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INTRODUCTION.

Monte Carlo or molecular dynamics simulations involve the numerical determinations
of the statistical thermodynamics and related structural, energetics and (in the case of MD)
dynamical properties of an atomic or molecular assembly on a high speed digital computer.
Applications to molecular systems range from the study of the motions of atoms or groups of
atoms of a molecule or macromolecule under the influence of intramolecular energy functions
to the exploration of the structure and energetics of condensed fluid phases such as liquid
water and aqueous solutions based on intermolecular potentials. The quantities determined
in a typical Monte Carlo or molecular dynamics simulation include the average or mean
configurational energy (thermodynamic excess internal energy), various spatial distribution
functions for equilibrium systems and time correlation functions for dynamical systems, along
with detailed structural and energetic analyses thereof. Diverse problems in structural and
reaction chemistry of molecules in solution, such as solvation potentials, solvent effects on
conformational stability and the effect of solvent on chemical reaction kinetics and mecha-
nism via activated complex theory also require a particular knowledge of the configurational
free energy, which in principle follows directly from the statistical thermodynamic partition
function for the system.

Considerations on free energy in molecular simulations take a distinctly different form
for intramolecular and intermolecular degrees of freedom. For the intramolecular case, the
problem involves vibrational and librational modes of motion on the intramolecular energy
surface. We will discuss briefly at the end of this paper the harmonic and quasiharmonic
approximation used to compute vibrational contributions to the free energy but restrict the
focus herein to the intermolecular case, where the particles of the system undergo diffusional
motion and a harmonic or quasiharmonic treatment breaks down. These considerations
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apply also in the case of a flexible molecule where conformational transitions are effectively
an intramolecular “diffusional mode”.

Conventional Monte Carlo and molecular dynamics procedures for diffusional modes,
although firmly grounded in Boltzmann statistical mechanics and dynamics, do not proceed
via the direct determination of a partition function due to well-known difficulties in con-
vergence. The Metropolis method used in Monte Carlo procedures is a Markov process
designed specifically to avoid the partition function in the calculation of mean energy and
related properties in a simulation. In molecular dynamics, the physical nature of the calcu-
lated particle trajectories serves this purpose equally as well. However, in the absence of a
partition function, one is unable to compute the free energy of the system directly and thus
under ordinary circumstances molecular simulations lack access to the fundamental index of
themodynamic stability of the system.

This article reviews the area of free energy simulation in the forms which are cur-
rently being pursued for systems of many molecules. Several new aspects of the methods
discussed will be also presented. We begin with an elementary definition of the free energy
problem as encountered for this case and discuss two procedures, umbrella sampling and the
coupling parameter approach, which are quite useful in this area. Then the diverse indi-
vidual approaches to free energy simulations are described, considering for each in turn the
genesis, methodological details, advantages and disadvantages, and applications currently
reported. We will emphasize applications to molecular liquids and solutions at the expense
of the large body of work on simple fluids. These, however have been reviewed by Barker
and Henderson1 and Levesque and Weiss2. The interested reader is also referred to reviews
related to this subject by Valleau and Torrie3, Quirke4, Gubbins5 and Pohorille and Pratt6

which have appeared in recent years. A complete simulation of molecular liquids and solu-
tions requires of course a consideration of both vibrational and diffusive modes of motion.
Some free energy studies where both intramolecular and intermolecular aspects are involved
are reviewed at the conclusion of this article.

BACKGROUND.

In computer simulations on molecular liquids and solutions, N molecules, typically
of O(10)-(103), are configured in an elementary cell subject to periodic boundary condi-
tions, for which various options (simple cubic, face-centered cubic, etc.) are available. The
configurational energy EN7 of individual complexions of the N-particle system are evaluated
from analytical energy functions parametrized from experimental data, quantum-mechanical
calculations or sometimes a combination of both, truncated at certain predefined limits for
computational efficiency. All simulations involve generating large numbers of possible config-
urations of the N-particle system and forming estimates of ensemble averages such as mean
energy. On digital computers circa 1985, it is practical to think in terms of sampling O(106)
configurations, or O(10)-O(102) picoseconds of atomic and molecular motions. The current
generation of supercomputers and/or attached processors make an order of magnitude or so
increase in sampling immediately feasible.
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Important statistical thermodynamic quantities for a discussion of computer simu-
lations are

a) the configurational partition function Z of the system,

ZN =
∫
. . .
∫

exp(−EN/kT )dRN (1)

where k is Boltzmann ’s constant and T is the absolute temperature, V is the volume of the
system, and the integration extends over all space dRN of the N particle system;

b) the Boltzmann probability function P (EN) for a configuration corresponding to
a particular EN,

P (EN) = exp(−EN/kT )/ZN (2)

c) the average or mean energy expression

U =
∫
. . .
∫
ENP (EN)dRN = 〈EN〉 (3)

which corresponds to the excess or configurational thermodynamic internal energy of the
system; and

d) the excess or configurational free energy

A = −kT ln(ZN/V
N ), (4)

the focus of interest in this article. Our discussion here is presented in terms of the constant
volume (T, V,N) canonical ensemble, but the arguments can be extended to the microcanon-
ical or isothermal/isobaric ensemble with no real difficulty. The grand canonical ensemble
affords a particular alternative approach to free energy simulation considered briefly at the
end of this article.

The essential problem involved in the determination of mean energy via simula-
tion can be appreciated simply from Equations(3 and 4). The determination of mean en-
ergy via simulation involves essentially calculating the area under the curve ENP (EN) or
EN exp(−EN/kT ) by generating various configurations of the system and calculating their
respective energies and probabilities. Only a narrow range of EN values result in significant
values of the integrand since the region in which EN and exp(−EN/kT ) are simultaneously
large is relatively limited. A random selection of configurations in a simulation (a crude
Monte Carlo method) is thus an inefficient approach to the numerical determination of
mean energy since inordinate amount of time would be spent sampling configurations which
make relatively insignificant contributions to the integrand of Equation(3).

