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A numerical procedure is described and tested for the determination of solvent sites in a crystal hydrate
from computer simulation results. The method does not require the computation of density distributions.

I. INTRODUCTION

Liquid state computer simulation, using both
Monte Carlo (MC) and molecular dynamics (MD)
procedures, are currently being used to study the
organization of water in crystals in comparison
with results on ordered water positions obtained
from x-ray and neutron diffraction experiments.
A useful set of indices for comparison in the
calculated results is the mean water positions
obtained as a configurational average in the
simulation. However, the calculation is not
straightforward, since solvent molecules can in
principle diffuse during the simulation, and thus
a given mean position may have fractional con-
tributions from several specific water molecules
in the course of the simulation. What is required
is a set of generic mean positions for solvent
molecules, defined in such a way that diffusional
interchange is taken into account.

In the evaluation of computer simulation the
determination of solvent sites thus presents a
problem. In principle, the computer simulation
can be used to determine the three-dimensional
density distribution of solvents, the peaks of
which can be identified with solvent sites. How-
ever, the representation of a three-dimensional
density distribution requires data points the
number of which is inversely proportional to
the cube of the gridsize. Accurate estimate of the
density at all grid points requires long runs. The
length of the runs referred to in this article is
adequate to obtain the density accurately on a
grid of about 0.4 A. The accurate representation
of the density on a 0.1 A grid would require
4% = 64 times longer runs. The large number of
grid points also presents a storage problem that
can be overcome, however, by obtaining the den-
sity in slices. Previous computer simulation stud-
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ies'"* dealt with this problem by determining
two-dimensional density maps in O(1 A) thick
planes. This procedure, however, inherently
limits the accuracy of the result.

Note also that the Fourier coefficients of the
density also can be obtained from a simulation
without obtaining the density distribution itself.
In general, the product of the probability density
p(R) and a function F(R) can be obtained from

JF®)p(R)dR = LFR)/m (1)

where the sum is taken over all positions R, that
were sampled in the simulation by any of the
solvents, since the simulation methods are con-
structed to ensure that the positions R; are
sampled with probability p(R).

The purpose of this article is to present an
alternative procedure for the determination of
solvent position in a crystal that does not require
the determination of the density distribution en-
tirely. A somewhat similar approach was applied
recently in this Laboratory to the analysis of
ionic hydration.® Section II presents the proce-
dure and Section III describes its performance
on a dinucleotide/proflavin crystal hydrate,
where experimental water positions have been
determined,®” and Mc computer simulations have
been performed.®®

II. THEORY AND ALGORITHMS

For a system of one solvent molecule, it can be
shown by straightforward differentiation that if
R* is the position of the molecule at the kth
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observation /step, the mean position
s- [ Z®)/n @
k=1
minimizes the expression
n
lellk il (3)

The average in eq. (2) is a specific average. (It
happens to coincide with a generic average, since
there is only one solvent in the system.) Thus for
a system of N solvent molecules one should seek
a set of points S, i = 1,..., N, where the sum of
N expressions of the type (3) is minimized. How-
ever, to account for the diffusion of the solvent
molecules, the choice of R’} s to be used (the
subscript J refers to the molecule the position of
which is R’;) also have to be subjected to optimi-
zation. In other words, one is looking for the
generic average and not the specific averages
over positions of the individual solvents. These
requirements are satisfied if such a set {S;, i =

1,..., N} is sought that minimizes
N | n N
msD({8;}) = P IDMD) |RI}_ Silzoilfj /n
i=1\ k=1 /=1

(4)

where N is the number of sites, N’ is the num-
ber of molecules, and O* is a matrix such that

Of;=0 or 1 (5)
i@@ < AN fori=1,.,N
i (6)
Sof, SLENSN (N
a (M

N N
Z ): FJR%— 8,]® isminimum (8)

Notice that we allow for N # N’. If N< N’
then there are solvents that are uniformly dis-
tributed (delocalized solvents), while the case of
N < N’ represents a system where some of the
sites are only fractionally occupied. The posi-
tions of the nonzero elements in O* associate one
R% with each S, for N < N’ and one S, with
each R% for N > N'. The conditions (5)~(7) on
the matrlx O* are necessary to ensure that each
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R® and S, are selected at most once and the
maximum number of assignments are made. The
expression

N’
Z |RI;' - Si|20i’,ej (9)
Jj=1

simply provides a single term to the MSD sum.

The problem defined by egs. (5)—(8) is known
as the assignment problem. It can be solved
exactly, although the solution is time consuming
since it is an integer programming problem.
The best method available is the Hungarian
method.!*!! However, the special nature of the
matrix associated with this problem allows for a
simple but approximate algorithm that appears
to work reasonably well for this type of problem.
The effort involved in the approximate al-
gorithm proposed here is equivalent to the effort
of obtaining the initial solution in the exact
algorithm, where an undetermined (but limited)
number of iterative refinements follow. It is to be
stressed that the procedure described here works
with any method that solves the assignment
problem, and our choice here was dictated by
economy.

