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Free energy simulations: Applications to the study of liquid water,
hydrophobic interactions and solvent effects on conformational
stability
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Abstract. Free energy simulations using the Metropolis Monte Carlo method and the
coupling parameter approach with umbrella sampling are described for several problems of
interest in structural biochemistry; the liquid water, the hydrophobic interaction of alkyl and
phenyl groups in water and solvent effects on the conformational stability of the alanine
dipeptide and the dimethyl phosphate anion in water. Proximity analysis of results is employed
to identify stabilizing factors. Implications of result with respect to the structural chemistry of
proteins and nucleic acids is considered.
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Introduction

With the present generation of digital computers and now supercomputers, systems of
molecules representative of the liquid state have become accessible to study by large
scale numerical methods based on statistical thermodynamic and molecular dynamic
theories of mixtures, and referred to as “computer simulations”. Recent years have seen
the emergence of computer simulation studies on liquid water (Beveridge et al., 1983),
aqueous solutions (Beveridge et al., 1981), and the initial extensions of these procedures
to the study of biomolecules in solution (Clementi, 1980; Corongiu and Clementi, 1981;
Finney et al., 1985). In principle, calculation of many useful thermodynamic variables
and molecular indices of hydration can be obtained from computer simulations on
aqueous solutions. However, research methodologies in this field are still very much
under development, and much remains to be learned both about and from computer
simulation applied to biomolecular systems. One of the most interesting and urgent
areas of current study in computer simulation is the determination of free energy.
Statistical thermodynamics tells us that the basic relationship between the configure-
ational energy and the excess free energy A of a system is via the partition function Z,

A= —KkTInZ/VN = —kT'In (exp (+E/KT)>/VN (1)

where k is the Boltzmann’s constant, 7 is temperature and the brackets denote a
Boltzmann configurational average or expectation value of the enclosed quantity. For
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the free energy difference between two different systems with potentials £, and Ej,
eq. (1) gives
AA = —kTln (exp [~ (E, = Eo)/kT] > )

Conventional Monte Carlo and molecular dynamic computer simulations although
firmly grounded in Boltzmann statistical mechanics and dynamics do not involve the
computation of a partition function due to convergence problems. The Metropolis
method (Metropolis ef al., 1953) was in fact cleverly designed to avoid this difficulty in
the calculation of mean energy by Markov-chain Monte Carlo simulation. In molecular
dynamics, the physical nature of the calculated particle trajectories serves this purpose
at least equally well. However, in the absence of a partition function one is unable to
compute the free energy directly in a conventional Monte Carlo or molecular dynamics
calculation. The determination of the free energy via the expectation value approach
using eq. (2) encounters difficulties of similar origin except when S, and S, are quite
similar (Sarkisov et al., 1974; Owicki and Scheraga, 1977). Thus under ordinary
circumstances we lack access in computer simulation to free energy, the fundamental
index of thermodynamic stability of the system.

A number of approaches to this problem have been suggested. For several years now
we have been working with the “coupling parameter approach” which involves a
parameter that carries the system smoothly from a reference state £= 0 to the system of
interest £ = 1. In a modern sense this approach originates in the derivation of an
important integral equation in liquid state theory by Kirkwood (1968). The coupling
parameter approach used in conjunction with the procedures of umbrella sampling
developed more recently by Valleau and coworkers (Patey and Valleau, 1975; Torrie
and Valleau, 1977) provides a means of calculation of free energy in computer
simulations applicable to diverse problems in structural biochemistry. In this account
we describe briefly the coupling parameter approach to free energy simulations, and
review recent free energy simulation studies carried out in this laboratory on liquid
water, prototype systems for the study of hydrophobic interactions, and problems in
the area of solvent effects on conformational stability of protein and nucleic acid
constituents.

Theory

In conventional mean energy Monte Carlo or molecular dynamics computer
simulations, one treats a system of particles such as the atoms of a protein, the
molecules of a liquid, and most recently, both together (Berendsen, 1984). In condensed
phase problems, the system is usually configured in a cell subject to periodic boundary
conditions. The configurational energy of individual complexions of the system and
configurational forces on individual molecules are evaluated from analytical energy
functions parameterized from experimental data or quantum mechanical calculations.
From this point on, computer simulation on molecular systems is fundamentally a
numerical integration of the mean energy expression and other ensemble averages on
the computer, with the sampling carried out with a probabilistic (Monte Carlo) or
deterministic (molecular dynamics) strategy. In a typical study, structural, energetic and
dynamical properties of the system are often of greater interest than mean energy, but
the stability of this quantity remains the basic index of convergence in the calculations.
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The quality of the mean energy is directly dependent upon the quality of intermolecular
potentials used in the simulation.

