
523 

Generic Solvent Sites in a Crystal 
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A numerical procedure is described and tested for the determination of solvent sites in a crystal hydrate 
from computer simulation results. The method does not require the computation of density distributions. 

I. INTRODUCTION 

Liquid state computer simulation, using both 
Monte Carlo (MC) and molecular dynamics (MD) 
procedures, are currently being used to study the 
organization of water in crystals in comparison 
with results on ordered water positions obtained 
from x-ray and neutron diffraction experiments. 
A useful set of indices for comparison in the 
calculated results is the mean water positions 
obtained as a configurational average in the 
simulation. However, the calculation is not 
straightforward, since solvent molecules can in 
principle diffuse during the simulation, and thus 
a given mean position may have fractional con- 
tributions from several specific water molecules 
in the course of the simulation. What is required 
is a set of generic mean positions for solvent 
molecules, defined in such a way that diffusional 
interchange is taken into account. 

In the evaluation of computer simulation the 
determination of solvent sites thus presents a 
problem. In principle, the computer simulation 
can be used to determine the three-dimensional 
density distribution of solvents, the peaks of 
which can be identified with solvent sites. How- 
ever, the representation of a three-dimensional 
density distribution requires data points the 
number of which is inversely proportional to 
the cube of the gridsize. Accurate estimate of the 
density at all grid points requires long runs. The 
length of the runs referred to in this article is 
adequate to obtain the density accurately on a 
grid of about 0.4 A. The accurate representation 
of the density on a 0.1 A grid would require 
43 = 64 times longer runs. The large number of 
grid points also presents a storage problem that 
can be overcome, however, by obtaining the den- 
sity in slices. Previous computer simulation stud- 

i e ~ ’ - ~  dealt with this problem by determining 
two-dimensional density maps in O(1 A) thick 
planes. This procedure, however, inherently 
limits the accuracy of the result. 

Note also that the Fourier coefficients of the 
density also can be obtained from a simulation 
without obtaining the density distribution itself. 
In general, the product of the probability density 
p(R) and a function F(R) can be obtained from 

where the sum is taken over all positions Ri  that 
were sampled in the simulation by any of the 
solvents, since the simulation methods are con- 
structed to  ensure that the positions R i  are 
sampled with probability p(R). 

The purpose of this article is to present an 
alternative procedure for the determination of 
solvent position in a crystal that does not require 
the determination of the density distribution en- 
tirely. A somewhat similar approach was applied 
recently in this Laboratory to the analysis of 
ionic h y d r a t i ~ n . ~  Section I1 presents the proce- 
dure and Section I11 describes its performance 
on a dinucleotide/proflavin crystal hydrate, 
where experimental water positions have been 
de tem~ined ,~ .~  and MC computer simulations have 
been performed.8.’ 

11. THEORY AND ALGORITHMS 

For a system of one solvent molecule, it  can be 
shown by straightforward differentiation that if 
Rk is the position of the molecule at the k th  
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observation/step, the mean position 

si = ~k / n  
( k = l  

minimizes the expression 
n 

C (Rk - SiI2 (3) 
k - 1  

The average in eq. (2) is a specific average. (It 
happens to coincide with a generic average, since 
there is only one solvent in the system.) Thus for 
a system of N solvent molecules one should seek 
a set of points Si, i = 1,. . . , N ,  where the sum of 
N expressions of the type (3) is minimized. How- 
ever, to account for the diffusion of the solvent 
molecules, the choice of Rt.k to be used (the 
subscript j refers to the molecule the position of 
which is R;) also have to be subjected to optimi- 
zation. In other words, one is looking for the 
generic average and not the specific averages 
over positions of the individual solvents. These 
requirements are satisfied if such a set { Si, i = 

1,. . . , N }  is sought that minimizes 

i= l  \ k=l j = 1  I 
(4) 

where N is the number of sites, N is the num- 
ber of molecules, and Ok is a matrix such that 

