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Abstract. Free energy simulations using the Metropolis Monte Carlo method and the 
coupling parameter approach with umbrella sampling are described for several problems of 
interest in structural biochemistry; the liquid water, the hydrophobic interaction of alkyl and 
phenyl groups in water and solvent effects on the conformational stability of the alanine 
dipeptide and the dimethyl phosphate anion in water. Proximity analysis of results is employed 
to identify stabilizing factors. Implications of result with respect to the structural chemistry of 
proteins and nucleic acids is considered.
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Introduction 
 
With the present generation of digital computers and now supercomputers, systems of 
molecules representative of the liquid state have become accessible to study by large 
scale numerical methods based on statistical thermodynamic and molecular dynamic 
theories of mixtures, and referred to as “computer simulations”. Recent years have seen 
the emergence of computer simulation studies on liquid water (Beveridge et al., 1983), 
aqueous solutions (Beveridge et al., 1981), and the initial extensions of these procedures 
to the study of biomolecules in solution (Clementi, 1980; Corongiu and Clementi, 1981; 
Finney et al., 1985). In principle, calculation of many useful thermodynamic variables 
and molecular indices of hydration can be obtained from computer simulations on 
aqueous solutions. However, research methodologies in this field are still very much 
under development, and much remains to be learned both about and from computer 
simulation applied to biomolecular systems. One of the most interesting and urgent 
areas of current study in computer simulation is the determination of free energy.

Statistical thermodynamics tells us that the basic relationship between the configure-
ational energy and the excess free energy A of a system is via the partition function Z,
 

(1) 
 
where k is the Boltzmann’s constant, Τ is temperature and the brackets denote a 
Boltzmann configurational average or expectation value of the enclosed quantity. For 
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the free energy difference between two different systems with potentials Eo and E1,
eq. (1) gives 

(2) 
 
Conventional Monte Carlo and molecular dynamic computer simulations although 
firmly grounded in Boltzmann statistical mechanics and dynamics do not involve the 
computation of a partition function due to convergence problems. The Metropolis 
method (Metropolis et al., 1953) was in fact cleverly designed to avoid this difficulty in 
the calculation of mean energy by Markov-chain Monte Carlo simulation. In molecular 
dynamics, the physical nature of the calculated particle trajectories serves this purpose 
at least equally well. However, in the absence of a partition function one is unable to 
compute the free energy directly in a conventional Monte Carlo or molecular dynamics 
calculation. The determination of the free energy via the expectation value approach 
using eq. (2) encounters difficulties of similar origin except when S0 and S1 are quite
similar (Sarkisov et al., 1974; Owicki and Scheraga, 1977). Thus under ordinary 
circumstances we lack access in computer simulation to free energy, the fundamental 
index of thermodynamic stability of the system.

A number of approaches to this problem have been suggested. For several years now 
we have been working with the “coupling parameter approach” which involves a 
parameter that carries the system smoothly from a reference state ξ = 0 to the system of 
interest ξ = 1. In a modern sense this approach originates in the derivation of an 
important integral equation in liquid state theory by Kirkwood (1968). The coupling 
parameter approach used in conjunction with the procedures of umbrella sampling 
developed more recently by Valleau and coworkers (Patey and Valleau, 1975; Torrie 
and Valleau, 1977) provides a means of calculation of free energy in computer 
simulations applicable to diverse problems in structural biochemistry. In this account 
we describe briefly the coupling parameter approach to free energy simulations, and 
review recent free energy simulation studies carried out in this laboratory on liquid 
water, prototype systems for the study of hydrophobic interactions, and problems in 
the area of solvent effects on conformational stability of protein and nucleic acid 
constituents. 
 
 
Theory 
 
In conventional mean energy Monte Carlo or molecular dynamics computer
simulations, one treats a system of particles such as the atoms of a protein, the 
molecules of a liquid, and most recently, both together (Berendsen, 1984). In condensed 
phase problems, the system is usually configured in a cell subject to periodic boundary 
conditions. The configurational energy of individual complexions of the system and 
configurational forces on individual molecules are evaluated from analytical energy 
functions parameterized from experimental data or quantum mechanical calculations. 
From this point on, computer simulation on molecular systems is fundamentally a 
numerical integration of the mean energy expression and other ensemble averages on 
the computer, with the sampling carried out with a probabilistic (Monte Carlo) or 
deterministic (molecular dynamics) strategy. In a typical study, structural, energetic and 
dynamical properties of the system are often of greater interest than mean energy, but 
the stability of this quantity remains the basic index of convergence in the calculations. 
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The quality of the mean energy is directly dependent upon the quality of intermolecular 
potentials used in the simulation.

