TVM method, in
spite of the very low acceptance rate of insertions or deletions, is still capable of
producing reasonably accurate results for the LJ systems studied but failed for the
dense soft spheres and for liquid water. It has also been demonstrated that simula-
tions in the (7, V, u) ensemble produce phase separations more easily than in the
(T, V, N) or (E, V, N) ensembles.
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For the dense atomic fluids, the precision of the calculated {(N) values with runs
of 1 x 10%-2 x 10 steps is about 0-5-1 per cent. This gives an estimated error of
the order of 0-1 kT in the free energy. This is somewhat larger than the ~0-03-
0-05kT quoted in the literature for the LJ fluid when thermodynamic integration or
the perturbation method with umbrella sampling is used. The calculated statistical
uncertainties for (N) in the liquid water simulations are 1-2 per cent. Here the
convergence characteristics are markedly worse than for the model liquids, making
the free energy results less reliable. The likely reason for this is the heavy depen-
dence of the deletion probability on the high energy wing of the binding energy
distribution: Monte Carlo runs on water show long range energy correlations [26,
39] and the effects are most pronounced at the extremes of the energy distributions.

The ranges of N sampled (shown in the tables as dN) show no significant
difference between different segments of a run and were essentially the same for
TVM as for CB/TVM for the LJ systems simulated, consistently well over 10 per
cent. For the SS system studied, however, dN was generally below 10 per cent and
showed larger fluctuations over the various segments of the run. This confirms the
earlier finding that this SS system is more difficult to simulate in the (T, V, p)
ensemble than the LJ systems tried.

The excess entropy s’ and excess constant volume heat capacity ¢, were com-
puted using expressions given by Adams [2]. The heat capacity shows consistently
good convergence behaviour, which is better than the convergence for the entropy.
This is surprising, since earlier work on liquid water (albeit in the (T, V, N)
ensemble) found its convergence rather poor [26, 39].

The program also computed the fluctuation-dependent thermodynamic proper-
ties: the expansivity («), isothermal compressibility (£) and the pressure coefficient (y)
using the expressions given by Adams [2] that are related to each other by the
simple relation fy/a = 1. For the LJ fluid, the accurate equation of state of Nicolas
et al. [40] was used to estimate a, 8 and y. The values computed from the simulation
and estimates from the equation of state are also shown in tables 1, 2 and 4. While
the fiy/a = 1 relation is usually strongly violated, the computed « and § values are
generally close to the values from the equation of state. Furthermore, they vary
monotonously with the density, except for the CBV/TVM/AM calculation. This
gives some grounds for considering them to be reasonably accurate. On the other
hand, the calculated y values show no such trend and the value calculated at various
stages of a given simulation often varies by factors of two. This is not surprising,
since y is the only fluctuation property that depends on cross-fluctuation. For the
soft sphere fluid, the equation of state given by Hoover et al. [37] was used to
estimate «, f and y. Here the accuracy of all three of them is markedly worse than
for the LJ systems studied. Again, y is the least reliable. As an additional assessment
on the precision of the results an alternative expression for the density, expressed in
terms of fluctuations (equation (9) of [2]), has also been evaluated and shown in the
tables. The conclusions are in agreement with the conclusions from the fy/a check.

Comparison of the different approximations for PY¥(r™) shows that (1) the CB/
TVM/M method gives ~ 1 per cent error in the density; (2) the density obtained by
the CB/TVM/AM method appears to be essentially correct but the fluctuation
properties are less accurate. The calculations with the CB/TVM/GX method give
progressively better results as the cavity-search grid is refined. In particular, the
0-15 ¢ and 0-10 o grids both gave essentially the correct density.

The B and p values that were extrapolated to p = 0-8 for the LJ fluid were
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obtained using the extrapolation formulae equations (8, 10). The same results are
obtained if linear extrapolation is used based on the two CB/TVM/M runs using
different Bs. Thus the extrapolation formulae can be used for changes involving
~0-5 per cent in the density.

