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Generic Solvent Sites in a Crystal

Mihaly Mezei and David L. Beveridge

Chemistry Department Hunter College of the City University of New York, 695 Park Av-
enue, New York, NY 10021

A numerical procedure is described and tested for the determination of solvent sites in a
crystal hydrate from computer simulation results. The method does not require the compu-
tation of density distributions.

I. INTRODUCTION

Liquid state computer simulation, using both Monte Carlo (MC) and molecular dynamics
(MD) procedures, are currently being used to study the organization of water in crystals
in comparison with results on ordered water positions obtained from x-ray and neutron
diffraction experiments. A useful set of indices for comparison in the calculated results is the
mean water positions obtained as a configurational average in the simulation. However, the
calculation is not straightforward, since solvent molecules can in principle diffuse during the
simulation, and thus a given mean position may have fractional contributions from several
specific water molecules in the course of the simulation. What is required is a set of generic
mean positions for solvent molecules, defined in such a way that diffusional interchange is
taken into account.

In the evaluation of computer simulation the determination of solvent sites thus presents
a problem. In principle, the computer simulation can be used to determine the three-
dimensional density distribution of solvents, the peaks of which can be identified with solvent
sites. However, the representation of a three-dimensional density distribution requires data
points the number of which is inversely proportional to the cube of the gridsize. Accurate
estimate of the density at all grid points requires long runs. The length of the runs referred
to in this article is adequate to obtain the density accurately on a grid of about 0.4 Å. The
accurate representation of the density on a 0.1 Å grid would require 43 = 64 times longer
runs. The large number of grid points also presents a storage problem that can be overcome,
however, by obtaining the density in slices. Previous computer simulation studies1−4 dealt
with this problem by determining two-dimensional density maps in O(1 Å) thick planes.
This procedure, however, inherently limits the accuracy of the result.



Note also that the Fourier coefficients of the density also can be obtained from a simulation
without obtaining the density distribution itself. In general, the product of the probability
density ρ(R) and a function F (R) can be obtained from∫

F (R)ρ(R)dR =
∑
i

F (Ri)/n (1)

where the sum is taken over all positions Ri, that were sampled in the simulation by any of
the solvents, since the simulation methods are constructed to ensure that the positions Ri
are sampled with probability ρ(R).

The purpose of this article is to present an alternative procedure for the determination of
solvent position in a crystal that does not require the determination of the density distribu-
tion entirely. A somewhat similar approach was applied recently in this Laboratory to the
analysis of ionic hydration.5 Section II presents the procedure and Section III describes its
performance on a dinucleotide/proflavin crystal hydrate where experimental water positions
have been determined,6,7 and MC computer simulations have been performed.8,9

II. THEORY AND ALGORITHMS

For a system of one solvent molecule, it can be shown by straightforward differentiation
that if Rk is the position of the molecule at the k th observation/step, the mean position

Si =

 n∑
k=1

Rk

/n (2)

minimizes the expression
n∑
k=1
|Rk − Si|2 (3)

The average in eq. (2) is a specific average. (It happens to coincide with a generic average,
since there is only one solvent in the system.) Thus for a system of N solvent molecules one
should seek a set of points Si, i = 1, . . . , N , where the sum of N expressions of the type
(3) is minimized. However, to account for the diffusion of the solvent molecules, the choice

of Rk
j ’s to be used (the subscript j refers to the molecule the position of which is Rk

j ) also

have to be subjected to optimization. In other words, one is looking for the generic average
and not the specific averages over positions of the individual solvents. These requirements
are satisfied if such a set Si, i = 1, . . . , N is sought that minimizes

MSD({Si}) =
N∑
i=1

 n∑
k=1

N ′∑
j=1
|Rk

j − Si|2Oki,j

/n (4)

where N is the number of sites, N ′ is the number of molecules, and Ok is a matrix such that