N' c otj 5 N f o r i =  I, ..., N 
j =  1 = 1  i f N s N '  

N N' 

O:j(Rkj - SiI2 isminimum (8) 
i = l  ;=1 

Notice that we allow for N # N'. If N c N' 
then there are solvents that are uniformly dis- 
tributed (delocalized solvents), while the case of 
N c N' represents a system where some of the 
sites are only fractionally occupied. The posi- 
tions of the nonzero elements in Ok associate one 
R;. with each Si for N I N and one Si with 
each R;. for N 2 N .  The conditions (5)-(7) on 
the matrix Ok are necessary to ensure that each 

R$ and S ,  are selected at most once and the 
maximum number of assignments are made. The 
expression 

N 
C IR; - Si120t j  (9) 

J=1 

simply provides a single term to the MSD sum. 
The problem defined by eqs. (5)-(8) is known 

as the assignment problem. It can be solved 
exactly, although the solution is time consuming 
since it is an integer programming problem. 
The best method available is the Hungarian 
method.'0.'' However, the special nature of the 
matrix associated with this problem allows for a 
simple but approximate algorithm that appears 
to work reasonably well for this type of problem. 
The effort involved in the approximate al- 
gorithm proposed here is equivalent to the effort 
of obtaining the initial solution in the exact 
algorithm, where an undetermined (but limited) 
number of iterative refinements follow. It is to be 
stressed that the procedure described here works 
with any method that solves the assignment 
problem, and our choice here was dictated by 
economy. 

I1 A. An Iterative Algorithm for Minimizing 
the MSD 

A practical approach and an iterative al- 
gorithm for the solution for the peak position 
consists of the following steps: 

(1) Select a set of representative configura- 
tions. For MC computer simulations, the con- 
figurations should be chosen infrequently enough 
so that all solvent molecules move between the 
selected configurations. 

(2) Obtain an estimate for { Si}. Either it can 
come from an outside source (e.g., experiment), 
or else the program has to generate it from the 
data. In Section I1 A two algorithms will be 
described for this purpose. 

(3) For each k ,  solve eqs. (5)-(8) for the matrix 
Ok. An approximate solution can be obtained as 
follows: 

(3a) Set all elements of Ok to zero. 
(3b) N 2 N': 
For every Si find an index j ( i )  such that 
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and set O:,(,) = 1. In words, assign to the peak 
estimate S ,  the solvent that is the nearest to it 
among the unassigned solvents. 

(3c) N 2 N‘:  
For every R: find an index i( j )  such that 

IR; - S,(,J2 = minlRk, - S,,I2 (lob) 

i’ E i c O : j = ~  1 ) 
and set O:j),, = 1. In words, assign to the solvent 
j to the peak estimate that is the nearest to it 
among the unassigned ones. 

The complexity of step (3b) or (3c) is propor- 
tional to N 2 .  At the end of step (3b) or (3c), the 
O k  matrix has been filled for all k selected. 
Clearly, for N = N’ either (3b) or (3c) can be 
used. 

(4) Compute the new estimate of site positions 
as 

1 n N’ \ c c O:iR;.)/” (11) 
k = l  j = l  

for each peak S,.  Equation (11) represents the 
mean position of solvents assigned to peak S, .  
Notice, that  the matrix multiplication in eq. (11) 
and in similar expressions in subsequently de- 
scribed algorithms is only a notational conveni- 
ence to select the appropriate R; to be used. In 
practice, the arrays i( j )  and/or j (  z )  are stored 
in the computer thus the complexity of this step 
is proportional only to N .  

(5) Substitute {Si} into eq. (4) to obtain the 
new MSD’. If MSD’ < MSD, repeat from step (3). 

(6) If the new estimate is not better than the 
old one [in fact, i t  may even be worse, due to the 
approximate minimization in step (3)], stop and 
accept the previous estimate as the solution. 

