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Abstract 

Free energy simulations using the Metropolis Monte Carlo method and the coupling parameter approach 
with umbrella sampling are described for several problems of interest in structural biochemistry: the liquid 
water, the hydrophobic interaction of alkyl and phenyl groups in water, and solvent effects on the confor- 
mational stability of the alanine dipeptide and the dimethyl phosphate anion in water. Proximity analysis of 
the results is employed to identify stabilizing factors. Implications of the result with respect to the struc- 
tural chemistry of proteins and nucleic acids is considered. 

Introduction 

With the present generation of digital computers and now supercomputers, systems 
of molecules representative of the liquid state have become accessible to study by 
large scale numerical methods based on statistical thermodynamic and molecular dy- 
namic theories of mixtures, and referred to as “computer simulations.” Recent years 
have seen the emergence of computer simulation studies on liquid water, [ 11, 
aqueous solutions [2], and the initial extensions of these procedures to the study of 
biomolecules in solution [3-51. In principle, calculation of many useful thermody- 
namic variables and molecular indices of hydration can be obtained from computer 
simulations on aqueous solutions. However, research methodologies in this field are 
still very much under development, and much remains to be learned both about and 
from computer simulation applied to biomolecular systems. One of the most interest- 
ing and urgent areas of current study in computer simulation is the determination of 
free energy. 

Statistical thermodynamics tells us that the basic relationship between the configu- 
rational energy and the excess free energy A of a system is via the partition func- 
tion Z, 

-kT In 2 - -kT ln(exp(+E/kT)) 
- 

V N  V N  
A =  

where k is the Boltzmann’s constant, T is temperature, and the brackets denote a 
Boltzmann configurational average or expectation value of the enclosed quantity. For 
the free energy difference between two different systems with potentials Eo and El, 
Eq. (1) gives 

*Reprinted from Proc. Int. Symp. Biomol. Struct. Interactions, Suppl. J. Biosci. 8 (192), 167-178 
(1985). 
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AA = -kT ln(enp[ - @ I  kT - Eo) 1). 
Conventional Monte Carlo and molecular dynamic computer simulations, although 
firmly grounded in Boltzmann statistical mechanics and dynamics, do not involve the 
computation of a partition function owing to convergence problems. The Metropolis 
method [6] was in fact cleverly designed to avoid this difficulty in the calculation of 
mean energy by Markov-chain Monte Carlo simulation. In molecular dynamics, the 
physical nature of the calculated particle trajectories serves this purpose at least 
equally well. However, in the absence of a partition function one is unable to com- 
pute the free energy directly in a conventional Monte Carlo or molecular dynamics 
calculation. The determination of the free energy via the expectation value approach 
using Eq. (2) encounters difficulties of similar origin except when Eo and E l  are 
quite similar [7,8j. Thus, under ordinary circumstances we lack access in computer 
simulation to free energy, the fundamental index of thermodynamic stability of 
the system. 

A number of approaches to this problem have been suggested. For several years 
now we have been working with the “coupling parameter approach,” which involves 
a parameter that carries the system smoothly from a reference state f = 0 to the sys- 
tem of interest f = 1. In a modem sense this approach originates in the derivation of 
an important integral equation in liquid state theory by Kirkwood [56]. The coupling 
parameter approach used in conjunction with the procedures of umbrella sampling de- 
veloped more recently by Valleau and coworkers [9,10] provides a means of calcula- 
tion of free energy in computer simulations applicable to diverse problems in struc- 
tural biochemistry. In this account we describe briefly the coupling parameter 
approach to free energy simulations, and review recent free energy simulation studies 
carried out in this laboratory on liquid water, prototype systems for the study of hy- 
drophobic interactions, and problems in the area of solvent effects on conformational 
stability of protein and nucleic acid constituents. 

Theory 

In conventional mean energy Monte Carlo or molecular dynamics computer simu- 
lations, one treats a system of particles such as the atoms of a protein, the molecules 
of a liquid, and most recently, both together [l l] .  In condensed phase problems, the 
system is usually configured in a cell subject to periodic boundary conditions. The 
configurational energy of individual complexions of the system and configurational 
forces on individual molecules are evaluated from analytical energy functions parame- 
terized from experimental data or quantum mechanical calculations. From this point 
on, computer simulation on molecular systems is fundamentally a numerical integra- 
tion of the mean energy expression and other ensemble averages on the computer, 
with the sampling carried out with a probabilistic (Monte Carlo) or deterministic 
(molecular dynamics) strategy. In a typical study, structural, energetic, and dynami- 
cal properties of the system are often of greater interest than mean energy, but the 
stability of this quantity remains the basic index of convergence in the calculations. 
The quality of the mean energy is directly dependent upon the quality of intermolecu- 
lar potentials used in the simulation. 
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The extension of mean energy simulation to the determination of free energy is 
best described by considering two states of a chemical system, So and S,,  which may 
differ from each other in any conceivable way. Let us define a free energy function 
A@, where 5 is a coupling parameter that, on the interval from 0 to 1 carries the ref- 
erence So into the system of interest S1. The free energy difference between So and S ,  
is then 