The extension of mean energy simulation to the determination of free energy is best
described by considering two states of a chemical system, S, and S), which may differ
from each other in any conceivable way. Let us define a free energy function A(S)
where ¢ is a coupling parameter which on the interval from 0 to 1 carries the reference
Sy into the system of interest S; The free energy difference between Sy and S) is then

Lo
AA=J0 <&E(5)>E(;)df (€)

where the subscript £ (&) denotes a Boltzmann average on the energy function £ (¢). The
discussion here is carried out based on the Helmholtz free energy and the (T, V, N)
ensemble but can be easily extended to Gibbs free energy and the (T, P, N) ensemble.
The simplest applications of the coupling parameter approach, with ¢ identified with
the volume or the inverse temperature of the system, lead to the virial expression for
pressure and the van’t Hoff equation respectively, textbook cases in physical chemistry.

The applications of the coupling parameter approach of interest in our current
computer simulation studies involve topographical changes in the system. We refer
this to the molecular landscape in the problem under consideration. There are three
broad classes of topographical transition coordinates: structural transition coordi-
nates, reaction coordinates, and creation/annihilation coordinates as summarized in
figure 1. The use of the coupling parameter approach on each of these coordinates is
illustrated in the applications described below.

Alternative approaches to the free energy problem include simulations in the
(T, V, u) ensemble (Adams, 1975; Norman and Filinov, 1969), the particle insertion
method (Windom, 1963; Romano and Singer, 1979; Shing and Gubbins, 1981, 1982;
Powles et al., 1982) and overlap ratios (Jacucci and Quirke, 1982; Quirke and Jacucci,
1982).

Liquid water studies

For the special case of £ (&) linear in &,

E(§) = (1-¢{)Eo+E,, “4)
A4 = Jo (Ey—Eo)pe d¢. (%)

Numerical realizations of eq. (5) involve a series of simulations, carried out developing
mean energy as a discrete function of coupling parameter, with the final integration
over ¢ carried out numerically.

Several calculations of free energy via eq. (5), or the equivalent are now to be found in
the literature (Mruzik et al., 1976; Berens et al., 1983; Swope et al., 1982) and are
reviewed (Beveridge and Mezei, 1985). In this laboratory Mezei et al. (1978) carried out a
determination of the free energy of liquid water using this approach. Monte Carlo
simulations were carried out on a system of 64 water molecules under periodic
boundary conditions at a density of 1 gm/cm’ and a temperature of 25°C. The reference
state for this calculation was chosen as ideal gas, so E; is zero and eq. (4) reduces to

E() = CEy, (6)
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where E| is the configurational energy of the assembly of water molecules. The
parameter ¢ in this application couples in the intermolecular interactions, and & may
thus be considered a creation/annihilation coordinate where only the creation branch is
active. In the context of thermodynamic integration, ¢ can be considered as a
temperature weighting factor and the ¢ coordinate a trans-critical tieline.

The calculated <E> g, Edenoted U (&), for liquid water is shown in figure 2. The free
energy was determined by an 8-point Gaussian quadrature over & The calculated free
energy turned out to be — 4-31 + 0-7 kcal/mol vs. an observed value of — 5-74 kcal/mol.
The discrepancy is due primarily to deficiencies in the intermolecular potential function
(Beveridge et al., 1983).

More recently, Mezei described calculations of the relative free energy of three
different water models; MCY, ST2 and SPC, using the coupling parameter approach
(Mezei, 1982). A soft sphere reference state was established for calculation of the free
energy of the MCY water and then MCY water was used as a reference state for the
ST2 and SPC determination. Here the coupling carries the liquid water smoothly from
one model to another, an application of & as a creation/annihilation coordinate. Mezei
also explored the umbrella sampling method developed by Valleau, Patey and Torrie
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Figure 2. U(¢) as a function of the coupling parameter for the computation of the free
energy of the MCY water Mezei et al. (1978).
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(Patey and Valleau, 1975; Torrie and Valleau, 1977) in conjunction with eq. (2) and
found it unsuitable for this problem since the two states S, and S; were too different.
This suggested the use of coupling parameter in combination with umbrella sampling
to achieve a multi-stage umbrella sampling where the similitude condition is established
by a succession of intermediate states. However, even when three stages were tried, no
consistent results could be obtained. Several other applications of multi-stage sampling
and variations are found in the current literature (Torrie and Valleau, 1977; Miyazaki
et al., 1976; Scott and Lee, 1980).

Hydrophobic interactions

A different line of approach to free energy simulations involing the coupling parameter,
particularly useful but not restricted to comformational changes, is to determine A (&).
However, the &-coordinate usually cannot be considered as simply another degree of
freedom in an otherwise conventional mean energy simulation. In this case the
realization of the system, seeking to describe the equilibrium state dictated by the
Boltzmann equation, would end up sampling only a narrow range of & rather than
the full interval from 0 to 1. Thus sampling of & requires special, non-Boltzmann
sampling techniques beyond those typically used in mean energy simulations.