This problem in Monte Carlo theory was taken up some years ago by Metropolis
et al.8, who devised an importance sampling scheme which is now followed in essentially
all Monte Carlo studies of fluids. The Metropolis method is a Markov walk through con-
figuration space sampling complexions of the system with a frequency proportional to the
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corresponding Boltzmann factor. In this realization, the evaluation of mean energy reduces
to the simple summation

n∑
j=1

EN(Rj)/n Rj ∈M (5)

where the n configurations Rj are chosen by the Metropolis method (M). Convergence
studies indicate that the Metropolis method makes mean energy determinations feasible at
presently accessible sampling rates. Other properties of the system computed in parallel with
mean energy each found to have their own profile of convergence, and in general structural
properties converge more rapidly then energetic properties and simple average quantities
such as mean energy converge more rapidly the fluctuation properties such as heat capacity.
Higher moments of the energy can be expected to converge even slower. Detailed examples
of convergence profiles for liquid water simulations are available in recent papers from this
Laboratory9−11 and by Rao et al.12 where these effects are evident. Generally, the mean
energy of a pure liquid can be determined to a precision of ±0.05 kcal/mol or better from
a simulation of O(106) configurations. However, other energetic quantities such as transfer
energies of a solute molecule into solvent water are susceptible of O(10)kcal/mol statistical
noise engendered in finding small differences between large, relatively noisy numbers. Free
energy simulations, as described later in this account, do not encounter this problem as
severly.

A corresponding consideration of free energy follows from the ensemble average ex-
pression for the excess free energy,

A = kT ln〈exp[+EN/kT ]〉 (6)

a completely equivalent statement of Equation(4). Expanding the exponential in powers of
EN and rearranging terms, it can be shown that

A = kT ln{[1 + U/kT + (U/2kT )2 + C ′v/(2k) +O(〈E3
N〉/(kT )3) + . . .]/V N}. (7)

Thus the convergence problem in free energy is equivalent to problem of determing ensemble
averages of the mean energy (first moment) and higher moments of the energy distribution
mentioned above. The convergence difficulties in fluctuation properties and by implication
higher moments of the energy distribution described above indicate that a significant increase
in sampling would be required to achieve convergence in free energy relative to mean energy
in a simulation.

A broader range of sampling could of course be accomplished by a crude Monte Carlo
approach, but in practice configuration space for a system of even O(102) molecules is so
immense that convergence for the partition function integral cannot reasonably be expected.
Metropolis sampling, concentrated in regions where EN exp(−EN/kT ) is large, is optimal for
internal energy but would not sample broadly enough to provide accurate estimates of the
partition function and the free energy. Similar considerations apply in molecular dynamics
simulations. Thus we are left with no viable means of the determination of free energy by the
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usual numerical methods for molecular systems of interest from a mean energy simulation,
and with the clear indication that an extent of sampling significantly beyond that suitable
for mean energy determinations must be involved in free energy simulations.

In concluding this section, we note that an effective means of extending the range of
sampling in a simulation, Monte Carlo or molecular dynamics, has been devised by Valleau,
Patey and Torrie13,14. The range of sampling in a simulation can be altered in a special
form of importance sampling by running the Metropolis procedure or molecular dynamics
with modified energy function

E′N = EN + EW. (8)

Here EW is the modification of the energy that serves to extend the sampling. EW takes
various forms depending upon the particular application. However, introducing EW carries
the simulation to a non-Boltzmann regime i.e., sampling based on E′N rather than EN,
and thus the ensemble averages produced would be inappropriate for the determination of
statistical thermodynamic quantities. Valleau and coworkers demonstrated that appropriate
Boltzmann weighted ensemble averages 〈Q〉 for any property Q can be extracted from a
simulation carried out on the modified energy function E′N by collecting the additional
ensemble average 〈exp(EW/kT )〉W and forming the quotient

〈Q〉 = 〈Q exp(EW/kT )〉W/〈exp(EW/kT )〉W (9)

where the subscript W denotes an ensemble average based on the energy function E′N. Eq.(9)
can be verified by writing out explicitely the expectation values and recognizing that the
exp(EW/kT ) form Eq.(9) cancels the exp(−EW/kT ) from the modified Boltzmann factor.
This approach is widely known as “umbrella sampling” (US), and as discussed below finds
wide applicability in free energy simulations.

One obvious limitation of the umbrella sampling procedure is as follows: the more
the sampling is to be extended, the larger will be the range of EW making the calculation of
〈exp(EW/kT )〉W prone to roundoff errors. In fact, if the variations are large, the computed
average will be dominated by contributions from only a few configurations, a clearly undesir-
able effect. Therefore, a limit has to be set for the variations allowed in EW which effectively
puts a limit to the extension of sampling with this technique. That is, convergence of the
E′N-based ensemble averages still requires careful numerical attention.

The selection of appropriate EW is generally a nontrivial matter since it essentially
presupposes knowledge about the respective probabilities of configurations with different
values of the parameters of interest. The more complex these parameters, the more diffi-
cult is the determination of an efficient EW. This, however, suggest an iterative approach
to the determination of an effective EW. Paine and Scheraga15 have described an adap-
tive importance sampling technique applied to the conformational study of a free dipeptide
molecule and a procedure of this type, called “Adaptive US” has recently been developed
and tested on a conformational study of the alanine dipeptide in aqueous solution in this
Laboratory16. Besides possible savings in computational effort, the procedure produces, at
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least in principle, a uniform distribution of the parameters of interest and is self-checking by
construction.

THE COUPLING PARAMETER APPROACH

In molecular systems we are frequently confronted not only with the determination
of the absolute excess free energy A, but the free energy difference ∆A between two well-
defined states. Here for states denoted 0 and 1, ∆A is given in terms of the ratio of the
partition functions for the two states, Z1 and Z0, as

∆A = A1 − A0 = −kT ln(Z1/Z0) (10)

A straightforward approach to the free energy difference ∆A would require independent
determinations of Z0 and Z1 based on energy functions E0 and E1, which individually are
subject to all the numerical difficulties detailed in the preceding section. Several proposed
solutions are based on a very useful construct, the “coupling parameter”. Notice that here
and in the following the subscript N is dropped for brevity. Let us assume that the potential
E depends on a continuous parameter λ such that as λ is varied from 0 to 1, E(λ) passes
smoothly from E0 to E1. A free energy function A(λ) can be defined as

A(λ) = −kT lnZ(λ), (11)

and calculation of ∆A can be performed by integrating the derivative of A(λ) along λ (ther-
modynamic integration), by designating intermediate states A(λi) spaced closely enough and
use the defining equation of the free energy to compute ∆A in a stepwise manner (direct
method, sometimes called perturbation method) or actually developing A(λ) in the [0,1]
interval from simulations where λ is variable (probability ratio method). The function A(λ)
is equivalent to the potential of mean force in the statistical thermodynamics of fluids.