The failure of the CB/TVM method to produce any density fluctuation with the
MCY potential is most likely a consequence of the high pressure of this water model
(6000 atm [30]) at the experimental density. For the ST2 and SPC waters, the
CB/TVM/GX method produced stable densities with about 5 per cent fluctuation.
The computed (N?>-{N)2, also shown in table 7, range from 1-7 to 10-4, with the
smaller values belonging to the shorter runs. Due to the relatively large error
bounds equation (8) is of little use for consistency checks. The computed excess free
energies, however, differed from the earlier values from thermodynamic integration
by 2-2kJ/mol and 4-2kJ/mol, for the SPC and ST2 waters, respectively. Errors of
this magnitude cannot be attributed to statistical uncertainties. To make matters
worse, the deviations are in the opposite direction, giving a 6-4 kJ/mol discrepancy
with the excess free energy difference between the two models previously computed
directly by thermodynamic integration [21]. The source of this discrepancy is the
subject of further investigations. It probably lies in the difference in the two sta-
tistical ensembles since the system sizes applied are rather small.

The computer time requirements on the LJ system of the various techniques can
be summarized as follows. Taking the regular canonical ensemble simulation time as
one unit, the original TVM technique takes 1-5 units, the CB/TVM/M or CB/TVM/
AM methods with N, = 200 take 4-1 units and the CB/TVM/GX technique takes
2:0 and 3-2 units for using 40> (g = 0-15¢) and 60> (g = 0-1 ¢) gridpoints, respec-
tively. However, the memory requirement of the CB/TVM/GX method is 1-5 and
2.7 times the other methods using 40° and 60> gridpoints, respectively. The over-
head involved in the various CB/TVM techniques are about 50 per cent less for the
water calculations since this overhead is independent of the potential used.

The comparison of the TVM and CB/TVM methods again demonstrated that
the CB/TVM method produces ~ 10 times greater acceptance probabilities for the
insertion/deletion step than the TVM method. However, for the LJ systems this
difference did not significantly affect the accuracy of the computed configurational
averages. On the other hand, for the simulation of the dense soft spheres and liquid
water the TVM method was shown to fail while the CB/TVM method produced
stable results.

Finally, two novel applications of the (T, V, u) ensemble simulations are sug-
gested:

(1) The initial configuration for simulation in any ensemble can be generated
from scratch very efficiently in the (T, V, u) ensemble. In our experience, the
filling of an empty simulation box and obtaining a reasonably equilibrated
configuration is 2-3 times faster in the (T, V, u) ensemble than the equili-
bration of a completely random configuration in the (T, V, N) ensemble.

(2) The removal and subsequent insertion of a particle can be considered as a
very large step in a canonical ensemble simulation. This can be of signifi-
cance when the system consists of disjoint or narrowly connected areas
where exchange of particles would be nonexistent or extremely rare. Such
situation can arise in the simulation of crystal hydrates.
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Appendix 1

Computational details of the cavity search used in the CB/TVM/M and
CB/TVM/AM calculations

For large systems, consisting of several hundred particles, some form of neigh-
bour list is essential for an efficient cavity search. For the relatively small systems
that we worked with, we found that direct calculation with all particles is possible.
There are two simple tricks, however, that are essential in achieving the current
speed.

First, the need to find nearest images, any time the distance of a particle from a
test point is computed, is eliminated by generating the test points in a reduced cell
whose walls are R, away from the simulation cell’s walls. In order to sample all
areas of the cell during the simulation, for every insertion attempt the centre of the
simulation cell is first translated to a randomly selected point in the simulation cell.

Second, as the distance square between the test point and the particles is com-
puted, an immediate check is made to see if the partial sum exceeds R2 or not.
While in some instances the algorithm performs several tests instead of just one, the
gain in leaving the loop at an early point far outweighs this disadvantage. In fact,
implementation of this second trick made the program run nearly twice as fast for
the 100 LJ particles with 200 random points generated for each insertion. For larger
systems (or higher dimensions) this gain is even larger.

Appendix 2

Generating uniformly distributed points in an FCC cell

The CB/TVM/M and CB/TVM/AM algorithms require the generation of a large
number of points uniformly distributed in the simulation cell. Calculation described
here used the FCC lattice because the image to image distance is the largest with a
fixed number of particles. A simple procedure would generate random points in a
cube containing the simulation cell and then examine if the point is also in the
simulation cell itself. This results on the average four boundary condition exami-
nations per random points. To avoid this extra work, we developed here a simple
procedure that generates the points directly.

The view of the unit cell from the x-y bisector is shown in figure A 1. Here the
plane of the rhombus ABCD is parallel to the plane of the hexagon EFGHIJ. The
distance between the two planes is 1/,/2.

