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Abstract

Free energy simulations using the Metropolis Monte Carlo method and the coupling parameter approach
with umbrella sampling are described for several problems of interest in structural biochemistry: the liquid
water, the hydrophobic interaction of alkyl and phenyl groups in water, and solvent effects on the confor-
mational stability of the alanine dipeptide and the dimethy] phosphate anion in water. Proximity analysis of
the results is employed to identify stabilizing factors. Implications of the result with respect to the struc-
tural chemistry of proteins and nucleic acids is considered.

Introduction

With the present generation of digital computers and now supercomputers, systems
of molecules representative of the liquid state have become accessible to study by
large scale numerical methods based on statistical thermodynamic and molecular dy-
namic theories of mixtures, and referred to as “computer simulations.” Recent years
have seen the emergence of computer simulation studies on liquid water, [1],
aqueous solutions [2], and the initial extensions of these procedures to the study of
biomolecules in solution [3-5]. In principle, calculation of many useful thermody-
namic variables and molecular indices of hydration can be obtained from computer
simulations on aqueous solutions. However, research methodologies in this field are
still very much under development, and much remains to be learned both about and
from computer simulation applied to biomolecular systems. One of the most interest-
ing and urgent areas of current study in computer simulation is the determination of
free energy.

Statistical thermodynamics tells us that the basic relationship between the configu-
rational energy and the excess free energy A of a system is via the partition func-
tion Z,

—kT InZ  —KT In{exp(+E/KT))
A= VN = VN (1)

where k is the Boltzmann’s constant, T is temperature, and the brackets denote a
Boltzmann configurational average or expectation value of the enclosed quantity. For
the free energy difference between two different systems with potentials E, and E;,

Eq. (1) gives

*Reprinted from Proc. Int. Symp. Biomol. Struct. Interactions, Suppl. J. Biosci. 8 (192), 167178
(1985).
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AA = —kT ln<exp[;(Elk;—E°)}>. )

Conventional Monte Carlo and molecular dynamic computer simulations, although
firmly grounded in Boltzmann statistical mechanics and dynamics, do not involve the
computation of a partition function owing to convergence problems. The Metropolis
method [6] was in fact cleverly designed to avoid this difficulty in the calculation of
mean energy by Markov-chain Monte Carlo simulation. In molecular dynamics, the
physical nature of the calculated particle trajectories serves this purpose at least
equally well. However, in the absence of a partition function one is unable to com-
pute the free energy directly in a conventional Monte Carlo or molecular dynamics
calculation. The determination of the free energy via the expectation value approach
using Eq. (2) encounters difficulties of similar origin except when E, and E; are
quite similar (7, 8]. Thus, under ordinary circumstances we lack access in computer
simulation to free energy, the fundamental index of thermodynamic stability of
the system.

A number of approaches to this problem have been suggested. For several years
now we have been working with the “coupling parameter approach,” which involves
a parameter that carries the system smoothly from a reference state ¢ = 0 to the sys-
tem of interest £ = 1. In a modern sense this approach originates in the derivation of
an important integral equation in liquid state theory by Kirkwood [56]. The coupling
parameter approach used in conjunction with the procedures of umbrella sampling de-
veloped more recently by Valleau and coworkers [9, 10] provides a means of calcula-
tion of free energy in computer simulations applicable to diverse problems in struc-
tural biochemistry. In this account we describe briefly the coupling parameter
approach to free energy simulations, and review recent free energy simulation studies
carried out in this laboratory on liquid water, prototype systems for the study of hy-
drophobic interactions, and problems in the area of solvent effects on conformational
stability of protein and nucleic acid constituents.

Theory

In conventional mean energy Monte Carlo or molecular dynamics computer simu-
lations, one treats a system of particles such as the atoms of a protein, the molecules
of a liquid, and most recently, both together [11]. In condensed phase problems, the
system is usually configured in a cell subject to periodic boundary conditions. The
configurational energy of individual complexions of the system and configurational
forces on individual molecules are evaluated from analytical energy functions parame-
terized from experimental data or quantum mechanical calculations. From this point
on, computer simulation on molecular systems is fundamentally a numerical integra-
tion of the mean energy expression and other ensemble averages on the computer,
with the sampling carried out with a probabilistic (Monte Carlo) or deterministic
(molecular dynamics) strategy. In a typical study, structural, energetic, and dynami-
cal properties of the system are often of greater interest than mean energy, but the
stability of this quantity remains the basic index of convergence in the calculations.
The quality of the mean energy is directly dependent upon the quality of intermolecu-
lar potentials used in the simulation.