In a modern sense the coupling parameter approach originates in the derivation
of an important integral equation in liquid state theory by Kirkwood17, but the seeds of
this idea can be traced to the work of de Donder on chemical affinity and the degree of
advancement parameter for a chemical process18. The coupling parameter λ is a generalized
extent parameter or analytical continuation and defines a physical or sometimes non- physical
path between states 0 and 1. On a physical path, a knowledge of A(λ) can be used to
determine the free energy of activation ∆A+ as well as ∆A. A non-physical path is admissible
in the case where the quantity of interest is a state function like ∆A, which of course is
independent of the path. There is a considerable freedom in the choice of the path and
decisions on the selection of E(λ) is usually made by combining physical and numerical
requrements. Some applications of the coupling parameter approach of interest in current
computer simulation studies involve topographical changes in the system, and of course we
refer this to the molecular topography of the system. We consider here three broad classes of
topographical transition coordinates: structural transition coordinates, simple and complex
reaction coordinates, and creation/annihilation coordinates; c.f. FIGURE 1.
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Structural Transition Coordinates

On a structural transition coordinate, one three-dimensional form of a molecule or
macromolecule is carried over into another three dimensional form.

a.) λ defines a “conformational transition coordinate”. The study of molecular con-
formation in solution requires the free energy of the system as a function of one or more
internal coordinates of the system. One of the simplest cases of interest is the torsion angle
φ/(C1-C2-C3-C4) in butane which can be written in terms of coupling parameter as

φ = (1− λ)φG + λφT (12)

where φT = 180o and φG = 60o. Here λ can be considered a “conformational transition
coordinate”, a special case of a structural transition coordinate. This can obviously be
generalized to many dimensions.

b.) λ as a “correlated conformational transition coordinate”. Our recent studies
of solvent effects on the conformation stability of the alanine dipeptide19 provide a two
dimensional example of this utilization of the coupling parameter approach. In the system,
the various conformations of interest differ in values of the Ramachandran torsion angles ψ
and φ. We mapped the structural change involving the conformational coordinates ψ and φ
onto a single λ by means of the equation

(ψ, φ) = (1− λ)(ψ0, φ0) + λ(ψ1, φ1) (13)

where λ=0 selects the reference state (ψ0, φ0) and λ=1 selects the (ψ1, φ1); here λ is a “corre-
lated conformational transition coordinate”. As discussed below, to access computationally
tractable sampling procedures in computer simulations it will be frequently desirable to map
changes in the structure involving many internal coordinates onto a single λ if possible. The
coupling parameter here can be considered essentially a virtual bond coordinate of the sort
used extensively in diverse biomolecular conformation problems.

c.) λ as a structural transition coordinate. This use of coupling parameter can be
extended to structural changes in bond lengths and bond angles. Combinations thereof with
conformational changes, mapped onto a single λ would produce a “correlated structural
transition coordinate”. This can be useful for studies of helix-coil transition in polypeptides,
protein denaturation, and structural interconversions in nucleic acids involving the A, B, C
. . . Z forms.

Reaction Coordinates

A reaction coordinate is a coordinate upon which the evolution of a chemical reaction
can be described.

a.) λ as a simple reaction coordinate. Let the simulation be carried out on a segment
of coordinate R beginning at R0 and R1. Then for any point R between R0 and R1

R = (1− λ)R0 + λR1, (14)
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defining the coupling parameter such that for λ=0, R = R0 and for λ=1, R = R1. This
is convenient for describing a simple association process in biological systems such as hy-
drophobic bonding, ion pairing and hydrogen bonding and can be easily generalized to many
dimensions if necessary.

b.) λ as a complex reaction coordinate. In a complex reaction system such as a
proton transfer studied by Warshel20−22 or the reaction of CH3Cl and Cl− treated recently
by Jorgensen and coworkers23,24, distinct reactant and product species are involved. The use
of the coupling parameter in this case is a straightforward generalization of that described
above and coincides fully with the definition of reaction coordinate in the transition state
theory of chemical reactions25. Here as in the case of a structural transition it will be useful
to map concerted changes onto a single λ and work with a “correlated complex reaction
coordinate”.

Creation/Annihilation Coordinates

A creation/annihilation coordinate carries the molecular topography of the system
smoothly from one structural entity to another. Others in the field refer to this as “Hamil-
tonian warping”26 or “mutation”27.

a.) λ as a functional group, residue or subunit creation annihilation coordinate. Here
the coupling parameter can be used to incorporate one well defined moiety in the system
while simultaneously removing another. This type of creation/annihilation coordinate could
be used to pass from one derivative to another in studies of the relative thermodynamics of
a homologous series of molecules and is of potential use in the study of biological activity of
related sets of molecules via simulation. Possible applications are found in enzyme-inhibitor,
drug-receptor and in fact many other types of problems in biological systems. Recent works
by McCammon, Jorgensen and coworkers are in this category27−29.

b.) λ as a molecule creation/annihilation coordinate. Here we distinguish the case
where λ removes an entire molecule from the system and creates another in its place. Kirk-
wood’s initial use of the coupling parameter can be considered a special case of this category
in which only the creation branch is active. A creation/annihilation coordinate can be useful
for studying the thermodynamics of hydration of a series of amino acids or nucleotide bases
for example, but actually diverse applications are possible. There are in fact interesting
topographical transition coordinates to define in this class, individually as well as in combi-
nation with the other forms defined above. Considering the coupling parameter approach in
this generalized form admits considerable imagination into the design of computer simulation
studies on chemical and biological systems.

THERMODYNAMIC INTEGRATION

Applying a basic mathematical identity to the free energy function A(λ) gives the
following (exact) equation:

∆A =
∫ 1

0
(∂A(λ)/∂λ)dλ. (15)
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Substituting Equation(1) into Equation (10) gives

∂A(λ)/∂λ = 〈∂E(λ)/∂λ〉λ (16)

where the subscript λ implies a Boltzmann average based on the function E(λ). The direct
numerical evaluation of Equation (15), integrating between initial and final states using
some thermodynamic relationship, is called “thermodynamic integration”. The simplest
application of the coupling parameter approach with λ identified with the volume or with
the inverse temperature of the system, lead to the virial expression for pressure and the
van’t Hoff equation, respectively, textbook cases in physical chemistry. The integration
variable however need not be restricted to thermodynamic quantities, and thus Equation
(15) can be used to determine the free energy difference between two states which differ in
many conceivable ways, as long as the energy is a smooth function of λ; however, pathways
crossing phase transitions have discontinuities that will be problematic.

