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A self-consistent procedure is described for the determination of the non-Boltzmann bias
for the Umbrella Sampling technique of Valleau, Patey and Torrie. The new procedure
offers more reliable results with less human interference. The problem of matching several
differently normalized probability distributions on overlapping domains has been treated in
detail. The algorithm has been tested on the calculation of the solvent contribution to the
free energy difference between the C7 and αR conformation of the alanine dipeptide, treated
earlier with the conventional umbrella sampling technique.

1. INTRODUCTION

Non-Boltzmann or Umbrella Sampling [1,2] is frequently used in computer simulation

when the sampling of a specific region of the configuration space is required that may not be

sampled adequately in a direct Boltzmann sampling. The technique calls for a sampling with

a modified potential. The major difficulty in the successful application of Umbrella Sampling

is the search for the appropriate modification, usually determined by trial and error. The

purpose of this paper is to demonstrate the feasibility of generating a potential modification

from the simulation itself in a self-consistent manner that performs the required sampling

more efficiently than the ones obtained by trial and error.

2. BACKGROUND

The success of both the Monte Carlo and molecular dynamics methods in describing

the liquid state of matter is based on the ability of these methods to restrict the sampling

of the configuration space to the extremely small fraction that contributes significantly to

most properties of interest. However, for calculations of free energy differences, adequate

sampling of a much larger subspace is required. Also, for the related problem of potential



of mean force calculations the structural parameter along which the potential of mean force

is calculated has to be sampled uniformly. These goals can be achieved by performing the

calculation using an appropriately modified potential energy function V

V = E + EW (1)

where E is the original potential function and EW is the modification[1,2,3]. The subscript

W indicates that the Boltzmann factor is modified by a “weighting function” exp(−EW /kT )

when V is used. From a calculation performed with V for any quantity Q the Boltzmann

average 〈Q〉E can be recovered as:

〈Q〉E = 〈Q exp(EW /kT )〉V/〈exp(EW/kT )〉V (2)

where the subscript V indicates that the average is obtained with the modified potential

of Eq. (1). While there is no serious theoretical limitation on the choice of EW , practical

considerations limit it to functions that do not show too large variation over their domain

since their exponential is involved in Eq.(2)[4].

Generally, EW is a function of a few parameters λ only, either energetic (when the free

energy difference between two types of particles is computed [2,5,6]) or structural (when the

potential of mean force is calculated [1,3,7-10]). EW (λ) is to be chosen in such a way that

the domain of λ is adequately sampled.

The usual way of determining the non-Boltzmann bias EW (λ) proceeds by trial and

error. At first a trial EW (λ) is assumed, a short simulation is run and the region sampled

is examined. Next, EW(λ) is modified to give larger weight to undersampled or unsampled

regions of the λ-space and a new run is performed. This process is repeated until an EW (λ) is

found the samples the desired region of the λ-space. In most of the cases it was found practical

to target subspaces of the λ-space for a calculation, necessitating the “matching” of the

obtained probability distributions, since results from the calculations in different λ-subspaces

are undetermined up to a normalization factor. This matching is usually done by examining

the calculated probability distributions P (λ) for the different regions and determining the

normalization factor in such a way to obtain the best “match” in the overlapping regions

(P (λ)dλ is the Boltzmann probability of occurrence of configurations with parameter λ ∈
[λ, λ+ dλ]).



The optimal choice of EW (λ) is clearly

EW (λ) = kT lnP (λ) (= −W (λ)). (3)

Eq.(3) also defines the potential of mean force W (λ) along the coordinate λ. Unfortunately,

P (λ) is obtained only as a result of the calculation with the proper EW (λ), thereby creating

a vicious cycle.