The extension of mean energy simulation to the determination of free energy is best 
described by considering two states of a chemical system, S0 and S1, which may differ 
from each other in any conceivable way. Let us define a free energy function Α(ξ) 
where ξ is a coupling parameter which on the interval from 0 to 1 carries the reference 
S0 into the system of interest S1 The free energy difference between S0 and S1 is then 
 

(3) 
 
where the subscript Ε (ξ) denotes a Boltzmann average on the energy function Ε (ξ). The
discussion here is carried out based on the Helmholtz free energy and the (T, V, N) 
ensemble but can be easily extended to Gibbs free energy and the (T, P, N) ensemble. 
The simplest applications of the coupling parameter approach, with ξ identified with 
the volume or the inverse temperature of the system, lead to the virial expression for 
pressure and the van’t Hoff equation respectively, textbook cases in physical chemistry. 

The applications of the coupling parameter approach of interest in our current 
computer simulation studies involve topographical changes in the system. We refer 
this to the molecular landscape in the problem under consideration. There are three 
broad classes of topographical transition coordinates: structural transition coordi- 
nates, reaction coordinates, and creation/annihilation coordinates as summarized in 
figure 1. The use of the coupling parameter approach on each of these coordinates is 
illustrated in the applications described below.

Alternative approaches to the free energy problem include simulations in the 
(T, V, µ) ensemble (Adams, 1975; Norman and Filinov, 1969), the particle insertion 
method (Windom, 1963; Romano and Singer, 1979; Shing and Gubbins, 1981, 1982; 
Powles et al., 1982) and overlap ratios (Jacucci and Quirke, 1982; Quirke and Jacucci, 
1982). 
 
Liquid water studies 
 
For the special case of Ε (ξ) linear in ξ, 
 

(4) 
 

(5) 
 
Numerical realizations of eq. (5) involve a series of simulations, carried out developing 
mean energy as a discrete function of coupling parameter, with the final integration 
over ξ carried out numerically.

Several calculations of free energy via eq. (5), or the equivalent are now to be found in 
the literature (Mruzik et al., 1976; Berens et al., 1983; Swope et al., 1982) and are 
reviewed (Beveridge and Mezei, 1985). In this laboratory Mezei et al. (1978) carried out a 
determination of the free energy of liquid water using this approach. Monte Carlo 
simulations were carried out on a system of 64 water molecules under periodic 
boundary conditions at a density of 1 gm/cm3 and a temperature of 25°C. The reference 
state for this calculation was chosen as ideal gas, so E0 is zero and eq. (4) reduces to 
 

(6) 
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where Ε1 is the configurational energy of the assembly of water molecules. The 
parameter ξ in this application couples in the intermolecular interactions, and ξ may 
thus be considered a creation/annihilation coordinate where only the creation branch is 
active. In the context of thermodynamic integration, ξ can be considered as a 
temperature weighting factor and the ξ coordinate a trans-critical tieline.

The calculated <E> E(ξ), Edenoted U (ξ), for liquid water is shown in figure 2. The free
energy was determined by an 8-point Gaussian quadrature over ξ. The calculated free 
energy turned out to be – 4·31 ± 0·7 kcal/mol vs. an observed value of – 5·74 kcal/mol.
The discrepancy is due primarily to deficiencies in the intermolecular potential function 
(Beveridge et al., 1983). 

More recently, Mezei described calculations of the relative free energy of three 
different water models; MCY, ST2 and SPC, using the coupling parameter approach 
(Mezei, 1982). A soft sphere reference state was established for calculation of the free 
energy of the MCY water and then MCY water was used as a reference state for the 
ST2 and SPC determination. Here the coupling carries the liquid water smoothly from 
one model to another, an application of ξ as a creation/annihilation coordinate. Mezei 
also explored the umbrella sampling method developed by Valleau, Patey and Torrie 
 
 

 
Figure 2. U(ξ) as a function of the coupling parameter for the computation of the free
energy of the MCY water Mezei et al. (1978). 
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(Patey and Valleau, 1975; Torrie and Valleau, 1977) in conjunction with eq. (2) and 
found it unsuitable for this problem since the two states S0 and S1 were too different. 
This suggested the use of coupling parameter in combination with umbrella sampling 
to achieve a multi-stage umbrella sampling where the similitude condition is established 
by a succession of intermediate states. However, even when three stages were tried, no 
consistent results could be obtained. Several other applications of multi-stage sampling 
and variations are found in the current literature (Torrie and Valleau, 1977; Miyazaki 
et al., 1976; Scott and Lee, 1980).
 
Hydrophobic interactions 
 
A different line of approach to free energy simulations involing the coupling parameter, 
particularly useful but not restricted to comformational changes, is to determine Α (ξ). 
However, the ξ-coordinate usually cannot be considered as simply another degree of
freedom in an otherwise conventional mean energy simulation. In this case the 
realization of the system, seeking to describe the equilibrium state dictated by the 
Boltzmann equation, would end up sampling only a narrow range of ξ rather than 
the full interval from 0 to 1. Thus sampling of ξ requires special, non-Boltzmann 
sampling techniques beyond those typically used in mean energy simulations.