Linear TI

An important simple particular case is encountered when E(λ) is linear in λ:

E(λ) = (1− λ)E0 + λE1 (17)

If the reference state is an ideal gas or otherwise defines the zero of a configurational energy
scale,

E(λ) = λE1 (18)

and

∆A =
∫ 1

0
U(λ)dλ (19)

where U(λ) is a mean energy-like quantity developed as a function the coupling parameter,
e.g., 〈E1〉λ. Implementation of Equation (19) in simulations is quite simple. A series of
simulations corresponding to successive discrete values of λ are carried out, giving U(λi) for
i = 1, 2 . . . The final integration over λ is carried out by an additional numerical procedure.
When E0 is non-zero, Equation (18) becomes

E(λ) = E0 + λ(E1 − E0) = E0 + λ∆E (20)

and the free energy difference is then

∆A =
∫ 1

0
〈∆E〉λdλ (21)

The computational procedure, a succession of simulations for discrete values of λ, is essen-
tially similar to that described above.

An important advantage of linear TI is that it only involves computing ensemble
averages of energies, not their derivatives, and these are the fastest converging quantities.
Also, since the energy calculations are needed for the regular computer simulation runs, the
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implementation of linear TI into existing programs is a rather simple task. As an additional
advantage, it is very easy to demonstrate, that for the case of linear λ-dependence, the
integrand in Equation(15) is a monotonic function of λ30. Differentiation gives

∂

∂λ

〈
∂

∂λ
E(λ)

〉
λ

= −

〈( ∂

∂λ
E(λ)

)2〉
λ
−
〈
∂

∂λ
E(λ)

〉2

λ

+

〈
∂2

∂λ2E(λ)

〉
λ
. (22)

Obvously, the term containing the second derivative is zero for linear E(λ) and the remaining
terms in the bracket form a fluctuation expression that is always nonnegative. This result
ensures that the interpolation implicit in any numerical quadrature should be reliable for
linear TI.

Particular care must be exercised, however, when a creation/annihilation coordinate
is involved where the integrand U(λ) or ∆E(λ) may diverge at λ=0 and/or λ=1. This
divergence occurs for example when a particle is coupled to the system at a location where
no particle previously existed. In this event, at λ=0 the just decoupled particle becomes
invisible to the generation of new configurations and therefore the rest of the system is free
to overlap with it, producing arbitrarily large E1 or ∆E values. Mruzik et al. remarked
31 that a particle interacting with a system through an r−12 potential will give 〈E1〉λ α
λ−3/4 for small values of λ. In general, it can be shown by standard technique that for
a particle interacting with a potential of r−n in d dimensions, the limiting behaviour of
〈E1〉λ for λ → 0 is proportional to λ(d/n)−1. This, unfortunately, makes the integral in
Equation(19) or (21) an improper one for d < n. As a result, direct application of numerical
integration may lead to significant error, since no matter how small the smallest λ0 value
used in the numerical quadrature, the contribution from the [0,λ0] interval will depend on
the limiting behaviour of 〈E1〉λ about which the numerical quadrature has no information
at all. A possible procedure is then to find a λ0 such that for λ < λ0 the limiting behaviour
is observed and use numerical integration only for the range [λ0,1]. The contribution from
the interval [0,λ0] should be obtained by exploiting the limiting behaviour of 〈E1〉λ. Writing

〈E1〉λ = λ
(d/n)−1
0 , we obtain ∫ λ0

0
〈E1〉λdλ = (n/d)λo〈E1〉λ. (23)

A helpful fact in this respect, verifiable by direct substitution, is that E(λ) defined in terms
of E0 and E1 is equivalent to E(λ′) defined in terms of E′0 ≡ E(λ0) and E′1 ≡ E(λ1) where

λ′ = (λ− λ0)/(λ1 − λ0). (24)

Equation(24) allows calculation of ∆A with different choices of λ0 without having to obtain
new ensemble averages.

A different approach, also based on the recognition of the limiting behaviour of
〈E1〉λ, was proposed by Mruzik et al.31. The integration was carried out by introducing a
new variable, λm:

∆A = (1/m)
∫ 0.5m

0
λ1−m〈E1〉λd(λm), (25)
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where the exponent m is chosen so that the λ1−m factor in the integrand makes it finite
for all λ. They used m=0.25, appropriate for potentials with an r−12 repulsive core. While
this transformation makes the integrand finite everywhere, it also puts heavy emphasis on
the small λ range. 0.231, This suggest that the transformation (25) be carried out only in
a small interval near the singularity. The λm transformation has the further advantage that
by choosing different m values a consistency check is obtained on ∆A. For simultaneous
creation and annihilation it is also possible that a similar discontinuity exists at λ=1. This
case should be handled analogously, either by obtaining the basic integral in the range [λ0,1]
from the limiting behaviour of the integrand, as in Equation(23) or by transforming the
integration variable as Mruzik et al. proposed. In this case, the integration has to be broken
into two parts and different variables have to be introduced:∫ 1

0
〈E1 − E0〉λ =(1/m)

∫ 0.5m

0
d(λm)λm−1〈E1 − E0〉λ+

(1/m)
∫ 1

0.5m
d((1− λ)m)(1− λ)1−m〈E1 − E0〉λ

(26)

Andersen et al.32 and Wilson et al.33 in recent research eliminated the singularity problem
by truncating the repulsive part of the potential above a few kT , arguing that the strongly
repulsive part of the potential is never sampled by the system anyway. However, as demon-
strated earlier, the calculation of the free energy requires sampling of a larger than usual
region of the configuration space and thus it is not immediately clear that the error caused
by the truncation is negligible.

Calculations based essentially on Equation(15) for simple liquids have been reviewed
by Barker and Henderson 1. Mruzik, Abraham, Schreier and Pound reported a quite early
application of this approach to ion hydration energies31. The free energy of liquid water
was computed using this method by Mezei, Swaminathan and Beveridge 34 by integrating
between the liquid and an ideal fluid at liquid density on a transcritical tieline. Frischleder
computed the free energy of solvation for the dimethyl phosphate anion 35. Mezei computed
the free energy differences between soft spheres and the MCY water and between MCY and
ST2 as well as between MCY and SPC waters26. Subsequently the free energy difference
between the ST2 and SPC waters was determined directly and was found to agree with
the indirectly calculated value within the stated error limits36. Swope, Andersen, Berens
and Wilson described related procedures for the calculation of formation constants for water
clusters 37. Berens, Makay, White and Wilson described the incorporation of this approach in
a molecular dynamics study of liquid water 38. Postma39 calculated the free energy of cavity
formation in liquid water and obtained the integrand in a molecular dynamics calculation
where λ was “forced” to grow from 0 to 1 during the simulation.