The current way to proceed on potential of mean force calculations is to apply the
umbrella sampling method. In this approach a series of simulations are carried out,
each constrained to sample the local region about points &, &, & . . ., respectively on
the interval from 0 to 1. In an individual simulation, a distribution function g (&)
is obtained. A particular &-simulation is constrained to sample a region about & by
adding a harmonic constraint to the configurational energy, viz

V(&)=E)+E,(©), @)

Ey(&) = ky (E—&o) (8)

as first employed in this form by Pangali ef al. (1979a, b). The non-Boltzmann bias in
the results due to the presence of the harmonic term can be removed by means of
Valleau’s equation,

g (&) =<6 (&' =& exp [Ey (/KT g/ {exp [Eg (EV/KT]) e ©

where ¢ (&' — ¢&) is the Dirac delta counting function for configurations with coupling
parameter &£ Successive points are chosen on & such that g (&) are overlapping.
Overlapping points in the distribution correspond in principle to the same absolute
value but in practice differ by a normalization constant. Thus the various computed
g (&) can be shifted up or down, and ultimately matched up to produce a g (&) for the
entire range of £ The matching can in principle be carried out for any overlapping
points, but in practice one chooses those points with relatively low statistical noise
levels. An alternative procedure where the harmonic potential Ey is replaced by a
tabulated function determined from the simulation itself, is currently under testing
(Mezei, M., unpublished results). This biasing potential appears to be capable to cover a
much larger range of the coupling parameter than Ey. Once g (&) has been obtained, the
corresponding free energy A (&) can be evaluated as

A(§)= —kTing()+C, (10)
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known as the potential of mean force, commonly denoted W(R). Details of the
methodology are described further by Pangali et al. (1979a,b). Several potential of
mean force determinations using computer simulation are now to be found in the
recent literature (Pangali et al., 1979a, b; Ravishanker et al., 1982; Berkovitz et al., 1984).
Umbrella sampling is also used in conjunction with eq. (2) making it viable for
calculations between less similar systems (Torrie and Valleau, 1977; Owicki and
Scheraga, 1978; Miyazaki et al,, 1976; Scott and Lee, 1980; Postma et al, 1982). A
notable free energy simulation has recently been reported by Jorgensen and his group
who determined the potential of mean force on the complex reaction coordinate of the
organic Syreaction of CH;C1 and CI in water (Chandrasekhar et al., 1984) and DMF
(Chandrasekhar et al.,, 1985). The reaction is predicted to be concerted in water but to
proceed via a reaction intermediate in DMF, a previously unanticipated result.
Potential of mean force calculations from this laboratory have been directed to the
study of the interactions of apolar molecules in water, prototype systems for the
theoretical study of the hydrophobic effect. Ravishanker, Mezei and Beveridge
reported a potential of mean force for the interaction of two methane molecules in
water obtained from Monte Carlo computer simulation (Ravishanker et al., 1982). The
behavior of W (R) as a function of intersolute coordinate, as shown in figure 3, turned
out to be oscillatory, with successive free energy minima corresponding to contact and
solvent-separated hydrophobic interactions. This intriguing result, anticipated by
F. Franks (Clark et al., 1977; Franks, 1975,1977; Franks and Ives, 1966) and noted in
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Figure 3. Methane-methane W (R) computed in (Ravishanker et al., 1982) and spacefilling
diawings of a randomly chosen contact and solvent-separated structure.
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the integral equation studies of the hydrophobic effect by Pratt and Chandler (1977)
and the simulations on Neon atoms in ST2 water by Pangali et al. (1979a,b) indicates
that the hydrophobic effect may act over a longer range of distance than previously
anticipated via these solvent-mediated structures. The structure of the solvent
separated forms was studied particularly by Ravishanker ez al. (1982), who found that
the intervening water molecule in the structure is positioned essentially right between
the associated methane molecules.

This class of studies has recently been extended to the interaction of phenyl rings in
water (Ravishanker and Beveridge, 1985), with the result shown in figure 4. Here as well
an oscillatory character is indicated for the calculated potential of mean force. However,
the solvent separated minimum does not in this case involve interstitial water molecules,
but rather an impingment. Further details on this phenomenon and the relationship to
experimental results and the implications thereof promises to be an interesting area for
future research studies.

Figure 4. Benzene-benzene W (R)computed (Ravishanker and Beveridge, 1985) and spacefil-
ling drawings of a randomly chosen contact and solvent-separated structure.