We propose to break this cycle by an iterative approach where P (λ) is first estimated on

the small set of λ that would be sampled using E and this estimate is used in the next step

to enlarge the set of λ sampled. This refinement is performed until the adequate EW (λ)

is found. There are several problems to be solved before such an algorithm would work

successfully on complex systems such as molecular liquids:

a. The algorithm has to provide an automatic matching procedure that works even when

the individual estimates of P (λ) are not too precise (otherwise the iterations would have to

be too long for the method to be practical).

b. The algorithm has to be able to recognize iterations that should be dropped as

equilibration (otherwise too many iterations would be “wasted” in correcting the error).

c. The algorithm should monitor the degree of the coverage of the λ-space required

and be able to “steer” the sampling towards the undersampled or unsampled region. This

is particularly important since the estimates of P (λ) are likely to be the most imprecise

near the boundary of the λ-region sampled and easily can have the effect of preventing the

extension of the region sampled.

d. Provisions should be made to recognize likely errors in the calculated P (λ) and the

temporary replacement of these parts.

While the present work was in progress, Paine and Scheraga published a calculation de-

termining the probability distribution of the dihedral angles in a free dipeptide molecule[11]

that was based on the iterative use of Eq.(3), as proposed here. Due to the small dimension-

ality of the problem, none of the difficulties described above have been encountered and the

straight application of the iterative scheme worked successfully.

3. THEORY



We describe here an algorithm for the self-consistent determination of EW (λ) over a

domain D. The description will be in terms of a multidimensional λ. However, the numer-

ical example given is for the case of a one-dimensional parameter λ and some steps in the

algorithm will contain specific references to the one-dimensional case.

3.1 Definitions

Assume that P (λ) is computed on a finite grid {λk}. Let Sn denote the set of λk that

was already sampled after iteration n and P k
n the estimate of P (λk), based on the first n

iterations, undetermined up to a normalization factor. For iteration n, let sn be the set of λk

sampled during the iteration, fk
n be the number of configurations on which the probability

estimate pkn, obtained from this iteration only (again, undetermined up to a normalization

factor), is based. Furthermore, for any iteration n, let

F k
n =

n∑
j=1

fk
j , (4)

rkn = fk
n/F

k
n (5)

and

wk
n = fk

n/
∑

{h|λh∈sn}
fk
n . (6)

rkn gives the relative contribution of iteration n to the estimate P k
n and wk

n gives the relative

contribution of the gridpoint λk to pkn in iteration n. An indicator to the degree of sampling

of the k-th gridpoint in n iteration SIk
n can be defined as

SIk
n = F k

n/[max
k

F k
n ]. (7)

Finally, the function λc(λ, S) is defined as:

λc(λ, S) ∈ S, |λ− λc(λ, S)| = min
λ′∈S

|λ− λ′| (8)

that is, λc(λ, S) is the point in the set S closest to λ.

3.2 The outline of the algorithm

The algorithm consists of the following steps:

1. Set the iteration counter n to 0, set So = {0}, Po(λ) = 1 and EW (λ) = 0.0 .



2. Increment the iteration counter n.

3. Run the simulaton with the latest EW for a “reasonable” length.

4. Compute pkn for each grid (using Eq. (2)).

5. Decide, if the iteration is to be considered an equilibration step. If so, repeat from

step 3.

6. For n > 1, match pn and {pi|i = 1, ..., n − 1} to obtain the best estimate Pn. The

problem is to find the appropriate normalization factors Ni for each pi so that they can be

correctly combined to form Pn. The matched probability distribution P k
n is obtained as

P k
n =

n∑
i=1

rki Nip
k
i . (9)

The rki factor in Eq.(8) gives higher weight to better sampled gridpoints.

7. If the sampling of the parameter set D appears to be adequate, stop.

8. For each grid λk ∈ Sn, set

EW (λk) = kT lnP k
n . (10)

9. Assign values for λ 6∈ Sn. This step involves (a) extrapolation of EW (λk); (b)possible

temporary modification of EW (λk) to promote the sampling of undersampled regions; and

(c) modification of EW (λk) to contain the sampling within the set D.

10. Modify temporarily EW (λk) to rectify suspected errors in P k
n .

11. Repeat from step 2.

3.3 Detailed description of the individual steps

Step 5: Equilibration check. In order to recognize iterations the are to be considered

equilibration and discarded as such one has to compare the set sn with the previously sampled

regions. In the present version we discarded an iteration n if the set sn contained grids

that were “significantly outside” the overall region sampled before, (including the discarded

iterations) and continued from step 3. The reason for this is that if the simulation reached



a new region than the iteration should be definitely considered an equilibration period.