Oki,j = 0 or 1 (5)
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N ′∑
j=1

Oki,j
≤ 1 if N > N ′

= 1 if N ≤ N ′
for i = 1, . . . , N (6)

N∑
i=1

Oki,j
≤ 1 if N < N ′

= 1 if N ≥ N ′
for i = 1, . . . , N ′ (7)

N∑
i=1

N ′∑
j=1

Oki,j |Rk
j − Si|2 is minimum (8)

Notice that we allow for N 6= N ′. If N < N ′ then there are solvents that are uniformly
distributed (delocalized solvents), while the case of N < N ′ represents a system where
some of the sites are only fractionally occupied. The positions of the nonzero elements in
Ok associate one Rk

j with each Si for N ≤ N ′ and one Si with each Rk
j for N ≥ N ′. The

conditions (5)-(7) on the matrix Ok are necessary to ensure that each Rk
j and Si are selected

at most once and the maximum number of assignments are made. The expression

N ′∑
j=1
|Rk

j − Si|2Oki,j (9)

simply provides a single term to the MSD sum.

The problem defined by eqs. (5)-(8) is known as the assignment problem. It can be
solved exactly, although the solution is time consuming since it is an integer programming
problem. The best method available is the Hungarian method.10,11 However, the special
nature of the matrix associated with this problem allows for a simple but approximate
algorithm that appears to work reasonably well for this type of problem. The effort involved
in the approximate algorithm proposed here is equivalent to the effort of obtaining the initial
solution in the exact algorithm, where an undetermined (but limited) number of iterative
refinements follow. It is to be stressed that the procedure described here works with any
method that solves the assignment problem, and our choice here was dictated by economy.

II A. An Iterative Algorithm for Minimizing the MSD

A practical approach and an iterative algorithm for the solution for the peak position
consists of the following steps:

(1) Select a set of representative configurations. For MC computer simulations, the con-
figurations should be chosen infrequently enough so that all solvent molecules move between
the selected configurations.

(2) Obtain an estimate for {Si}. Either it can come from an outside source (e.g., experi-
ment), or else the program has to generate it from the data. In Section II A two algorithms
will be described for this purpose.

(3) For each k, solve eqs. (5)-(8) for the matrix Ok. An approximate solution can be
obtained as follows:
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(3a) Set all elements of Ok to zero.

(3b) N ≤ N ′: For every Si find an index j(i) such that

|Rk
j(i) − Si|2 = min |Rk

j′ − Si|2 (10a)

j′ ∈

j
∣∣∣∣∣
N∑
i=1

Oki,j = 0


and set Oki,j(i)) = 1. In words, assign to the peak estimate Si the solvent that is the nearest

to it among the unassigned solvents.

(3c) N ≥ N ′:

For every Rk
j find an index i(j) such that

|Rk
j − Si(j)|

2 = min |Rk
j − Si′ |2 (10b)

i′ ∈

i
∣∣∣∣∣
N ′∑
j=1

Oki,j = 0


and set Oki(j),j = 1. In words, assign to the solvent j to the peak estimate that is the nearest

to it among the unassigned ones.

The complexity of step (3b) or (3c) is proportional to N2. At the end of step (3b) or (3c),
the Ok matrix has been filled for all k selected. Clearly, for N = N ′ either (3b) or (3c) can
be used.

(4) Compute the new estimate of site positions as

S′i =

 n∑
k=1

N ′∑
j=1

Oki,jR
k
j

/n (11)

for each peak Si. Equation (11) represents the mean position of solvents assigned to peak S,.
Notice, that the matrix multiplication in eq. (11) and in similar expressions in subsequently

described algorithms is only a notational convenience to select the appropriate Rk
j to be

used. In practice, the arrays i(j) and/or j(i) are stored in the computer thus the complexity
of this step is proportional only to N .

(5) Substitute {S′i} into eq. (4) to obtain the new MSD′. If MSD′ <MSD, repeat from
step (3).