Solvent effects on conformational stability

The coupling parameter approach can also be used to calculate conformational free
energy of hydration as a function of structural changes in a system, an area of
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considerable importance in structural biochemistry and biology. The potential of mean
torsion for n-butane has been studied by Rebertus, Berne and Chandler (Rebertus et al.,
1979), Jorgensen (1982); this sequence of articles has recently been reviewed by
Jorgensen (1983). Our studies in this area focus on the conformational preferences of
the alanine dipeptide in water and the dimethyl phosphate anion in water. The alanine
dipeptide study involved specific structures chosen from among the possibilities
suggested in previous theoretical and experimental work: Cs, C;, az and Py (Mehrotra
et al., 1984; Mezei et al., 1985); c.f. figure 5. Here the various conformations of interest

Figure 5. Conformations considered in free energy simulations on the alanine dipeptide:
(a)C 7, (b)ag, (c) Py (from left to right).

differ in values of the Ramachandran torsion angles y and ¢. We mapped the structural
change involving the conformational coordinates y and ¢ onto a single & by means of
the equation

(¥ ) = (1=C) (Yo, Po)+E(Y1, ¢1), (11

where & = 0 selects the reference state (y; @, ) and & = 1 selects the state (i, ¢,); here
is a correlated conformational transition coordinate. To access computationally
tractable sampling procedures in computer simulations it is frequently desirable to map
changes in the structure involving many internal coordinates onto a single & if possible.
In this research, we determined the thermodynamics of hydration for the C;, oy and Py
conformations of the molecule using conventional mean energy simulations and also
free energy simulations using the coupling parameter approach. In this study we
mapped the two-dimensional (¥, ¢ ) change into one coordinate. One could proceed in
a similar manner to map changes in many dimensions onto one & Since the shape of the
free energy minimum is not completely determined, this procedure precludes
consideration of the full statistical weight problem, but the free energy difference

AA =kTIn[g(&)e=0/g (Oe=1] (12)

is available. Use of eq. (12) has the advantage over calculating the mean energy
differences from two different simulations in that the statistical uncertainties, resulting
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from taking a small difference of two large quantities, is eliminated. Note that the ¢
used here can be chosen for convenience, since the free energy difference is a state
function independent of path. The results indicate that both the o, and Py conformers
are stabilized relative to the C; form by hydration, and are both thermally accessible at
T = 25°C. Proximity analysis (Mehrotra and Beveridge, 1985) of the results reveals that
the origin of the stabilization lies in the differential hydration of the carbonyl group of
the amide linkage in the alanine dipeptide (Mehrotra et al., 1980). Experiments based
on IR spectroscopic studies reveal the C; conformation to be preferred in the nonpolar
solvent CCl, (Avignon and Lascombe, 1973; Avignon et al, 1973). Nuclear magnetic
resonance and circular dichroism spectroscopic evidence for the presence of both a,
and Py conformations of the alanine dipeptide in water at room temperature has been
presented (Madison and Kopple, 1980), and thus our simulation results appear to be in
general accord with the experiment.

The conformational preferences of dimethyl phosphate can be considered in terms of
the phosphodiester torsion angles @ and w' as gg, gt and # (Olson, 1982) as shown in
figure 6. The adiabatic potential energy surface for the isolated dimethylphosphate
anion is indicated to be relatively flat (Gorenstein et al, 1977). Nevertheless
oligonucleotides show a marked preference for the gg and gt forms as shown from
crystal hydrate data (Berman and Sheng, 1981). We have carried out mean energy
simulations on dimethylphosphate anion in 215 water molecules under periodic
boundary conditions (Beveridge et al., 1984). The results indicate that the trans
extended form is markedly destabilized by hydration. Free energy simulations using the
coupling parameter approach in a manner analogous to that described for the alanine
dipeptide are now underway. Preliminary results indicate that the trans extended form
is destabilized with respect to free energy as well as mean energy of hydration and thus
suggests a possible explanation of why the trans extended form of phosphodiester
torsion angles are not found in oligonucleotide crystal hydrates.

Figure 6. Conformations considered in free energy simulations on the dimethyl phosphate
anion (a) gg, (b) gt, (c) # (from left to right).
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Conclusion

We have described here in the coupling parameter approach to free energy simulations
provided leading literature references, and reviewed recent studies in the area carried
out here at Hunter College. The initial results of free energy simulations using coupling
parameter as a topological transition coordinate are generally promising, and we expect
that the coupling parameter method will be a useful approach for free energy
simulations applied to diverse problems in structural biochemistry. We are currently
pursuing free energy simulations applied to the calculation of relative hydration
potentials of homologous series of biological molecules, using the coupling parameter
as a molecule creation/annihilation coordinate.
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