II A. An Iterative Algorithm for Minimizing
the MsD

A practical approach and an iterative al-
gorithm for the solution for the peak position
consists of the following steps:

(1) Select a set of representative configura-
tions. For MC computer simulations, the con-
figurations should be chosen infrequently enough
so that all solvent molecules move between the
selected configurations.

(2) Obtain an estimate for {S;}. Either it can
come from an outside source (e.g., experiment),
or else the program has to generate it from the
data. In Section II A two algorithms will be
described for this purpose.

(3) For each &, solve egs. (5)-(8) for the matrix
O*. An approximate solution can be obtained as
follows:

(3a) Set all elements of O* to zero.

3b) N < N”:

For every S, find an index (i) such that

,Rj(l) i'2 = min,R’_‘;’ - Si,2 (loa)

N

e{,-
=1
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and set O/, = 1. In words, assign to the peak
estimate S, the solvent that is the nearest to it
among the unassigned solvents.

(3¢) N> N":

For every R* find an index i( ) such that

k 2 __
IR — §; 51" =

N
€ (i

Jj=1

min[R% — S,|>  (10b)

and set Oy ;, ; = 1. In words, assign to the solvent
J to the peak estimate that is the nearest to it
among the unassigned ones.

The complexity of step (3b) or (3c) is propor-
tional to N2. At the end of step (3b) or (3c), the
O* matrix has been filled for all k selected.
Clearly, for N = N’ either (3b) or (3¢c) can be
used.

(4) Compute the new estimate of site positions
as

S| = ( Ok Rk)/n (11)
k=1 =1

for each peak S,. Equation (11) represents the
mean position of solvents assigned to peak S,.
Notice, that the matrix multiplication in eq. (11)
and in similar expressions in subsequently de-
scribed algorithms is only a notational conveni-
ence to select the appropriate R’j- to be used. In
practice, the arrays i(j) and/or j(i) are stored
in the computer thus the complexity of this step
is proportional only to N.

(5) Substitute {S;} into eq. (4) to obtain the
new MsD’. If MSD’ < MSD, repeat from step (3).

(6) If the new estimate is not better than the
old one [in fact, it may even be worse, due to the
approximate minimization in step (3)], stop and
accept the previous estimate as the solution.

II B. Generation of the Initial Estimate

The initial estimates for the solvation sites can
be obtained from external sources or generated
from the data itself. We first describe two al-
gorithms that generate initial estimates for N =
N’. Both perform well.

The first algorithm, called the “sequential al-
gorithm” consists of the following steps:

(1) Take the first configuration as the first
approximation to the estimate.

(2) In general, from the kth approximation
{Sk}, obtain the (£ + 1)th by solving egs. (5)—(8)
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for O**! using {S¥} for {S,}. Then

Sfrt = [k/(k +1)]8¢
N’
+1/(k +1) Z RET0OMT (12)

(3) If step (2) is repeated n — 1 times, the
configurations will be exhausted and {S'} will be
the initial estimate to be used in step (2) of the
iterative process.

The second algorithm, called ‘‘pairing al-
gorithm” proceeds as follows:

(1) Divide the configurations into successive
pairs.

(2) For each pair, solve egs. (5)-(8) using the
first element of the pair as {S;} and the second
element as {R*}. Prepare a composite using the
solution obtained:

N
0.5R% + 0.5 )}, R**'0}f 1 (13)

J=1

(3) Replace each pair of configurations with
their composite according to eq. (13).

(4) If there is more than one pair, repeat from
step (1).

Note that this algorithm requires that the
number of configurations used is a two-power.
[To relax this restriction, we should have intro-
duced in eq. (13) some cumbersome weighting
factors.] This restriction, however, is not a seri-
ous one since by adjusting the frequency of
selecting representative configurations, it can be
easily satisfied.

The two algorithms require about the same
computational effort: The solvent assignment
problem has to be solved n — 1 times.

If N < N’is required, one has to drop N' — N
sites from {8;}. It is reasonable to drop those
that have the largest MsD.

For N > N’, additional sites have to be gener-
ated. One alternative could be a search for cavi-
ties that are left after having placed the solvent
molecules at the initial N’ sites. This has the
drawback that the actual crystal atoms have to
be introduced into the calculation of the initial
estimate.

Another possibility is to generate all the sites
related by the space group symmetry of the
crystal to the first N’ estimates and choose from
these those that are the farthest from the al-
ready existing sites. This procedure would “help”
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to introduce into the result the required symme-
try.