By “significantly outside” we meant that the set si contained points that differ from any

previously sampled points by more than 0.06.

As an enhancement, depending on the length of an iteration, or on the distance of

the newly sampled ponts from Si−1, it might be useful to eliminate the subsequent ND

iterations. It is also likely, that if the set sn differs too much from sn−1 (even though points

in si were already sampled at an earlier phase of the calculation) then the calculation was

in an unequilibrated phase and should be similarly discarded.

Step 6: Matching. The first question here is the establishment of a matching criterion

that can be applied without the need of human intervention. There are two obvious choices:

(1)minimize the appropriately weighted sum of deviation squares:

n∑
i=1

∑
{k|λk∈sn}

wk
i (Nip

k
i − P k

n )2. (11)

or (2) minimize the analogous relative deviation square sum:

DS =
n∑

j=1

∑
{k|λk∈sn}

wk
j [(Njp

k
j − P k

n )/P k
n ]2 (12)

The wk
i weighting in Eqs.(11,12) is introduced to reflect the accuracy of the estimate pki .

This choice gives equal weight to each iteration and is thus meaningful only if the iteration

length is kept constant. A more general choice, allowing for variable iteration length is

wk
i (Li/L) where Li and L are the number of configurations in iteration i and the whole run,

respectively.

The minimization of the deviation square leads to a system of linear equations (given in

the Appendix), whose solution is rather straightforward while the minimization of the relative

deviation squares results in a system of nonlinear equations. The solution of the latter can

be done by a numerical minimizer and requires also a reasonable initial estimate as described

below. Unfortunately, the probabilities can vary over several orders of magnitude, thus it is

necessary to use the relative deviation square to ensure that the quality of the fit will not

depend on magnitude of the fitted functon.



A common feature of both expressions that Ni = 0 is a solution to it, although clearly

not the one we are looking for. This reflects the fact that the whole system still will contain

an undetermined overall normalization factor. To avoid obtaining this trivial solution, we

always fix one of the Ni’s (the first one) to one. Also, if the si’s form pairwise disjoint classes

the minimization is only necessary for the class which contains iteration n.

A tempting proposal here is to retain Ni once it is computed and for each iteration n

determine only Nn. Such procedure could be called one-step optimized matching as opposed

to the n-step optimized matching where all Ni’s are (re)determined at each iteration.

The procedure used in the present work used the nonlinear n- step optimized matching,

that is, all Ni’s were determined in each step by minimizing the DS of Eq.(12). The initial

estimate of the Ni’s were obtained by using the Ni’s of the previous iteration and determining

the initial estimate of Nn from a linear one step-optimized matching by minimizing

∑
{k|λk∈Sn}


F k

n−1/

 ∑
{k|λk∈Sn}

Fh
n−1


 (P k

n−1 − P k
n )2 + wk

n(Nnp
k
n − P k

n )2

 (13)

where P k
n is given as

P k
n = (1− rkn)P k

n−1 + rknNnp
k
n, (14)

a special case of Eq.(9). Differentiation with respect to Nn yields the equation

Nn =

 ∑
{k|λk∈Sn}

P k
n−1p

k
nck

 /
 ∑
{k|λk∈Sn}

(pkn)2ck

 (15)

where

ck =

F k
n−1/

 ∑
{h|λh∈Si}

Fh
n−1


 (rhn)2 + wh

n(1− rhn)2. (16)

Use of the non-linear one-step optimized matching to minimize the corresponding relative

deviation square sum should be even better but the simplicity of Eqs.(15,16) would be lost.

The derivatives of DS, required for the numerical minimizers, are given as

∂

∂Ni
= 2

n∑
j=1

∑
{
k|λk ∈ Sn}wk

j {δijpkj (Njp
k
j − P k

n )/(P k
n )2

−rki pki [(Njp
k
j − P k

n )2/(P k
n )3 + (Njp

k
j − P k

n )/(P k
n )2]} (17)



where δij is the Kroenecker delta.