FREE ENERGY SIMULATIONS 1515

The extension of mean energy simulation to the determination of free energy is
best described by considering two states of a chemical system, S, and §,, which may
differ from each other in any conceivable way. Let us define a free energy function
A(£), where £ is a coupling parameter that, on the interval from O to 1 carries the ref-
erence S into the system of interest S,. The free energy difference between S, and S,
is then

/9

where the subscript E(¢) denotes a Boltzmann average on the energy function E(£).
The discussion here is carried out based on the Helmholtz free energy and the
(T, V,N) ensemble but can be easily extended to Gibbs free energy and the (T, P,N)
ensemble. The simplest applications of the coupling parameter approach, with £ iden-
tified with the volume or the inverse temperature of the system, lead to the virial ex-
pression for pressure and the van’t Hoff equation, respectively, textbook cases in
physical chemistry.

The applications of the coupling parameter approach of interest in our current com-
puter simulation studies involve topographical changes in the system. We prefer this
to the molecular landscape in the problem under consideration. There are three broad
classes of topographical transition coordinates: structural transition coordinates, reac-
tion coordinates, and creation/annihilation coordinates as summarized in Figure 1.
The use of the coupling parameter approach on each of these coordinates is illustrated
in the applications described below.

Alternative approaches to the free energy problem include simulations in the
(T, V, n) ensemble [12, 13], the particle insertion method [14-18], and overlap
ratios [19, 20].

Type

ga
A.l Conformational transition

€-e
coordinate b—-‘}-O\o
A.2 Correlsted conformational E_E\ o%
transition coordinate
218818 AT

A.3 Structural transition

coordinate
B.l1 Simple reaction O M O QO
coordinate ]
—
B.2 Complex reaction A + + <>
coordinate

C.2 Molecule creation
annihilation coordinate

€.l Functional group
{or residue) creation/ X Y
annihilation coordinate
® @

Figure 1. Examples for the varioﬁs applications of the coupling parameter.
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Liquid Water Studies
For the special case of E(£) linear in £,
E(¢) = (1 — §)E, + ¢Ey, 4)
1
AA = f (E, — EO)E(E) d¢. (5)
0

Numerical realizations of Eq. (5) involve a series of simulations, carried out develop-
ing mean energy as a discrete function of coupling parameter, with the final integra-
tion over ¢ carried out numerically.

Several calculations of free energy via Eq. (5), or the equivalent, are now to be
found in the literature [21-23] and are reviewed [24]. In this laboratory [25] we carried
out a determination of the free energy of liquid water using this approach. Monte
Carlo simulations were carried out on a system of 64 water molecules under periodic
boundary conditions at a density of 1 gm/cm® and a temperature 25°C. The reference
state for this calculation was chosen as ideal gas, thus Ej, is zero and Eq. (4) reduces to

E(§) = ¢E, 6)

where E, is the configurational energy of the assembly of water molecules. The
parameter £ in this application couples in the intermolecular interactions, and ¢ may
thus be considered a creation/annihilation coordinate where only the creation branch
is active. In the context of thermodynamic integration, £ can be considered as a tem-
perature weighting factor and the & coordinate a transcritical tieline.

The calculated (E )¢, denoted U(€), for liquid water is shown in Figure 2. The
free energy was determined by an eight-point Gaussian quadrature over €. The calcu-
lated free energy turned out to be —4.31 = 0.7 kcal/mol versus an observed value of
—5.74 kcal/mol. The discrepancy is due primarily to deficiencies in the intermolecu-
lar potential function [1].

U (€} keal/mol
v o
1. L L L

[¢] 072 0‘4 o6 0.8 1.0
£ —
Figure 2. U(¢) as a function of the coupling parameter for the computation of the free en-
ergy of the MCY water [25].
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More recently, Mezei described calculations of the relative free energy of three dif-
ferent water models: MCY, ST2, and SPC, using the coupling parameter approach [26].
A soft sphere reference state was established for calculation of the free energy of the
MCY water and then MCY water was used as a reference state for the ST2 and SPC de-
termination. Here the coupling carries the liquid water smoothly from one model to
another, an application of ¢ as a creation/annihilation coordinate. Mezei also explored
the umbrella sampling method developed by Valleau, Patey, and Torrie {9, 10] in
conjunction with Eq. (2) and found it unsuitable for this problem since the two states
S, and S, were too different. This suggested the use of coupling parameter in com-
bination with umbrella sampling to achieve a multistage umbrella sampling where
the similitude condition is established by a succession of intermediate states. How-
ever, even when three stages were tried, no consistent results could be obtained.
Several other applications of multistage sampling and variations are found in the cur-
rent literature [10, 27, 28].