Once N’ is chosen the procedure described
here works automatically. The choice of N’,
however, is not necessarily simple, since it de-
pends on the existence of disordered waters or
partially occupied sites. This information is either
available from outside sources or could be de-
rived from a calculation of the type proposed
here. In particular, sites with large MsD can be
considered to be in a region of disordered solvent
and be dropped. Partially occupied sites are indi-
cated when the density of the crystal shows that
there is some empty space in it. The volume of
this empty space can give an estimate of the
possible extra sites. If a calculation is performed,
the occupancy of the resulting sites will either
confirm the N’ chosen from this estimate or
show that some sites have too small occupancies
to be considered and thus have to be dropped.

II C. Upper Bound on the Error of the
Solution of the Assignment Problem

It is possible to obtain a rigorous upper bound
on the error in our solution of the solvent assign-
ment problem as follows.

Let us define j(i) as such j that Oi’f =1
i(j) as such i that Oi’(z 51,; = 1[asin eq. (10)], and
i’(j) as such i for which |R® — §|” is minimum.
Furthermore, if for a j no such i exists that
Ok, ;= 1, let i(j) = 0 by definition. It is easy to
see that the possible improvement of the MSD by

reassigning the solvents is limited by

Z |Rj - Si(j)|2 - |Rj - si'(j)|2 (14)
{J1i())#0}

It follows from this argument that if 0 ;) ;=1
for all j examined, then the solution obtained is
exact. In words, if the solvent configuration is
such that for all peaks the solvent that is closest
to one of the peak estimate has no other peak
estimate closer to it, then the algorithm provides
the exact solution.

Note that this procedure did not require con-
sideration of unassigned solvent molecules since
an unassigned solvent is always farther from any
site than the solvent assigned by our procedure
to that site. Thus, if the exact solution assigns to
a site a solvent unassigned by our procedure, the
contribution of that site to the Msp will neces-
sarily increase.
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II D. Possible Improvements of the Solution
of the Assignment Problem

It follows from the argument in the previous
section that the result will depend on the order
of scanning {S;}, since if one solvent is the nearest
to more than one site then it will be assigned to
the site that is looked at first. This comment
gives a trivial way of obtaining different and
possibly better approximations to the assign-
ment problem: Repeat the procedure from step
(3), but change the order of scanning the peaks.
By performing a certain number of retries one
may obtain reasonable assurance that the solu-
tion obtained is close to the exact one.

A somewhat more systematic approach, that is
about as costly as a retry, can proceed as follows.
For each solvent such that i( j) > 0, if

Siciy = Ryl* + 180, = Rl
> 18y Rj|2 ~ 18— Rj(i’(jn‘?
(15)
then set
0fj,; =0 0Of,;=1 (16)

In words, check the effect of the interchange in
the assignment on the MSD and if it decreases the
sum, make the interchange. Since the inter-
change does not affect any other term in the MSD
sum, the approximation has clearly been im-
proved. Note, that this procedure is the same for
N > N’and N < N'. Naturally, for N < N’, i(j)
is never zero.

III. RESULTS AND DISCUSSION

The dCpG/proflavin crystal hydrate was
studied by x-ray diffraction®” and by mMc com-
puter simulation.®® Three simulations have been
performed on the unit cell in this Laboratory,
differing from each other in the starting con-
figuration used and the number of waters simu-
lated as specified in Table I. Simulation 1 used
the experimentally obtained oxygen positions for
the initial configuration, and for simulation III,
eight more waters were placed in cavities found.
For simulation II, the initial configuration was
obtained by placing 100 waters on a grid span-
ning the region of the crystal that is not occupied
by the solute. The resulting mean positions are
compared with the experimental data in Ref. 7.
The average deviations between the three simu-
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Table I. Results of the site determination in the dCpG/Proflavin crystal
hydrate from Mc simulations.
Simulation

I II 111
Number of waters 100 100 108
Length of the simulation 2600 K 1600 K 1600 K
Number of configurations used 8192 4096 4096
Sampling frequency 317 395 397
Number of iterations 6 6 6
MSD/water (in A?) ] 0.73 0.51 0.27
Error bound on MsD (in A%) 0.24 0.16 0.02
Refinement effect (in A%) 0.20-0.12 0.01-0.09 0.08-0.001
Number of singly occupied sites 71 71 69

lations are significantly larger than the error
bounds on the MsDs obtained, thus the dif-
ferences between the three simulation results are
mainly due to the difference in the initial as-
sumptions. The analysis results are also collected
in Table I for the three simulations. The error
bounds obtained show that the exact solution of
the assignment problem could have decreased
the MsD by 30% or less. The refinement proce-
dure, described in Section II D, was useful, but
not crucial since it improved the MsD only by
16% or less. We also tried the changing of the
scanning order, but it only affected the MSD by a
few percent and was subsequently dropped. The
results also showed that 70-80% of the sites were
occupied by the same water molecule during the
entire length of the simulation; the rest of the
sites were “visited” by more than one water.
The sites obtained were also compared with
two-dimensional density maps drawn in 1 A thick
slices of the unit cell. Each generated site was
found to be at or near the center of a density
peak, showing that the approximate solution of
the assignment problem did not introduce arti-
facts in the results.
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