The current way to proceed on potential of mean force calculations is to apply the 
umbrella sampling method. In this approach a series of simulations are carried out, 
each constrained to sample the local region about points ξ1, ξ2, ξ3 . . ., respectively on 
the interval from 0 to 1. In an individual simulation, a distribution function g (ξ)
is obtained. A particular ξ-simulation is constrained to sample a region about ξ by
adding a harmonic constraint to the configurational energy, viz
 

(7)
 

(8)
 
as first employed in this form by Pangali et al. (1979a, b). The non-Boltzmann bias in 
the results due to the presence of the harmonic term can be removed by means of 
Valleau’s equation, 
 

(9) 
 
where δ (ξ' – ξ) is the Dirac delta counting function for configurations with coupling
parameter ξ. Successive points are chosen on ξ such that g (ξ) are overlapping.
Overlapping points in the distribution correspond in principle to the same absolute 
value but in practice differ by a normalization constant. Thus the various computed 
g (ξ) can be shifted up or down, and ultimately matched up to produce a g (ξ) for the
entire range of ξ The matching can in principle be carried out for any overlapping 
points, but in practice one chooses those points with relatively low statistical noise 
levels. An alternative procedure where the harmonic potential EH is replaced by a 
tabulated function determined from the simulation itself, is currently under testing 
(Mezei, M., unpublished results). This biasing potential appears to be capable to cover a 
much larger range of the coupling parameter than EH. Once g (ξ) has been obtained, the
corresponding free energy Α (ξ) can be evaluated as

 
(10) 
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known as the potential of mean force, commonly denoted W(R). Details of the 
methodology are described further by Pangali et al. (1979a,b). Several potential of 
mean force determinations using computer simulation are now to be found in the 
recent literature (Pangali et al., 1979a, b; Ravishanker et al., 1982; Berkovitz et al., 1984). 
Umbrella sampling is also used in conjunction with eq. (2) making it viable for 
calculations between less similar systems (Torrie and Valleau, 1977; Owicki and 
Scheraga, 1978; Miyazaki et al., 1976; Scott and Lee, 1980; Postma et al., 1982). A 
notable free energy simulation has recently been reported by Jorgensen and his group 
who determined the potential of mean force on the complex reaction coordinate of the 
organic S2

 reaction of CH3C1 and Cl– in water (Chandrasekhar et al., 1984) and DMF
(Chandrasekhar et al., 1985). The reaction is predicted to be concerted in water but to 
proceed via a reaction intermediate in DMF, a previously unanticipated result.

Potential of mean force calculations from this laboratory have been directed to the 
study of the interactions of apolar molecules in water, prototype systems for the 
theoretical study of the hydrophobic effect. Ravishanker, Mezei and Beveridge 
reported a potential of mean force for the interaction of two methane molecules in 
water obtained from Monte Carlo computer simulation (Ravishanker et al., 1982). The 
behavior of W (R) as a function of intersolute coordinate, as shown in figure 3, turned
out to be oscillatory, with successive free energy minima corresponding to contact and 
solvent-separated hydrophobic interactions. This intriguing result, anticipated by 
F. Franks (Clark et al., 1977; Franks, 1975,1977; Franks and Ives, 1966) and noted in 
 

 

Figure 3.  Methane-methane W (R) computed in (Ravishanker et al., 1982) and spacefilling
diawings of a randomly chosen contact and solvent-separated structure. 

N
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the integral equation studies of the hydrophobic effect by Pratt and Chandler (1977) 
and the simulations on Neon atoms in ST2 water by Pangali et al. (1979a,b) indicates 
that the hydrophobic effect may act over a longer range of distance than previously 
anticipated via these solvent-mediated structures. The structure of the solvent 
separated forms was studied particularly by Ravishanker et al. (1982), who found that 
the intervening water molecule in the structure is positioned essentially right between 
the associated methane molecules.

This class of studies has recently been extended to the interaction of phenyl rings in 
water (Ravishanker and Beveridge, 1985), with the result shown in figure 4. Here as well 
an oscillatory character is indicated for the calculated potential of mean force. However, 
the solvent separated minimum does not in this case involve interstitial water molecules, 
but rather an impingment. Further details on this phenomenon and the relationship to 
experimental results and the implications thereof promises to be an interesting area for 
future research studies. 
 

 
Figure 4.  Benzene-benzene W (R)computed (Ravishanker and Beveridge, 1985) and spacefil-
ling drawings of a randomly chosen contact and solvent-separated structure.