Non-linear TI

Several possible pathways between two states involve an E(λ) such that the λ de-
pendence of when E(λ) is non-linear. In these cases TI becomes more complex, since the
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required derivative will be a function of λ. A simple example of non-linear TI is the thermo-
dynamic pressure integration mentioned before where the volume of the system is scaled up
to infinity. Here we present the formalism for some other cases, and discuss their possible
utility. A general description of altering a molecule in the course of the λ-integration can be
obtained with the following energy function:

E(λ) = E(R(λ)),

R(λ) = λR1 + (1− λ)R0.
(27)

Here R represents all the parameters of the energy function that change. For this choice, we
have for the basic integrand:

∂

∂λ
E(λ) =

∑
k

∂E

∂Rk
(R1,k −R0,k) (28)

Implementation of Equation(28) into existing programs is more complicated than the imple-
mentation of linear TI, but should not lead to significant increase in computational expense
for programs that calculate atomic forces anyway (like molecular dyamics or force bias Monte
Carlo or variations thereof) since in general most terms going into the R-derivatives are al-
ready computed as a partial result.

Equation(28) can describe a conformational transition of a molecule or the change
of a molecule into a new one. In the first case, R describes the atomic coordinates of the
molecule to be changed as well as the potential parameters that undergo change during the
switch from system 0 to system 1. When applied to the special case of system 1 being an ideal
gas particle, a new molecule can be created without the singularity problem40. A possible
advantage of nonlinear TI instead of linear TI lies in the fact that the singularity problem
is avoided. Also, there is no need to calculate two energy functions as in ETI. However, the
configurational average to be calculated is not the energy itself, but its derivative, therefore
convergence is likely to be more expensive to achieve and the monotonicity of the integrand
is lost.

The non-linear TI method can be used to change the simulation unit cell size. Con-
formational transition of large solutes may require a change in the shape of the simulation
box, particlarly when the periodicity of the solute is built into the periodicity of the solvent
system. Changing the unit cell affects directly the energy function since the position of the
priodic images will change. Let L describe the three lengths of the rectangular unit cell.
The transition from L0 to L1 can be decribed as

E(λ) = E(L(λ)), (29)

L(λ) = λL1 + (1− λ)L0.

The derivative with respect to λ is given (for pairwise additive potentials) as

∂

∂λ
E(λ) =

N∑
i<j

∂

∂λ
Eij(λ) (30)
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∂

∂λ
Eij(λ) =

3∑
k=1

∂

∂Lk
(L1,k − L0,k) (31)

∂

∂Lk
Eij(λ) =

∂

∂rij,k
Eij(λ)

∂

∂Lk
rij,k (32)

∂

∂Lk
rij,k = rij,kδ(|Lk| − |rij,k|) +


1 if rij = r0ij + Lk

0 if rij = r0ij

−1 if rij = r0ij − Lk

 (33)

where r0ij is the difference between the position vector of i and j and rij is the difference
translated to the nearest image. The first term is a consequence of the possible discontinuity
in Eij(λ) at |rij,k| = Lk, that arise when the potential cutoff is not less than the simulation
cell’s inscribed sphere radius. However, its contribution to the TI integrand is zero since
the sign of rij,k is independent of ∂/∂rij,kE(λ). Therefore, it can be dropped from further
considerations.

The implementation of Equations(30-33) requires similar amount of programming
effort as that of Equation(28) but again will not increase the actual computational expenses
significantly for gradient bias calculations since all terms in Equations(30- 33) are either
simple to compute or are already computed during the force calculation.

An other possible use of non-linear TI comes in the change in the “rate” of coupling
during the λ-integration. A simple modification of the linear coupling involves introducing
the k-th power of the coupling parameter which can be done in two ways:

E(λ) = [(1− λk)E0 + λkE1] (34)

or
E(λ) = [(1− λ)kE0 + λkE1]. (35)

The derivative required is obtained simply as

∂

∂λ
E(λ) = kλk−1(E1 − E0) (36)

or
∂

∂λ
E(λ) = k(1− λ)k−1E0 + kλk−1E1 , (37)

respectively. For creation/annihilation coupling, both methods will produce an integrand
with limiting behaviour λ(kd/n)−1 at λ=0. For the limiting behaviour at λ=1, important
when creation and annihilation is done simultaneously, the first gives the same as the linear
TI, (1 − λ)(d/n)−1, and the second version gives the same as the first version at λ=0: (1−
λ)(d/n)−1. Therefore, for k ≥ n/d the singularity is avoided while the simplicity of the
linear TI is maintained. Actually, the first version is a reformulation the integral transform
suggested by Mruzik et al., while the second version can be considered its generalization. The
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monotonicity of the integrand is, of course maintained for the first version since it is related
to the linear TI by a change of variables via a monotonous function. It is not clear, however,
if the same is true for the second version and further studies are required at this point. There
is an additional point of interest for the second version when applied to changing one large
solute into an other large but rather different one: It can be expected that in the region
λ=0.5 the systems pressure will be rather high, since the presence of both solutes is felt by
the solvents. This large pressure may slow down convergence. Since λk + (1 − λ)k < 1 for
k > 1 in the (0,1) interval, the coupling above would alleviate this problem as well.

Independent expression of the entropy in TI

Generally, the entropy change is calculated from ∆A and the internal energy dif-
ference 〈E1〉1 − 〈E0〉0. However, it can also be obtained from a TI calculation directly as
follows. By taking the derivative of 〈E(λ)〉λ, expressed by Equation(20), we obtain〈

∂E(λ)

∂λ

〉
λ
− ∂〈E(λ)〉λ

∂λ
=

[〈
E(λ)

∂E(λ)

∂λ

〉
λ
− 〈E(λ)〉λ

〈
∂E(λ)

∂λ

〉
λ

]
/kT (38)

Integrating Equation(38) from 0 to 1 and using Equation(15) gives

∆A− (〈E1〉 − 〈E0〉) = −T∆S =∫ 1

0

[〈
E(λ)

∂E(λ)

∂λ

〉
λ
− 〈E(λ)〉λ

〈
∂E(λ)

∂λ

〉
λ

]
dλ/kT (39)

The ensemble averages in Equation(39) are either already computed during the calculation
of ∆A or are trivial to obtain. Notice also that if the internal energy difference is calculated
from independent (TVN) ensemble calculations, Equation(39) offers a consistency check.