For calculations requiring a large number of iterations, it might be necessary to group

the iterations into smaller sets and use fully-optimized matching first within the sets and

then optimize the matching of the grouped iteration estimates.

Step 9: Assignment of EW (λ) outside Sn. The simplest assignment for λk 6∈ Sn is

EW (λk) ⇒ EW (λc(λk, Sn)) (18)

that is, outside Sn set EW (λk) to the value that it has at the point in Sn nearest to λk.

Use of Eq.(18) will lead to possibly large discontinuities in EW (λk) whenever the si’s

can be partitioned into pairwise disjoint classes. This can be avoided if one applies a “group

normalization factor” to each disjoint classes that brings Pn to the (nearly) same scale for

all classes. For the one-dimensional λ, used in the computational example given in this

paper, this can be simply achieved. Assume that the parameter λ has been sampled in the

intervals [λ0
1, λ

1
1], [λ0

2, λ
1
2], . . ., such that λ1

i < λ0
i+1. Starting with i = 1, for each “gap”

i do the following: (a) Set EW (λk) = EW (λ1
i ) for λ1

i < λk < λ0
i+1; (b) Set EW (λk) =

EW (λk) + EW (λ1
i )− EW (λ0

i+1) for λk ≥ λ0
i+1. For multidimensional λ, however, this task

leads to an other minimization problem since in general there is no unequivocal way of

defining the analog of the endpoints of the classes.

To encourage the extension of the sampling one should again compare the region sampled

in iteration n with the previous history of the calculation. If the set sn shrunk from sn−1,

that is, sn−1 6∈ sn and the abandoned region was “undersampled”, than set

EW (λk) =⇒ EW (λc(λk, sn−1))− C|λk − λc(λk, sn−1)|. (19)

for {λk|λk ∈ sn−1 ∧ λk 6∈ sn}.

By an “undersampled” gridpoint we mean that the sampling indicator SIk
n is less than

0.5. Use of Eq.(19) will encourage sampling of the region suddenly abandoned in iteration

n. It is also possible to use a set s′n−1 > sn−1 in the test to decide if Eq.(19) is needed.



Finally, for λk 6∈ D, set

EW (λk) ⇒ EW (λk, D) +K|λk − λc(λk, D)| (20)

to discourage sampling outside the targeted domain D.

Step 10: Temporary modification of EW (λk). If there is some information about the

range of W (λ) then one can set a limit DWmax to the difference between the values of

the weighting function at neighbouring gridpoints. For the one one-dimensional case this

translates into replacing EW (λk) with EW (λk) + d for k > j whenever

DW = |EW (λj)− EW (λj − 1)| > DWmax (21)

where d is given as

d = sign(DW ) ∗ (DWmax −DW ). (22)

It is reasonable to restrict this replacement to gridpoints that were not sampled too well,

that is, where the sampling indicator SIk
n is smaller than a treshold value, chosen to be 0.2

in the present work.

4. CALCULATIONS

The algorithm described in Sec. 3 was tested on the calcula tion of the solvent contri-

bution to the free energy difference between two conformations of the Alanine dipeptide in

aqueous solution at 25◦C. This system has been studied recently by the original Umbrella

Sampling method and the free energy difference was determined by computing the potential

of mean force along a straight line connecting the two conformations in the torsion angle

space [8]. The solution was modeled by one dipeptide molecule with flexible torsion angles

and 201 rigid water molecules under face-centered cubic periodic boundary conditions. The

water-water interactions were modeled by the MCY-CI potential [12] and the dipeptide-water

interactions were described by the potential library of Clementi and coworkers [13]. The com-

bination of force bias [14] and preferential sampling [15] techniques has been employed on

the molecular displacement whose joint application was shown to enhance significantly the

convergence of solute-solvent properties [16].