I1 B. Generation of the Initial Estimate 

The initial estimates for the solvation sites can 
be obtained from external sources or generated 
from the data itself. We first describe two al- 
gorithms that generate initial estimates for N = 

N’ .  Both perform well. 
The first algorithm, called the “sequential al- 

gorithm” consists of the following steps: 
(1) Take the first configuration as the first 

approximation to the estimate. 
(2) In general, from the izth approximation 

{ Sp}, obtain the ( k  + 1)th by solving eqs. (5)-(8) 

for Ok+ ’ using { Sf} for { Si}. Then 

S f + ’ =  [ k / ( k  + l)]Sf 

N’ 
+ 1/( k + 1) c Rk,.’ ‘0:; ’ (12) 

J = 1  

(3) If step (2) is repeated n - 1 times, the 
configurations will be exhausted and { $3:) will be 
the initial estimate to be used in step (2) of the 
iterative process. 

The second algorithm, called “pairing al- 
gorithm” proceeds as follows: 

(1) Divide the configurations into successive 
pairs. 

(2) For each pair, solve eqs. (5)-(8) using the 
first element of the pair as {Si} and the second 
element as { R;.}. Prepare a composite using the 
solution obtained : 

(3) Replace each pair of configurations with 
their composite according to eq. (13). 

(4) If there is more than one pair, repeat from 
step (1). 

Note that this algorithm requires that the 
number of configurations used is a two-power. 
[To relax this restriction, we should have intro- 
duced in eq. (13) some cumbersome weighting 
factors.] This restriction, however, is not a seri- 
ous one since by adjusting the frequency of 
selecting representative configurations, it can be 
easily satisfied. 

The two algorithms require about the same 
computational effort: The solvent assignment 
problem has to be solved n - 1 times. 

If N < N is required, one has to drop N’ - N 
sites from {Si}. I t  is reasonable to drop those 
that have the largest MSD. 

For N > N ,  additional sites have to be gener- 
ated. One alternative could be a search for cavi- 
ties that are left after having placed the solvent 
molecules at the initial N’ sites. This has the 
drawback that the actual crystal atoms have to 
be introduced into the calculation of the initial 
estimate. 

Another possibility is to generate all the sites 
related by the space group symmetry of the 
crystal to the first N estimates and choose from 
these those that are the farthest from the al- 
ready existing sites. This procedure would “ help” 
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to introduce into the result the required symme- 
try. 

Once N’ is chosen the procedure described 
here works automatically. The choice of N ,  
however, is not necessarily simple, since i t  de- 
pends on the existence of disordered waters or 
partially occupied sites. This information is either 
available from outside sources or could be de- 
rived from a calculation of the type proposed 
here. In particular, sites with large MSD can be 
considered to be in a region of disordered solvent 
and be dropped. Partially occupied sites are indi- 
cated when the density of the crystal shows that 
there is some empty space in it. The volume of 
this empty space can give an estimate of the 
possible extra sites. If a calculation is performed, 
the occupancy of the resulting sites will either 
confirm the N’ chosen from this estimate or 
show that some sites have too small occupancies 
to be considered and thus have to be dropped. 

I1 C. Upper Bound on the Error of the 
Solution of the Assignment Problem 

It is possible to obtain a rigorous upper bound 
on the error in our solution of the solvent assign- 
ment problem as follows. 

Let us define j(i) as such j that O&(i) = 1, 
i( j )  as such i that O&), , = 1 [as in eq. (lo)], and 
i’( j )  as such i for which IR; - SiI2 is minimum. 
Furthermore, if for a j no such i exists that 
O&, = 1, let i( j )  = 0 by definition. It is easy to 
see that the possible improvement of the MSD by 
reassigning the solvents is limited by 

It follows from this argument that if O&,l, , = 1 
for all j examined, then the solution obtained is 
exact. In words, if the solvent configuration is 
such that for all peaks the solvent that is closest 
to one of the peak estimate has no other peak 
estimate closer to it, then the algorithm provides 
the exact solution. 