PERTURBATION METHOD

An alternative expression for ∆A can be obtained by inserting unity into Z1 of
Equation(10) in the form exp(E0/kT ) exp(−E0/kT ) leading directly to the equation

∆A = −kT ln〈exp[−(E1 − E0)/kT ]〉0. (40)

Reversing the role of systems 0 and 1 we obtain the mirror expression of Equation(40):

∆A = kT ln〈exp[−(E1 − E0)/kT ]〉1. (41)

Use of these equations have been also referred to as perturbation method (PM) since E1
and E0 differ by a small “perturbation” in successfull application. Bennett41 recognized
that Eqs.(40,41) are equivalent to an infinite order perturbation expansion, that is, they are
exact. Therefore, they do not correspond to a “perturbation theory” in the usual sense of
the word.

The methology of the PM involves essentially a simulation carried out by Metropolis
- Monte Carlo or molecular dynamics procedures based on the energy function E0 (or E1), in
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which E1 (or E0) is also computed at each step and the average of the exponential quantity
of Equations (40) and (41) is formed. Successful numerical calculation of these ensemble
averages via simulations requires that states 0 and 1 be not too dissimilar. In the event
of difficulties with the direct application of Equations(40) and (41), it is possible to use
the coupling parameter approach to define a numerically viable path involving intermediate
states between states 0 and 1 and compute the free energy difference as

∆A =
∑
i

∆Ai (42)

where
∆Ai = ln〈exp[−(Ei+1 − Ei)/kT ]〉i. (43)

Here the interval between successive states can in principle be maintained small enough
that the similarity condition is always sufficiently satisfied and the ensemble average can be
successfully determined; of course if the states were too different the number of intermediate
steps would become prohibitively large.

The two alternative expressions for ∆A, Equations(40) and (41), allow the calcu-
lations of ∆Ai and ∆Ai+1 in the same simulation step. Interestingly, performing a sim-
ulation with E(λi) and computing ∆Ai and ∆Ai−1 from Equations(40) and (41) is ex-
actly equivalent to an umbrella sampling calculation between A(λi−1) and A(λi+1) using
EW = E(λi) − E(λi−1) as the non-Boltzmann bias. The combined use of Equations(40)
and (41) was actually called half umbrella sampling by Scott and Lee42. The recognition of
this fact, however, also implies that the general umbrella sampling may be superior to half
umbrella sampling, in particular if an efficient way of determining the non-Boltzmann bias
can be found.

Equations(40) and (41) can not only used to effect computational savings but also
for a consistency check as an alternative. This check is not too strong, however, since if the
two states involved in ∆Ai are too distant the inadequacy of both Equation(40) and (41) is
of the same degree and the true error may not show up. As has been remarked earlier30, a
stonger test for the adequacy of sampling can obtained by computing in the (i− 1)th run

〈Ei〉λ = 〈Ei exp[(Ei − Ei−1)/kT ]〉λi−1
)/〈exp[(Ei − Ei−1)/kT ]〉λi−1

(44)

and comparing it with the value computed in the ith run directly. An additional point is
that the PM is particularly advantageous when the dependence of E(λ) on λ is complex
since it does not require derivatives of E(λ). Care must be taken, however, to make sure
that the range of ∆E is limited to a few kT since otherwise the sum of their exponential will
be dominated by a few terms, a clearly undesirable effect.

The PM was used very early by Dashevsky et al.43 to compute ∆A between liquid wa-
ter and an ideal gas in a single step. Owicki and Scheraga pointed out in an argument similar
to that given in the BACKGROUND section based on Equations(6,7) that 〈exp(+EN/kT )〉
can not be expected to converge in a mean energy calculation44. Miyazaki, Barker and
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Pound used this technique to calculate the surface tension of the Lennard-Jones liquid by
separating two slabs of liquid in a stepwise manner45. Torrie and Valleau introduced US to
enhance the efficiency of Equations(40) and (41) in calculating ∆A between soft spheres and
the Lennard Jones fluid and between Lennard-Jones fluid at various temperature 14. Owicki
and Scheraga performed calculations on the probability of finding a cavity in liquid water46.
Scott and Lee calculated the surface tension of the MCY water42 by combining US with the
technique of Miyazaki et al.45. The difficulty of obtaining efficiently the non-Boltzmann bias
was recognized and the half umbrella sampling was proposed. Nakanishi and coworkers47

computed the free energy of hydration of a methane molecule into liquid water in one step.
US was used and the exponential of the EW function they used varied between 1 and 1056.
Numerical problems may arise when the range of the weighting function is so large. Mezei
attempted to calculate the ∆A between the ST2 and MCY liquids using US but repeated
attempts at the determination of an effective EW function failed to give consistent results
even when two intermediate states were used, pointing to a serious limitation of the pertur-
baton method30. Recently, Postma, Berendsen and Haak used this approach to determine
the free energy of cavity formation in water48. Sussman, Goodfellow, Barnes and Finney
calculated ∆A between liquid water at various temperatures49, using US. Jorgensen and
Ravimohan computed the free energy difference between ethane and ethylalcohol27. Mc-
Cammon, Tembe, Lybrandt and Wipf calculated the free-energy difference of changing a
coenzyme in aqueous solution28,29 and were able to calculate the free energy of solvation be-
tween [Cl−]aq and [Br−]aq in one step50, but this involves only a relatively small alteration
in an ionic radius parameter.

THE POTENTIAL OF MEAN FORCE

The expression for Helmholtz free energy, Equation(4), for the special case of two of
the N particles of the system fixed in space at a distance R takes the form

A(R) = −kT ln
∫
. . .
∫

exp[−EN(R)/kT ]dRN−2. (45)

The radial distribution function for the system is defined as

g(R) = [N(N − 1)/ρ]
∫
. . .
∫

exp[−EN(R)/kT ]dRN−2 (46)

and thus
A(R) = −kT ln g(R) + constant. (47)

The quantity A(R) is the force acting between the fixed particles due to the remaining N−2
other particles of the system51 and thus A(R), frequently denoted w(R) in the statistical
mechanics literature, is known as the potential of mean force. Equation(47) is generally true
for any parameter R fixed. The knowledge of A(R) is particularly useful for conformational
changes, molecular associations and chemical reactions.
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In general, g(R) is obtained as the ratio of the probability of sampling the coordinate
R, obtained from a simulation where R is also allowed to vary, and the volume element of
the configuration space corresponding to the coordinate R:

g(R) = P (R)/V (R). (48)

When the Rcoordinate is considered as simply another degree of freedom in an other-
wise conventional mean energy calculation serious sampling problems arise. The simulation,
seeking to describe the equilibrium state dictated by the Boltzmann factor, would end up
sampling only a small region of the R-space rather than the full space. Thus sampling of R
requires umbrella sampling techniques to cover the less probable regions of R. The volume
element can be interpreted as a quantity proportional to the probability of sampling the
parameter R with the potential function set to zero. For example, if R is an intermolecular
distance, V (R) = 4πR2 and if R is a torsion angle, V (R)=const. Its determination becomes
progressively more complex as the dimensionality of R is increased.