Hydrophobic Interactions

A different line of approach to free energy simulations involving the coupling
parameter, particularly useful but not restricted to conformational changes, is to de-
termine A (€). However, the € coordinate usually cannot be considered as simply
another degree of freedom in an otherwise conventional mean energy simulation. In
this case the realization of the system, seeking to describe the equilibrium state
dictated by the Boltzmann equation, would end up sampling only a narrow range
of ¢ rather than the full interval from O to 1. Thus sampling of £ requires special,
non-Boltzmann sampling techniques beyond those typically used in mean energy
simulations.

The current way to proceed on potential of mean force calculations is to apply the
umbrella sampling method. In this approach a series of simulations are carried out,
each constrained to sample the local region about points &,, &, &, . . ., respectively,
on the interval from 0 to 1. In an individual simulation, a distribution function g(£) is
obtained. A particular ¢ simulation is constrained to sample a region about ¢ by
adding a harmonic constraint to the configurational energy, namely

V(¢) = E(¢) + Ex(é), @)
Ey(&) = ky(€ — &), (8)

as first employed in this form by Pangali, Rao, and Berne [29, 30]. The non-
Boltzmann bias in the results due to the presence of the harmonic term can be
removed by means of Valleau’s equation,

(8¢’ — £) explEn(&)/kT Dvg
(explEx (8)/kT Dy,

where 8(&' — £) is the dirac delta counting function for configurations with coupling
parameter £, Successive points are chosen on ¢ such that g(£) are overlapping. Over-
lapping points in the distribution correspond in principle to the same absolute value
but in practice differ by a normalization constant. Thus the various computed g(¢)

g(¢') = ©)
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can be shifted up or down, and ultimately matched up to produce a g(¢) for the entire
range of £. The matching can in principle be carried out for any overlapping points,
but in practice one chooses those points with relatively low statistical noise levels.
An alternative procedure [31] where the harmonic potential Ej is replaced by a tabu-
lated function determined from the simulation itself, is currently under testing. This
biasing potential appears to be capable to cover a much larger range of the coupling
parameter than Ey . Once g(€) has been obtained, the corresponding free energy A(£)
can be evaluated as

Alf) = —kT'lng®) + C, (10)

known as the potential of mean force, commonly denoted W(R). Details of the
methodology are described further by Pangali et al. [29, 30], particularly, the influ-
ence of the boundary condition on the results is potentially greater at larger separa-
tions. Several potential mean force determinations using computer simulation are
now to be found in the recent literature [29,30, 32, 33]. Umbrella sampling is also
used in conjunction with Eq. (2), making it viable for calculations between less simi-
lar systems [10, 27,28, 34, 35]. A notable free energy simulation has recently been
reported by Jorgensen and his group, who determined the potential of mean force on
the complex reaction coordinate of the organic SN2 reaction of CH,Cl and ClI™ in
water [36] and DMF [37]. The reaction is predicted to be concerted in water but to
proceed via a reaction intermediated in DMF, a previously unanticipated result.
Potential of mean force calculations from this laboratory have been directed to the
study of the interactions of apolar molecules in water, prototype systems for the theo-
retical study of the hydrophobic effect. Ravishanker, Mezei, and Beveridge reported
a potential of mean force for the interaction of two methane molecules in water ob-
tained from Monte Carlo computer simulation [32]. The behavior of W(R) as a func-
tion of intersolute coordinate, as shown in Figure 3, turned out to be oscillatory, with
successive free energy minima corresponding to contact and solvent-separated hydro-
phobic interactions. This intriguing result, anticipated by F. Franks [38—41] and
noted in the integral equation studies of the hydrophobic effect by Pratt and Chandler
[41] and the simulations on Neon atoms in ST2 water by Pangali et al. [29, 30] indi-
cates that the hydrophobic effect may act over a longer range of distance than previ-
ously anticipated via these solvent-mediated structures. The structure of the solvent

OO GpD
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R (A)—

Figure 3. Methane-methane W(R) computed in Ref. 32 and spacefilling drawings of a
randomly chosen contact and solvent-separated structure.
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separated forms was studied particularly by Ravishanker et al. [32], who found that
the intervening water molecule in the structure is positioned essentially right between
the associated methane molecules.

This class of studies has recently been extended to the interaction of phenyl rings
in water [57], with the result shown in Figure 4. Here as well an oscillatory character
is indicated for the calculated potential of mean force. However, the solvent sepa-
rated minimum does not in this case involve interstitial water molecules, but rather an
impingment. Further details on this phenomenon and the relationship to experimental
results and the implications thereof promises to be an interesting area for future re-
search studies.