The algorithm first selects a plane parallel to these two and lying between them.
In general, this carves out a hexagon from the cell labelled in the figure by
KLMNOP. The probability of selecting a plane should be proportional to the area
of the hexagon carved out, 2r + 2/,/r, where r is the distance of the selected plane
from the plane of the rhombus ABCD.
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Figure A1. The unit cell of the FCC PBC viewed from the bisector of the x-y coordinate
axes.

Next, a random point is selected in the hexagon KLMNOP. Figure A2 shows
this hexagon with its dimensions as a function of r. A random point will be selected
if one first selects a random point in the rectangle KMQR. If the point falls below
the ON line, it is translated by (—1/,/2, 1/2 + r,/2) into the triangle KLS and if the
point falls below the OP line, it is translated by (1/4/2, 1/2 + r,/2) into the triangle
LMS.

In the last step, the point is replaced by its mirror image with respect to the
plane of the hexagon EFGHIJ with a probability of 0-5. Finally, the coordinates just
obtained have to be scaled with the actual size of the cell. Also, in the present
implementation the point is rotated by 45 per cent around the z axis since the FCC
PBC image search routine of Owicki uses a coordinate system where the coordinate
axes go through the vertices of the simulation cell. Implementation of this algorithm
gave a ~20 per cent improvement in the overall simulation time over the trivial
algorithm for the LJ system using 100 particles and generating 200 random points
per insertion.

! r
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Figure A2. The unit cell of the FCC PBC cut by a plane perpendicular to the bisector of
the x—y coordinate axes.
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Appendix 3

The cavity search using the grid algorithm

The algorithm was developed assuming simple cubic periodic boundary condi-
tions. At the outset, an array N_ (I, J, K) is initialized to count the number of
particles that are closer than R, to the grid point (EO + I*EN,, EO + J*E/N,,
EO + K*E/N,), where E is the edge of the simulation cube, E0 = —E/2 — E/(2*N,)
and N, is the number of grid points along each axis. At each step, P}(r") is approx-
imated by N,,/N2. The gridsize discussed earlier is E/N,. Grid points that are not
covered are considered to be cavities. A second array L., contains a list of the
cavities, in the form I*2!° 4 J*25 + K. The length of the list L_,, N, varies
during the simulation. Finally, the location of a cavity (I, J, K) is stored in the array
N_., (with negative sign to distinguish it from the cover counter values).

When a particle is removed:

(1) For all gridpoints covered by this particle, decrement N (I, J, K).

(2) If the decremented N, (I, J, K) became zero, add (I, J, K) to the cavity list
L.,, and increment N

cav

When a particle is added:

(1) For each gridpoint covered by this particle that was already covered,
increment N, (I, J, K).

(2) For each cavity covered by this particle, set N(I, J, K) to one and remove

(I, J, K) from the cavity list. This consists of the following steps:

2.1. Transfer the information stored in the N, -th element of the list to the
place of the cavity to be removed (obtained from the N (I, J, K) corre-
sponding to the cavity);

2.2. Update the information in the N, (I, J, K) corresponding to the cavity
transferred;

2.3. Decrement N

cav*

A simple displacement can be represented by a removal and an addition
although for finer grids it is a rather wasteful procedure.

The main advantage of this algorithm is that the addition or removal of a
particle only affects the gridpoints covered by the particle thus the computer time is
independent of the system size. The main problem is that the storage requirement
increases strongly as the grid is refined.

The restriction of the algorithm to simple cubic cells was necessary to be able to
find the cavities covered by a particle without examining the boundary conditions
for each gridpoint under study.

Appendix 4
A correction to [1]

All calculations reported in [1] used a correction term to the energy that was
double the correct value. As a result, for the system where comparison was made
with results of Adams [2] (T = 20, p = 0-6408, {N) = 160-2), a small but notice-
able discrepancy was found in the calculated {N) that was erroneously attributed
to possible problems with the random number generator used in 2. Repeating the
calculation (1 x 10° steps) for this system with the correct correction term, we
obtained (N) = 160-0 to be compared with 160-2, obtained by Adams. Similar
agreements were found for all the properties given in [2].
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Note added in proof—Rufl, Baranyai, Palinkas and Heinzinger published a new
version of the CB/TVM/M method where the cavity search is based on the vertices
of the Dirichlet-Voronoi polyhedra of the particles and the cavity correction in the
acceptance probability is replaced by an energy criterion [41].
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