(6) If the new estimate is not better than the old one [in fact, it may even be worse, due
to the approximate minimization in step (3)], stop and accept the previous estimate as the
solution.
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II B. Generation of the Initial Estimate

The initial estimates for the solvation sites can be obtained from external sources or gen-
erated from the data itself. We first describe two algorithms that generate initial estimates
for N = N ′. Both perform well.

The first algorithm, called the “sequential algorithm” consists of the following steps:

(1) Take the first configuration as the first approximation to the estimate.

(2) In general, from the kth approximation {Ski }, obtain the (k + 1)th by solving eqs.

(5)-(8) for Ok+1 using {Ski } for {Si}. Then

Sk+1
i = [k/(k + 1)]Ski + 1/(k + 1)

N ′∑
j=1

Rk+1
j Ok+1

j (12)

(3) If step (2) is repeated n− 1 times, the configurations will be exhausted and {Sni } will
be the initial estimate to be used in step (2) of the iterative process.

The second algorithm, called “pairing algorithm” proceeds as follows:

(1) Divide the configurations into successive pairs.

(2) For each pair, solve eqs. (5)-(8) using the first element of the pair as {Si} and the

second element as {Rk
j }. Prepare a composite using the solution obtained:

0.5Rk
j + 0.5

N ′∑
j=1

Rk+1
j Ok+1

j (13)

(3) Replace each pair of configurations with their composite according to eq. (13).

(4) If there is more than one pair, repeat from step (1).

Note that this algorithm requires that the number of configurations used is a two-power.
[To relax this restriction, we should have introduced in eq. (13) some cumbersome weighing
factors.] This restriction, however, is not a serious one since by adjusting the frequency of
selecting representative configurations, it can be easily satisfied.

The two algorithms require about the same computational effort: The solvent assignment
problem has to be solved n− 1 times. If N < N ′ is required, one has to drop N ′ −N sites
from {Si}. It is reasonable to drop those that have the largest MSD.

For N > N ′, additional sites have to be generated. One alternative could be a search for
cavities that are left after having placed the solvent molecules at the initial N ′ sites. This
has the drawback that the actual crystal atoms have to be introduced into the calculation
of the initial estimate.
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Another possibility is to generate all the sites related by the space group symmetry of the
crystal to the first N ′ estimates and choose from these those that are the farthest from the
already existing sites. This procedure would “help” to introduce into the result the required
symmetry.

Once N ′ is chosen the procedure described here works automatically. The choice of N ′,
however, is not necessarily simple, since it depends on the existence of disordered waters or
partially occupied sites. This information is either available from outside sources or could be
derived from a calculation of the type proposed here. In particular, sites with large MSD can
be considered to be in a region of disordered solvent and be dropped. Partially occupied sites
are indicated when the density of the crystal shows that there is some empty space in it. The
volume of this empty space can give an estimate of the possible extra sites. If a calculation
is performed, the occupancy of the resulting sites will either confirm the N ′ chosen from this
estimate or show that some sites have too small occupancies to be considered and thus have
to be dropped.

II C. Upper Bound on the Error of the Solution of the Assignment Problem

It is possible to obtain a rigorous upper bound on the error in our solution of the solvent
assignment problem as follows.

Let us define j(i) as such j that Oki,j(i) = 1, i(j) as such i that Oki(j),j = 1 [as in eq. (10)],

and i′(j) as such i for which |Rk
j −Si|2 is minimum. Furthermore, if for a j no such i exists

that Oki(j),j = 1 let i(j) = 0 by definition. It is easy to see that the possible improvement of

the MSD by reassigning the solvents is limited by∑
{j|i(j)6=0}

|Rj − Si(j)|
2 − |Rj − Si′(j)|

2 (14)

It follows from this argument that if Oki′(j),j = 1 for all j examined, then the solution

obtained is exact. In words, if the solvent configuration is such that for all peaks the solvent
that is closest to one of the peak estimate has no other peak estimate closer to it, then the
algorithm provides the exact solution.