The conformation of the dipeptide is traditionally described by the torsion angles ψ and

φ, defined by the backbone atoms NCCN and CNCC, respectively. An unsuccessful attempt



has been made earlier to generate an E(λ) = E(ψ, φ) that samples the entire torsion angle

space using E(λ) in different functional forms[17]. However, since several conformations

have been identified as possible minima of the potential of mean force surface, calculations

described in Ref. 8 sampled conformations connecting two pairs of these possible minima.

One calculation sampled the line connecting C7(90◦,−90◦) and αR(−50◦,−70◦) and an other

sampled the line connecting C7 and PII(150◦,−80◦). These calculations gave the solvent

contribution to the free energy difference between the two conformations, ∆A
hyd
ij , as

∆A
hyd
ij = kT ln(Pi/Pj) (23)

where Pi and Pj are the Boltzmann probabilities of occurrence of conformations i and j,

respectively.

In these calculations EW was the function of a single para meter λ that defines the

conformation along the line connecting i and j:

(ψ, φ) = (1− λ)(ψi, φi) + λ(ψj , φj) (24)

and EW was used in an analytical form:

EW (λ) = c(λ− λo)
2. (25)

The calculation of ∆A
hyd
ij required the sampling of a total of ∼3000K and ∼2000K con-

figurations for the two lines studied, respectively. This includes 5 and 3 separate runs of

500-700K length in addition to several shorter (∼50K) trials to determine the appropriate c

and λo values for each run.

The algorithm was tested on the sampling of the parameter λ of Eq.(24) in the domain

D = [0, 1] for the C7 → αR transition. This appears to be a good test case since P (λ) has

a minimum at λ ' 0.25 The calculation was started from a configuration with λ=0.18. One

iteration consisted of 20K configurations. The C and K parameters in Eqs. (19) and (20)

were both chosen to be 0.5kT . The [0,1] interval has been divided into a uniform grid of 50

intervals and EW has been computed by linear interpolation between the grid centers.

5. RESULTS



At the outset of the study, both the linear one-step optimized matchig and the linear n-

step optimized matchings were tried. The one-step optimized matching, after having crossed

the barrier remained near the λ=1.0 range, which corresponds to the minimum of W (λ).

The linear fully optimized matching provided reasonable coverage for the [0,0.8] range but

was unable to reach λ=1.0. Furthermore, the matched W (λ) curves varied qualitatively even

after 30 iterations (of 10K length). This demonstrates the effect of the large variations in

the order of magnitude of P (λ) over the [0,1] interval.

The calculation using the non-linear n-step optimized matching crossed the barrier in 6

iterations and reached λ=1.0 in 12 iterations. However, the estimate near λ=0.45 and λ=1.0

was very bad at first: The W (λ) values showed a sudden increase as λ was approaching 1.0

and a sudden drop as λ was approaching 0.45 from larger λ values. It took 25 iterations to

correct the first error. Since the error was in the direction of overestimating W (λ), it had

the effect of “trapping” the system until the W (λ) estimate was corrected. The subsequent

25 iterations were spent in the range [0.5,1.0]. The correction of the second error turned out

to be more difficult since it had the effect of “repelling” the system from the problematic

region. However, use of Eq.(19) in step 9 finally forced the system to sample smaller λ values

and the second error was also corrected. This allowed the system to recross the barrier and

sample again the region around λ=0.0. The calculation was stopped after 118 iterations,

requiring 2480K Monte Carlo steps.

The resultingW (λ) is shown in Fig.1 together with theW (λ) estimates from the previous

work using the harmonic umbrella sampling. The original work performed the matching by

using points that lie in an interval where the two curves are the “most parallel” and no

quantitative account of the precision of P(λ) at the matched point was used. The W (λ)

curve obtained in the present works parallels the matched harmonic umbrella sampling result

rather well, with the exception of run 2. This run was around the maximum of W (λ),

and was experiencing some ergodic difficulties, as remarked in Ref.8: The first part of the

calculation was spent mainly on the C7 side of the W (λ) curve and the second part around

the αR side. In view of the present, rather large discrepancy, we performed a new harmonic

umbrella sampling calculation. After several unsuccessfull tries we found that EW (λ) =

150∗ (λ−0.25)2 sampled consistently both sides of the peak of W (λ). We performed a 700K

long run. The result of this run is also shown on Fig.1.