 
 
Solvent effects on conformational stability 
 
The coupling parameter approach can also be used to calculate conformational free 
energy of hydration as a function of structural changes in a system, an area of 
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considerable importance in structural biochemistry and biology. The potential of mean 
torsion for n-butane has been studied by Rebertus, Berne and Chandler (Rebertus et al., 
1979), Jorgensen (1982); this sequence of articles has recently been reviewed by 
Jorgensen (1983). Our studies in this area focus on the conformational preferences of 
the alanine dipeptide in water and the dimethyl phosphate anion in water. The alanine 
dipeptide study involved specific structures chosen from among the possibilities 
suggested in previous theoretical and experimental work: C5, C7, αR and PII (Mehrotra 
et al., 1984; Mezei et al., 1985); c.f. figure 5. Here the various conformations of interest 
 

 
Figure 5.  Conformations considered in free energy simulations on the alanine dipeptide:
(a)C 7, (b)αR, (c) PII (from left to right). 

 
differ in values of the Ramachandran torsion angles ψ and φ. We mapped the structural 
change involving the conformational coordinates ψ and φ onto a single ξ by means of 
the equation 
 

(11)
 
where ξ = 0 selects the reference state (ψ, φ 0 ) and ξ = 1 selects the state (ψ1, φ1); here
is a correlated conformational transition coordinate. To access computationally 
tractable sampling procedures in computer simulations it is frequently desirable to map 
changes in the structure involving many internal coordinates onto a single ξ if possible. 
In this research, we determined the thermodynamics of hydration for the C7, αR and PII 

conformations of the molecule using conventional mean energy simulations and also 
free energy simulations using the coupling parameter approach. In this study we 
mapped the two-dimensional (ψ, φ ) change into one coordinate. One could proceed in
a similar manner to map changes in many dimensions onto one ξ Since the shape of the 
free energy minimum is not completely determined, this procedure precludes 
consideration of the full statistical weight problem, but the free energy difference
 

(12) 
 
is available. Use of eq. (12) has the advantage over calculating the mean energy 
differences from two different simulations in that the statistical uncertainties, resulting
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from taking a small difference of two large quantities, is eliminated. Note that the ξ 
used here can be chosen for convenience, since the free energy difference is a state 
function independent of path. The results indicate that both the αR and PII conformers 
are stabilized relative to the C7 form by hydration, and are both thermally accessible at 
Τ = 25°C. Proximity analysis (Mehrotra and Beveridge, 1985) of the results reveals that 
the origin of the stabilization lies in the differential hydration of the carbonyl group of 
the amide linkage in the alanine dipeptide (Mehrotra et al., 1980). Experiments based 
on IR spectroscopic studies reveal the C7 conformation to be preferred in the nonpolar 
solvent CCl4 (Avignon and Lascombe, 1973; Avignon et al., 1973). Nuclear magnetic 
resonance and circular dichroism spectroscopic evidence for the presence of both αR 

and PII conformations of the alanine dipeptide in water at room temperature has been 
presented (Madison and Kopple, 1980), and thus our simulation results appear to be in 
general accord with the experiment. 

The conformational preferences of dimethyl phosphate can be considered in terms of 
the phosphodiester torsion angles ω and ω' as gg, gt and tt (Olson, 1982) as shown in
figure 6. The adiabatic potential energy surface for the isolated dimethylphosphate 
anion is indicated to be relatively flat (Gorenstein et al., 1977). Nevertheless 
oligonucleotides show a marked preference for the gg and gt forms as shown from 
crystal hydrate data (Berman and Sheng, 1981). We have carried out mean energy 
simulations on dimethylphosphate anion in 215 water molecules under periodic 
boundary conditions (Beveridge et al., 1984). The results indicate that the trans 
extended form is markedly destabilized by hydration. Free energy simulations using the 
coupling parameter approach in a manner analogous to that described for the alanine 
dipeptide are now underway. Preliminary results indicate that the trans extended form 
is destabilized with respect to free energy as well as mean energy of hydration and thus 
suggests a possible explanation of why the trans extended form of phosphodiester 
torsion angles are not found in oligonucleotide crystal hydrates.
 
 
 

 
Figure 6.  Conformations considered in free energy simulations on the dimethyl phosphate
anion (a) gg, (b) gt, (c) tt (from left to right). 
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Conclusion 
 
We have described here in the coupling parameter approach to free energy simulations 
provided leading literature references, and reviewed recent studies in the area carried 
out here at Hunter College. The initial results of free energy simulations using coupling 
parameter as a topological transition coordinate are generally promising, and we expect 
that the coupling parameter method will be a useful approach for free energy 
simulations applied to diverse problems in structural biochemistry. We are currently 
pursuing free energy simulations applied to the calculation of relative hydration 
potentials of homologous series of biological molecules, using the coupling parameter 
as a molecule creation/annihilation coordinate.
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