Note that this procedure did not require consideration of unassigned solvent molecules
since an unassigned solvent is always farther from any site than the solvent assigned by our
procedure to that site. Thus, if the exact solution assigns to a site a solvent unassigned by
our procedure, the contribution of that site to the MSD will necessarily increase.

II D. Possible Improvements of the Solution of the Assignment Problem

It follows from the argument in the previous section that the result will depend on the
order of scanning {Si}, since if one solvent is the nearest to more than one site then it
will be assigned to the site that is looked at first. This comment gives a trivial way of
obtaining different and possibly better approximations to the assignment problem: Repeat
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the procedure from step (3), but change the order of scanning the peaks. By performing a
certain number of retries one may obtain reasonable assurance that the solution obtained is
close to the exact one.

A somewhat more systematic approach, that is about as costly as a retry, can proceed as
follows. For each solvent such that i(j) > 0, if

|Si(j) −Rj |2 + |Si′(j) −Rj(i′(j))|
2 > |Si′(j) −Rj |2 + |Si(j) −Rj(i′(j))|

2 (15)

then set
Oki(j),j = 0 Oki′(j),j = 1 (16)

In words, check the effect of the interchange in the assignment on the MSD and if it decreases
the sum, make the interchange. Since the inter change does not affect any other term in the
MSD sum, the approximation has clearly been improved. Note, that this procedure is the
same for N > N ′ and N ≤ N ′. Naturally, for N < N ′, i(j) is never zero.

III. RESULTS AND DISCUSSION

The dCpG/proflavin crystal hydrate was studied by x-ray diffraction,6,7 and by MC computer
simulation.8,9 Three simulations have been performed on the unit cell in this Laboratory,
differing from each other in the starting con figuration used and the number of waters
simulated as specified in Table I. Simulation I used the experimentally obtained oxygen
positions for the initial configuration, and for simulation III, eight more waters were placed
in cavities found. For simulation II, the initial configuration was obtained by placing 100
waters on a grid spanning the region of the crystal that is not occupied by the solute. The
resulting mean positions are compared with the experimental data in Ref. 7. The average
deviations between the three simulations are significantly larger than the error bounds on
the MSDS obtained, thus the differences between the three simulation results are mainly
due to the difference in the initial assumptions. The analysis results are also collected in
Table I for the three simulations. The error bounds obtained show that the exact solution
of the assignment problem could have decreased the MSD by 30% or less. The refinement
procedure, described in Section II D, was useful, but not crucial since it improved the MSD
only by 16% or less. We also tried the changing of the scanning order, but it only affected
the MSD by a few percent and was subsequently dropped. The, results also showed that
70-80% of the sites were occupied by the same water molecule during the entire length of the
simulation; the rest of the sites were “visited” by more than one water. The sites obtained
were also compared with two-dimensional density maps drawn in 1 Å thick slices of the unit
cell. Each generated site was found to be at or near the center of a density peak, showing
that the approximate solution of the assignment problem did not introduce artifacts in the
results.

This research was supported by NIH grant 5-1101 GM-24914 and a CUNY Faculty Research
Award. Useful discussions with Dr. Helen Berman and Dr. Julia Goodfellow are greatly
appreciated.
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Table I. Results of the site determination in the dCpG/Proflavin crystal hydrate from MC
simulations.

Simulation

I II III

Number of waters 100 100 108
Length of the simulation 2600 K 1600 K 1600 K
Number of configurations used 8192 4096 4096
Sampling frequency 317 395 397
Number of iterations 6 6 6
MSD/water (in Å2) 0.73 0.51 0.27
Error bound on MSD (in Å2) 0.24 0.16 0.02
Refinement effect (in Å2) 0.20-0.12 0.01-0.09 0.08-0.001
Number of singly occupied sites 71 71 69
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