where the subscript E(b) denotes a Boltzmann average on the energy function E(5) .  
The discussion here is carried out based on the Helmholtz free energy and the 
(T, V, N) ensemble but can be easily extended to Gibbs free energy and the (T, P, N) 
ensemble. The simplest applications of the coupling parameter approach, with 5 iden- 
tified with the volume or the inverse temperature of the system, lead to the virial ex- 
pression for pressure and the van’t Hoff equation, respectively, textbook cases in 
physical chemistry. 

The applications of the coupling parameter approach of interest in our current com- 
puter simulation studies involve topographical changes in the system. We prefer this 
to the molecular landscape in the problem under consideration. There are three broad 
classes of topographical transition coordinates: structural transition coordinates, reac- 
tion coordinates, and creatiodannihilation coordinates as summarized in Figure 1. 
The use of the coupling parameter approach on each of these coordinates is illustrated 
in the applications described below. 

Alternative approaches to the free energy problem include simulations in the 
(T, V,  p )  ensemble [12, 131, the particle insertion method [14-181, and overlap 
ratios [ 19,201. 
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Figure 1 .  Examples for the various applications of the coupling parameter. 
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Liquid Water Studies 

For the special case of E(5) linear in 5, 

Numerical realizations of Eq. (5) involve a series of simulations, carried out develop- 
ing mean energy as a discrete function of coupling parameter, with the final integra- 
tion over 5 carried out numerically. 

Several calculations of free energy via Eq. ( 5 ) ,  or the equivalent, are now to be 
found in the literature [21-231 and are reviewed [24]. In this laboratory [25] we carried 
out a determination of the free energy of liquid water using this approach. Monte 
Car10 simulations were carried out on a system of 64 water molecules under periodic 
boundary conditions at a density of 1 gm/cm3 and a temperature 25°C. The reference 
state for this calculation was chosen as ideal gas, thus E0 is zero and Eq. (4) reduces to 

(6 1 
where El  is the configurational energy of the assembly of water molecules. The 
parameter 5 in this application couples in the intermolecular interactions, and 5 may 
thus be considered a creatiodannihilation coordinate where only the creation branch 
is active. In the context of thermodynamic integration, 5 can be considered as a tem- 
perature weighting factor and the 5 coordinate a transcritical tieline. 

The calculated ( E ) E ( f l ,  denoted U ( [ ) ,  for liquid water is shown in Figure 2. The 
free energy was determined by an eight-point Gaussian quadrature over 5. The calcu- 
lated free energy turned out to be -4.31 '-+ 0.7 kcal/mol versus an observed value of 
-5.74 kcal/mol. The discrepancy is due primarily to deficiencies in the intermolecu- 
lar potential function [ 11. 

E(5)  = @I 9 
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Figure 2. U(5) as a function of the coupling parameter for the computation of the free en- 

ergy of the MCY water [25 ] .  
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More recently, Mezei described calculations of the relative free energy of three dif- 
ferent water models: MCY, ST2, and SPC, using the coupling parameter approach [26]. 
A soft sphere reference state was established for calculation of the free energy of the 
MCY water and then MCY water was used as a reference state for the ST2 and SPC de- 
termination. Here the coupling carries the liquid water smoothly from one model to 
another, an application of ( as a creatiodannihilation coordinate. Mezei also explored 
the umbrella sampling method developed by Valleau, Patey, and Tome [9, 101 in 
conjunction with Eq. (2) and found it unsuitable for this problem since the two states 
So and SI were too different. This suggested the use of coupling parameter in com- 
bination with umbrella sampling to achieve a multistage umbrella sampling where 
the similitude condition is established by a succession of intermediate states. How- 
ever, even when three stages were tried, no consistent results could be obtained. 
Several other applications of multistage sampling and variations are found in the cur- 
rent literature [ 1 0 , 2 7 , 2 8 ] .  

Hydrophobic Interactions 

A different line of approach to free energy simulations involving the coupling 
parameter, particularly useful but not restricted to conformational changes, is to de- 
termine A(().  However, the 5 coordinate usually cannot be considered as simply 
another degree of freedom in an otherwise conventional mean energy simulation. In 
this case the realization of the system, Seeking to describe the equilibrium state 
dictated by the Boltzmann equation, would end up sampling only a narrow range 
of 4 rather than the full interval from 0 to 1 .  Thus sampling of ( requires special, 
non-Boltzmann sampling techniques beyond those typically used in mean energy 
simulations. 