Solvent Effects on Conformational Stability

The coupling parameter approach can also be used to calculate conformational free
energy of hydration as a function of structural changes in a system, an area of consid-
erable importance in structural biochemistry and biology. The potential of mean tor-
sion for n-butane has been studied by Rebertus, Berne, and Chandler [43] and
Jorgensen [44]; this sequence of articles has recently been reviewed by Jorgensen
[45]. Our studies in this area focus on the conformational preferences of the alanine
dipeptide in water and the dimethyl phosphate anion in water. The alanine dipeptide
study involved specific structures chosen from among the possibilities suggested in
previous theoretical and experimental work: C;, ag, and Py [46,47]; c.f. Figure 5.
Here the various conformations of interest differ in values of the Ramachandran tor-
sion angles ¥ and ¢. We mapped the structural change involving the conformational
coordinates ¥ and ¢ onto a single £ by means of the equation

(‘b,‘t’) =(1- f) (‘l‘o,d’o) + f(ll‘h(t’l), an

where £ = 0 selects the reference state (i, o) and £ = 1 selects the state (s, ¢));
here is a correlated conformational transition coordinate. To access computationally

L] & /
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Figure 4. Benzene-benzene W(R) computed [42] and spacefilling drawings of a randomly
chosen contact and solvent-separated structure.
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Figure 5. Conformations considered in free energy simulations on the alanine dipeptide:
(a) C;, (b) ag, (c) Py, (from left to right).

tractable sampling procedures in computer simulations it is frequently desirable to
map changes in the structure involving many internal coordinates onto a single & if
possible. In this research, we determined the thermodynamics of hydration for the C;,
ag, and Py conformations of the molecule using conventional mean energy simula-
tions and also free energy simulations using the coupling parameter approach. In this
study we mapped the two-dimensional (i, ¢) change into one coordinate. One could
proceed in a similar manner to map changes in many dimensions onto one £. Since
the shape of the free energy minimum is not completely determined, this procedure
precludes consideration of the full statistical weight problem, but the free energy dif-
ference

— g(§)§-0>
AA = KT m(g( ), (12)

is available. Use of Eq. (12) has the advantage over calculating the mean energy dif-
ferences from two different simulations in that the statistical uncertainties, resulting
from taking a small difference of two large quantities, is eliminated. Note that the &
used here can be chosen for convenience, since the free energy difference is a state
function independent of path. The result indicate that both the oy and Py conformers
are stabilized relative to the C, form by hydration, and are both thermally accessible
at T = 25°C. Proximity analysis [48] of the results reveals that the origin of the stabi-
lization lies in the differential hydration of the carbonyl group of the amide linkage in
the alanine dipeptide [46]. Experiments based on IR spectroscopic studies reveal the
C, conformation to be preferred in the nonpolar solvent CCl, {49, 50]. Nuclear mag-
netic resonance and circular dichroism spectroscopic evidence for the presence of
both ar and Py conformations of the alanine dipeptide in water at room temperature
has been presented [51], and thus our simulation results appear to be in general
accord with the experiment.

The conformational preferences of dimethyl phosphate can be considered in terms
of the phosphodiester torsion angles w and ' as gg, g7, and # [52] as shown in Fig-
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Figure 6. Conformations considered in free energy simulations on the dimethy! phosphate
anion gg, gt, and #t (from left to right).

ure 6. The adiabatic potential energy surface for the isolated dimethylphosphate an-
ion is indicated to be relatively flat [53]. Nevertheless oligonucleotides show a
marked preference for the gg and g¢ forms as shown from crystal hydrate data
[54]. We have carried out mean energy simuiations on dimethylphosphate anion in
215 water molecules under periodic boundary conditions [55]. The results indicate
that the trans extended form is markedly destabilized by hydration. Free energy sim-
ulations using the coupling parameter approach in a manner analogous to that de-
scribed for the alanine dipeptide are now underway. Preliminary results indicate that
the trans-extended form is destabilized with respect to free energy as well as mean
energy of hydration and thus suggests a possible explanation of why the frans ex-
tended form of phosphodiester torsion angles are not found in oligonucleotide crystal
hydrates.

Conclusion

We have described here the coupling parameter approach to free energy simula-
tions provided leading literature references, and reviewed recent studies in the area
carried out at Hunter College. The initial results of free energy simulations using the
coupling parameter as a topological transition coordinate are generally promising,
and we expect that the coupling parameter method will be a useful approach for free
energy simulations applied to diverse problems in structural biochemistry. We are
currently pursuing free energy simulations applied to the calculation of relative hy-
dration potentials of homologous series of biological molecules, using the coupling
parameter as a molecule creation/annihilation coordinate.
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