Several recent simulations studies to compute A(R) have been reported. Apart from
the original study of Patey and Valleau13 where a tabulated weighting function was used, all
recent works carried out a series of simulations, each constrained to sample the local region
about points R1, R2, . . . respectively. In an individual simulation, a distribution g(R)i is
obtained. A particular simulation is constrained to sample a region about Ri by adding a
harmonic constraint to the configurational energy, via

W (R) = kH(R−Ri)
2, (49)

as first employed by Pangali Rao and Berne52. Successive points Ri are chosen so that g(R)i
are overlapping. Overlapping points in the distribution correspond in principle to the same
absolute value but in practice differ by a normalization constant. Thus the various computed
g(R)i can be arbitrarily shifted up or down, and ultimately matched up to produce a g(R)
for the entire range of R. The matching can in principle be carried out for any overlapping
points, but in practice one chooses those points with relatively low statistical noise levels.
Ideally, the matching should be based on all overlapping points, with higher weight given to
points that were sampled more extensively. A formalism, applicable to multidimensional R,
has been presented in References16,19.

Other potential of mean force determinations on R as a reaction coordinate in-
clude an early calculation of A(R) for the association of ion pairs by Patey and Valleau13

and by Berkowitz et al.53 where successive minima in A(R) correspond to contact and
solvent-separated ion pairs. The calculation of A(R) for the association of apolar atoms
and molecules has been carried out in studies of the hydrophobic effect by Pangali et al.52

and by Ravishanker, Mezei and Beveridge 54,55. Here as well contact and solvent-separated
forms were identified with the latter having an unexpectedly high statistical weight, indi-
cating that the hydrophobic effect may act over a longer range of distance than previously
suspected by means of solvent- mediated structures. A series of potential of mean torsion
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studies have been carried out on the n-butane system by Rebertus, Berne and Chandler56,
Rosenberg, Mikkilineni and Berne57 and Jorgensen58 as reviewed recently by Jorgensen59.
Most recently, Chandrashekar, Smith and Jorgensen have determined the potential of mean
force on the complex reaction coordinate of the organic SN2 reaction of CH3Cl and Cl−

in water23 DMF24. The reaction is predicted to be concerted in water but to proceed via
a reaction intermediate in DMF, a previously unanticipated result. Warshel used umbrella
sampling to compute the potential of mean force along a proton dissociation coordinate de-
scribed by a coupling parameter20−22. Case determined the potential of mean force for a
carbonmonoxide molecule approaching the hemoglobin active site60.

PROBABILITY RATIO METHOD

If the free energy function A(R) is evaluated as a function of a coupling parameter
λ on the 0,1 interval the free energy difference ∆A can be simply obtained as

∆A = A(1)− A(0) = kT ln[g(R0)/g(R1)]. (50)

In view of the interpretation of g(R) as a probability per unit volume, the procedure based
on Equation(50) will be called probability ratio method (PRM). Also, it can be shown that
for the one-dimensional coupling parameter λ ,

V (λ) = constant, (51)

and therefore
∆A = kT lnP (λ0)/P (λ1), (52)

where the probability ratio appears explicitely. The advantages of the PRM are twofold.
First, there is no volume-element ratio to deal with. This appears to contradict to the above
mentioned necessity of using V (R) = 4πR2 for the intersolute distance R. However, the
R2 factor comes in only if the two solutes are allowed to move freely in the 3-dimensional
space, implying that R = |R|, a parameter depending on three degrees of freedom. If instead
the simulation is performed by directly varying the intersolute distance (that is, restrict the
movement of the solute to the intersolute line), no volume element correction is needed. This
statement can be justified also by recognizing that while the a priori probability of moving
from R to R+ ∆R and from R to R−∆R is the same in the second case, for the first case
they are unequal and their ratio is just (R+ ∆R)2/(R−∆R)2. Second, we can apply PRM
for computing ∆A between systems described with different potentials (as already pointed
out by Bennett earlier41). Since it can be generally expected that

|〈E(λ+ ∆)〉λ − 〈E(λ)〉λ| > |〈E(λ+ ∆)〉λ+∆ − 〈E(λ)〉λ| (53)

it is very likely that the creation of a new particle can be performed efficiently without
any sudden increase in the integrand. The above derivation also provides a justification for
allowing changes in the energy function when a conformational coordinate is varied. This was
the case on Ref.19 where the atomic charges were also varied with the solute conformation.
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A special application of PRM is to systems where the free energy difference between
two solute conformations is required. The PRM method only provides the solvent contribu-
tion to this free energy difference. The solute contribution has to be computed separately. In
that respect it should be pointed out that including the intramolecular energy into the sim-
ulation is equivalent to calculating ∆A with the intramolecular energy contribution set zero
during the simulation and correcting the free energy difference with the intramolecular energy
difference assuming that there is no coupling between the inter,olecular and intramolecular
terms20. This result can also be obtained if one assumes that the calculation is using the
total energy E+Eintra but also employs umbrella sampling with W (R) = −Eintra(R) where
Eintra is the intramolecular energy contribution19.

In a recent work from this Laboratory19 using the PRM, λ took the form of a
correlated conformational transition coordinate defined by Equation(19) as a linear tie-line
from the C7 conformation to a “final” structure αR or PII of the Ala dipeptide in water.
In subsequent studies we calculated the solvent contribution to the free energy difference
between various conformations of the dimethyl phosphate anion61 and between the cis and
trans conformation of N -methyl acetamide62 in water.