The current way to proceed on potential of mean force calculations is to apply the 
umbrella sampling method. In this approach a series of simulations are carried out, 
each constrained to sample the local region about points k2, t3 , .  . . , respectively, 
on the interval from 0 to 1. In an individual simulation, a distribution function g(() is 
obtained. A particular ( simulation is constrained to sample a region about 5 by 
adding a harmonic constraint to the configurational energy, namely 

EH(5) = kH(5 - (8) 

as first employed in this form by Pangali, Rao, and Berne [29,30]. The non- 
Boltzmann bias in the results due to the presence of the harmonic term can be 
removed by means of Valleau’s equation, 

where a((’ - () is the dirac delta counting function for configurations with coupling 
parameter 5. Successive points are chosen on 5 such that g(5) are overlapping. Over- 
lapping points in the distribution correspond in principle to the same absolute value 
but in practice differ by a normalization constant. Thus the various computed g(() 
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can be shifted up or down, and ultimately matched up to produce a g(5) for the entire 
range of 5. The matching can in principle be carried out for any overlapping points, 
but in practice one chooses those points with relatively low statistical noise levels. 
An alternative procedure [31] where the harmonic potential EH is replaced by a tabu- 
lated function determined from the simulation itself, is currently under testing. This 
biasing potential appears to be capable to cover a much larger range of the coupling 
parameter than E H  . Once g(5) has been obtained, the corresponding free energy A([) 
can be evaluated as 

A@) = -kT In g(4) + C ,  (10) 
known as the potential of mean force, commonly denoted W(R) .  Details of the 
methodology are described further by Pangali et al. [29,30], particularly, the influ- 
ence of the boundary condition on the results is potentially greater at larger separa- 
tions. Several potential mean force determinations using computer simulation are 
now to be found in the recent literature [29,30,32,33]. Umbrella sampling is also 
used in conjunction with Eq. (2), making it viable for calculations between less simi- 
lar systems [ 10,27,28,34,35]. A notable free energy simulation has recently been 
reported by Jorgensen and his group, who determined the potential of mean force on 
the complex reaction coordinate of the organic SN2 reaction of CH3C1 and C1- in 
water [36] and DMF [37]. The reaction is predicted to be concerted in water but to 
proceed via a reaction intermediated in DMF, a previously unanticipated result. 

Potential of mean force calculations from this laboratory have been directed to the 
study of the interactions of apolar molecules in water, prototype systems for the theo- 
retical study of the hydrophobic effect. Ravishanker, Mezei, and Beveridge reported 
a potential of mean force for the interaction of two methane molecules in water ob- 
tained from Monte Carlo computer simulation [32]. The behavior of W ( R )  as a func- 
tion of intersolute coordinate, as shown in Figure 3, turned out to be oscillatory, with 
successive free energy minima corresponding to contact and solvent-separated hydro- 
phobic interactions. This intriguing result, anticipated by F. Franks [38-411 and 
noted in the integral equation studies of the hydrophobic effect by Pratt and Chandler 
[41] and the simulations on Neon atoms in ST2 water by Pangali et al. [29,30] indi- 
cates that the hydrophobic effect may act over a longer range of distance than previ- 
ously anticipated via these solvent-mediated structures. The structure of the solvent 

-2.1 . 
2.¶ 1,s 4 . 1  1,s 6.1 ?.I 1.1 

R (A ) - -  
Figure 3. Methane-methane W(R)  computed in Ref. 32 and spacefilling drawings of a 

randomly chosen contact and solvent-separated structure. 



FREE ENERGY SIMULATIONS 1519 

separated forms was studied particularly by Ravishanker et al. [32], who found that 
the intervening water molecule in the structure is positioned essentially right between 
the associated methane molecules. 

This class of studies has recently been extended to the interaction of phenyl rings 
in water [57], with the result shown in Figure 4. Here as well an oscillatory character 
is indicated for the calculated potential of mean force. However, the solvent sepa- 
rated minimum does not in this case involve interstitial water molecules, but rather an 
impingment. Further details on this phenomenon and the relationship to experimental 
results and the implications thereof promises to be an interesting area for future re- 
search studies. 