Note that this procedure did not require con- 
sideration of unassigned solvent molecules since 
an unassigned solvent is always farther from any 
site than the solvent assigned by our procedure 
to that site. Thus, if the exact solution assigns to 
a site a solvent unassigned by our procedure, the 
contribution of that site to  the MSD will neces- 
sarily increase. 

I1 D. Possible Improvements of the Solution 
of the Assignment Problem 

It follows from the argument in the previous 
section that the result will depend on the order 
of scanning { Si} , since if one solvent is the nearest 
to more than one site then it will be assigned to 
the site that is looked at  first. This comment 
gives a trivial way of obtaining different and 
possibly better approximations to the assign- 
ment problem: Repeat the procedure from step 
(3), but change the order of scanning the peaks. 
By performing a certain number of retries one 
may obtain reasonable assurance that the solu- 
tion obtained is close to the exact one. 

A somewhat more systematic approach, that is 
about as costly as a retry, can proceed as follows. 
For each solvent such that i ( j )  > 0, if 

then set 

In words, check the effect of the interchange in 
the assignment on the MSD and if i t  decreases the 
sum, make the interchange. Since the inter- 
change does not affect any other term in the MSD 
sum, the approximation has clearly been im- 
proved. Note, that this procedure is the same for 
N > N’ and N 5 N .  Naturally, for N < N’, i( j )  
is never zero. 

111. RESULTS AND DISCUSSION 

The dCpG/proflavin crystal hydrate was 
studied by x-ray diffra~t ion~.~ and by MC com- 
puter sim~lation.8~~ Three simulations have been 
performed on the unit cell in this Laboratory, 
differing from each other in the starting con- 
figuration used and the number of waters simu- 
lated as specified in Table I. Simulation I used 
the experimentally obtained oxygen positions for 
the initial configuration, and for simulation 111, 
eight more waters were placed in cavities found. 
For simulation 11, the initial configuration was 
obtained by placing 100 waters on a grid span- 
ning the region of the crystal that is not occupied 
by the solute. The resulting mean positions are 
compared with the experimental data in Ref. 7. 
The average deviations between the three simu- 
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Table I. Results of the site determination in the dCpG/Proflavin crystal 
hydrate from MC simulations. 

Simulation 
I I1 I11 

Number of waters 
Length of the simulation 
Number of configurations used 
Sampling frequency 
Number of iterations 
MSD/water (in A2) 
Error bound on MSD (in A2) 
Refinement effect (in A2) 
Number of singly occupied sites 

100 
2600 K 
8192 
317 

6 
0.73 
0.24 
0.20-0.12 

71 

100 
1600 K 
4096 
395 

6 
0.51 
0.16 
0.01-0.09 

71 

108 
1600 K 
4096 
397 

6 
0.27 
0.02 
0.08-0.001 

69 

lations are significantly larger than the error 
bounds on the MSDS obtained, thus the dif- 
ferences between the three simulation results are 
mainly due to the difference in the initial as- 
sumptions. The analysis results are also collected 
in Table I for the three simulations. The error 
bounds obtained show that the exact solution of 
the assignment problem could have decreased 
the MSD by 30% or less. The refinement proce- 
dure, described in Section IID, was useful, but 
not crucial since i t  improved the MSD only by 
16% or less. We also tried the changing of the 
scanning order, but it only affected the MSD by a 
few percent and was subsequently dropped. The 
results also showed that 70-80% of the sites were 
occupied by the same water molecule during the 
entire length of the simulation; the rest of the 
sites were “visited” by more than one water. 
The sites obtained were also compared with 
two-dimensional density maps drawn in 1 A thick 
slices of the unit cell. Each generated site was 
found to be a t  or near the center of a density 
peak, showing that the approximate solution of 
the assignment problem did not introduce arti- 
facts in the results. 
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