FULL FREE ENERGY SIMULATIONS

We use the terminology “full free energy simulations” or “complete free energy simu-
lations” to refer to theoretical studies where both intramolecular and intermolecular contri-
butions are included. For the case of determining ∆A between two states which correspond
to well-defined minima on the intramolecular potential surface, the approximation

A = Ainter + Aintra (54)

can be pursued. The vibrational entropy can be obtained in the harmonic approximation
from the calculated vibrational frequencies and vibrational partition function by simple ex-
tension of the Einstein oscillator problem63, or in the quasiharmonic approximation via an
entropy obtained from the covariance matrix of atomic displacements64,65,66. The free energy
is then computed from the entropy and the calculated mean of the intramoleculer internal
energy. As the conformational flexibility of the molecule increses, the likelihood of the system
going from the region of one minimum to an other is larger and in these instances, harmonic
and quasiharmonic methods fail. However, a limited perspective can be still developed from
this approach by a detailed study restricted to a few conformations. In these cases, it is
reasonable to consider the neighbourhood of these conformations independently and define
conformational free energy assuming that only the neighbourhood of this selected confor-
mation is accessible to the system, and proceed via Equation(56). Limitations arise due
to the well-known multiple minimum problem. At the extreme of complete conformational
flexibility, one has to proceed by means of a molecular simulation involving simultaneously
both intramolecular and intermolecular degrees of freedom and obtain the free energy of the
system via the procedures described in the preceding sections. Ravishanker it et al.67 have
recently carried out here a series of calculations on the intramolecular thermodynamics of
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the Ala dipeptide in the C7, C5, αR and PII conformations using the quasiharmonic Monte
Carlo method64,68 with energy functions carried over from the CHARMM program69, and
combined these withe our estimates of the free energy of hydration as determined with the
PRM described in the preceding section. The C7 form is indicated to be preferentially sta-
bilized in the isolated molecule due to the 7-atom intramolecular ring structure closed with
the NH. . .OC hydrogen bond. The open forms are indicated to be entropically favored, but
this contributes little to the intramolecular free energy. In water, the hydration stabilizes the
open forms with favorable carbonyl-water hydrogen bonds, mitigated partially by a solvent
entropy compensation effect. The net (intramolecular + hydration) free energy of three of
the conformational forms turns out to be similar, indicating the molecule to be conforma-
tionally flexible in water. This is generally consistent with the experimental results70, and
suggests that the well-known conformational flexibility of numerous small peptides in water
arises as a consequence of hydration competing successfully with intramolecular hydrogen
bonds to stabilize open conformational forms.

DISCUSSION

No single method for free energy simulations can be considered as clearly superior to
the others and the proper choice depends very much on the system under consideration. At
one extreme of the spectrum, where the systems 0 and 1 are very similar, the PM is clearly
optimal. However, the number of stages required is roughly proportional to the variation in
∆E. Therefore, when the systems 0 and 1 differ considerably, thermodynamic integration
methods are likely to be the method of choice as demonstrated by the MCY-ST2 water
calculation where three quadrature points were found to be adequate but the PM with US
failed when tried in three stages. However, further studies are required for the optimal
handling of the singularity problem. At this point little experience is accumulated with the
use of the PRM. It has been proposed in this paper that PRM may be rather efficient in
“creating” new particles. It is quite possible that for larger systems a combination of the
methods would turn out to be optimal - we have in mind a technique where the “seeds” of
a new system are introduced with, say, the PRM method (to avoid the singularity problem)
and the rest of the system is “grown” with linear TI (to be able to rely on the monotonicity of
the integrand). Answers to these questions will come from extensive comparative calculations
in future work.

A TI calculation that determines the value of the integrand at one λ value can
be considered also as a PM calculation between intermediate states E0 = E(λ − ∆) and
E1 = E(λ+ ∆) for small enough λ. If the points λi in the numerical integration are chosen
close enough that a small enough λ can be found such that λi−1 + ∆ = λi − ∆ then ∆A
can be the calculated from the same set of calculations in two different ways (using either
Equation(40) or (41)), providing a very useful consistency check. However, in most of the
cases the integrand is “smooth” enough that the integral can be approximated adequately
by evaluating the integrand at only a relatively few points which demonstrates one of the
basic strength of the TI method.
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The error characteristics of the different approaches are also different. First, it can
be generally said that free energy differences are likely to be more reliable than internal
energy differences since the free energy difference calculations involve the energy differences
before the averaging while the internal energy differences are usually obtained as a small
difference between large quantities with their respective statistical uncertainties. Comparing
the three different approaches discussed above, in calculations that require the definition of
intermediate states, the errors of individual calculations contribute additively to the error in
the final result. By use of thermodynamic integration, however, a weighted sum of the error
of the individual quadrature points gives the error of the final result. Therefore, if a single
calculation has an unusually large error, its effect will be present fully in the final result for
the PM or PRM but in a TI calculation its effect will be scaled down.

The estimation of the error in a free energy simulation has two aspects. First, the
error of the individual calculations is to be assessed and second, the propagation of the error
to the final results is to be determined. The error of the individual calculations can generally
be obtained from the method of batch means71,72. Special care must be taken for both the
PM and the PRM since these approaches are rather sensitive to the long range correlations.
The propagation of the error is rather straightforward, as dicussed above.

An alternative approach to the overall error problem is the use of consistency checks.
We showed several examples where the same quantity can be computed in different ways. In
fact, the alternative approaches mentioned can be considered as such as well. There is also
the possibility to compute free energy differences along different paths. A simple example for
this is the check employed by Scott and Lee on their PM/US calculations where a calculation
between λi and λi+1 was checked by computing the free energy difference between systems
λi and λi + (λi+1− λi)/2 plus the difference between systems λi + (λi+1− λi)/2 and λi+1 or
the calculations on the ST2, MCY and SPC waters.

There are a number of other free energy techniques that have been developed and
tested on relatively simple liquids. The first class of methods are based on a paper by
Widom73. These methods require the addition or deletion of a particle from the system74−77.
Simulations in the grand-canonical ensemble also fall into this class78−80. These methods,
however, can only be applied for small particles or low densities. A different class of meth-
ods, originated by Bennett41, are based on Equation(52). They do not actually change
the coupling parameter, but rely instead of the comparison of energy dustributions. The
Virtual Overlap and the Overlap Ratio methods of Quirke and Jacucci also fall into this
category81,82. Their main drawback is that they require accurate estimate of the tail of
the energy distributions which are known to be particularly sensitive to the small but well
documented long range correlations that exist in simulations9,10. Voter 83 published an in-
teresting variation of the original Bennet method but it is only applicable to systems with a
small number of extrema. It is unlikely that any of these methods can be applied efficiently
to systems consisting of large molecules.

CONCLUSIONS
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The results of reserach investigations described in this article clearly indicate that
the time is now at hand for the calculation of free energies of molecular systems via computer
simulation. We expect with the advent of supercomputers that the sampling problems inher-
ent in the numerical determination of free energy can be overcome and the goal of producing
a full thermodynamic description of molecular assemblies in condensed phase system can be
more fully realized.
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