The free-energy difference was obtained in the present work using the adaptive algorithm

as 1.4 Kcal/mol. The previous work gave 3.6 Kcal/mol. After replacing the second run

with the one calculated here, we obtain 1.8 Kcal/mol. The error of ∆A
hyd
ij was estimated

previously to be 0.3-0.6 Kcal/mol, based on the stability of the P (λ)/P (λ′) ratios examined

in the longest individual run.

The fully optimized matching procedures require computer time that is roughly propor-

tional to the third power of the number of iterations. Optimizing 50 iterations added about

15% to the Monte Carlo computation effort.

6. DISCUSSION

In comparison to the standard umbrella sampling procedure the algorithm presented

here has the following advantages:

1. The sampling region can be set a priori and the possibility of having to do “one more

run” to fill a gap is absent. The need for human intervention is reduced.

2. There is a built-in self check on the matched probability distribution: If the sampling

stays too close to a region or avoids sampling a region, then the P(λ) is incorrect there (and

vice versa). This is a particularly important point as it was demonstrated that the harmonic

umbrella sampling result may be seriously in error on runs of medium length without giving

any obvious sign of lack of convergence.

3. The matching of the individual runs are mostly done based on the middle of the sam-

pled interval. The standard procedure has to use the most unreliable regions for matching,

thereby reducing its precision.

4. The current work required about the same computational effort as the conventional

procedure. However, it appears that with relatively simple modifications significant compu-

tational gains can be obtained as discussed below.

In summary, the present work demonstrated the feasibility and the improved reliability

of the adaptive procedure and pinpointed the issues critical to its success: (1) Use of a

matching criterion that gives uniform a-priori weight to all λ values (that is, use the non-

linear matching instead of the linear); (2) Flexibility in assigning the normalization constants

Ni (that is, use n-step optimized matching instead of the computationally more appealing



one-step optimized matching); and (3) Provide filters to eliminate iterations that constitute

an equilibration phase. Future work, however, should refine and improve it on several points:

(1) Step 5 should be enhanced to allow for better recognition of iterations that are to be

discarded as equilibration. In particular, additional filters in step 10 could recognize some

of the obviously wrong estimates in a later stage of the calculation and remove them from

the averaging. (2)The algorithm is likely to be sensitive to the choice of C value in Eq.(19).

Too small value will not have the desired effect and too large value will result in incorrect

estimates since the weighting function was changed so drastically that an equilibration step

would be needed first. (It appears that our choice was a little on the high side for this

sytem.) (3) More work is needed to determine the optimal choice of iteration length, the

best way to group iterations into “super iterations” (as suggested at the end of step 6) and

the optimal size of the interval D to be sampled in a single calculation.

APPENDIX: DETERMINATION OF THE NORMALIZATION CONSTANTS WITH

THE LINEAR n-STEP OPTIMIZED MATCHING

Differentiation with respect to each Ni yields a system of linear equations with coeficients

Aij =
∑

{k|λk∈sj∧sj}
(Gkrkj r

k
i = wk

j r
k
i − wk

i e
k
j )pki p

k
j + δijw

k
j (P k

j )2 (A1)

where

Gk =
n∑

i=1
wk

i . (A2)

The system is homogeneous, reflecting the fact that there is an arbitrary normalization

factor for the composite probability distribution. Fixing one of the Ni’s to 1.0 yields an

inhomogeneous system that will provid definite values for the Ni’s. Notice, however, that

the solution will depend on the i chosen since fixing one of the Ni’s slightly alters the

minimization problem. (It would be independent of the choice of i if the determinant of A

were zero.)
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   Fig 1.   Potential of mean force along the correlated conformational coordinate λ. Fill lines: result of the 
harmonic umbrella sampling of [8]. Filled circles show points used for matching; open circles, the result of 
the adaptive procedure using the non-linear n-step optimized matching; - - - - , the result of the new 
harmonic umbrella sampling calculation replacing run 2; -.-.-, the result of run 1 shifted to match the new 
run 2. 
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