Solvent Esfects on Conformational Stability 

The coupling parameter approach can also be used to calculate conformational free 
energy of hydration as a function of structural changes in a system, an area of consid- 
erable importance in structural biochemistry and biology. The potential of mean tor- 
sion for n-butane has been studied by Rebertus, Berne, and Chandler [43] and 
Jorgensen [MI; this sequence of articles has recently been reviewed by Jorgensen 
[45]. Our studies in this area focus on the conformational preferences of the alanine 
dipeptide in water and the dimethyl phosphate anion in water. The alanine dipeptide 
study involved specific structures chosen from among the possibilities suggested in 
previous theoretical and experimental work: C,, aR, and Pn [46,47]; c.f. Figure 5.  
Here the various conformations of interest differ in values of the Ramachandran tor- 
sion angles J/ and t$. We mapped the structural change involving the conformational 
coordinates J/ and 4 onto a single 5 by means of the equation 

(11) 

where 6 = 0 selects the reference state (Go, +,,) and 5 = 1 selects the state (GI, 4,); 
here is a correlated conformational transition coordinate. To access computationally 

( $ 9  4) = (1 - 5) ($07 40) + 5(91,t$J 7 

"i' 0 I 

- 
E -2 - ' I  . 

3.1 4 3  s.3 6 5  

R (A)- 

Figure 4. Benzene-benzene W(R) computed [42] and spacefilling drawings of a randomly 
chosen contact and solvent-separated structure. 
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6 
Figure 5. Conformations considered in free energy simulations on the alanine dipeptide: 

(a) C,, (b) aR, (c) P,,  (from left to right). 

tractable sampling procedures in computer simulations it is frequently desirable to 
map changes in the structure involving many internal coordinates onto a single .$ if 
possible. In this research, we determined the thermodynamics of hydration for the C7, 
aR, and PIr conformations of the molecule using conventional mean energy simula- 
tions and also free energy simulations using the coupling parameter approach. In this 
study we mapped the two-dimensional ($, 4) change into one coordinate. One could 
proceed in a similar manner to map changes in many dimensions onto one 5. Since 
the shape of the free energy minimum is not completely determined, this procedure 
precludes consideration of the full statistical weight problem, but the free energy dif- 
ference 

is available. Use of Eq. (12) has the advantage over calculating the mean energy dif- 
ferences from two different simulations in that the statistical uncertainties, resulting 
from taking a small difference of two large quantities, is eliminated. Note that the 5 
used here can be chosen for convenience, since the free energy difference is a state 
function independent of path. The result indicate that both the aR and PII conformers 
are stabilized relative to the C7 form by hydration, and are both thermally accessible 
at T = 25°C. Proximity analysis [48] of the results reveals that the origin of the stabi- 
lization lies in the differential hydration of the carbonyl group of the amide linkage in 
the alanine dipeptide [46]. Experiments based on IR spectroscopic studies reveal the 
C7 conformation to be preferred in the nonpolar solvent CCll [49,50]. Nuclear mag- 
netic resonance and circular dichroism spectroscopic evidence for the presence of 
both uR and PrI conformations of the alanine dipeptide in water at room temperature 
has been presented [51], and thus our simulation results appear to be in general 
accord with the experiment. 

The conformational preferences of dimethyl phosphate can be considered in terms 
of the phosphodiester torsion angles w and of as gg, gr, and tt [52] as shown in Fig- 
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Figure 6. Conformations considered in free energy simulations on the dimethyl phosphate 
anion gg, gr, and rr (from left to right). 

ure 6 .  The adiabatic potential energy surface for the isolated dimethylphosphate an- 
ion is indicated to be relatively flat [53]. Nevertheless oligonucleotides show a 
marked preference for the gg and gt forms as shown from crystal hydrate data 
[54]. We have carried out mean energy simulations on dimethylphosphate anion in 
215 water molecules under periodic boundary conditions [55].  The results indicate 
that the trans extended form is markedly destabilized by hydration. Free energy sim- 
ulations using the coupling parameter approach in a manner analogous to that de- 
scribed for the alanine dipeptide are now underway. Preliminary results indicate that 
the trans-extended form is destabilized with respect to free energy as well as mean 
energy of hydration and thus suggests a possible explanation of why the trans ex- 
tended form of phosphodiester torsion angles are not found in oligonucleotide crystal 
hydrates. 

Conclusion 

We have described here the coupling parameter approach to free energy simula- 
tions provided leading literature references, and reviewed recent studies in the area 
carried out at Hunter College. The initial results of free energy simulations using the 
coupling parameter as a topological transition coordinate are generally promising, 
and we expect that the coupling parameter method will be a useful approach for free 
energy simulations applied to diverse problems in structural biochemistry. We are 
currently pursuing free energy simulations applied to the calculation of relative hy- 
dration potentials of homologous series of biological molecules, using the coupling 
parameter as a molecule creatiodannihilation coordinate. 
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