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Comparison of the percolation model  with 
computer simulation results on different water models  

by M I H A L Y  MEZEI 

Department of Chemistry, Hunter College of the CUNY, 
New York, N.Y. 10021, U.S.A. 

(Received 22 December 1983 ; accepted 12 March 1984) 

The predictions of the connectivity properties of the hydrogen-bonded 
networks in liquid water based on the percolation model proposed by H. E. 
Stanley and co-workers has been compared with Monte Carlo computer 
simulations using the ST2 and MCY potentials at different temperatures. 
The comparison is based on a geometric hydrogen-bond definition. Reasons 
for the good agreement found for the average number of waters with exactly 
j hydrogen bonds are discussed, Also, the conflicting conclusions on the 
density of 4-bonded patches were re-examined and were found to be the 
result of using different water models in the coIfflicting studies. 

1. INTRODUCTION AND BACKGROUND 

The percolation model of H. E. Stanley [1] has successfully predicted several 
thermodynamic anomalies of the supercooled liquid water. The predictions of 
the model on the molecular level can be checked against computer simulation 
results, provided an operational definition of the hydrogen bond is adopted. This 
can be obtained either by setting an energy threshold value such that if two mole- 
cules interact stronger than the threshold value then they are considered hydrogen 
bonded, or by setting limits on the intermolecular geometric parameters. The 
former is called the energetic hydrogen bond and the latter the geometric 
hydrogen bond. By changing the respective cutoffs, the strength of the hydrogen 
bond can be modulated. 

Comparison with computer simulation showed good agreement on topological 
properties of the hydrogen-bonded networks: the distribution of unbonded 
waters in several simulated systems using a geometric hydrogen-bond definition 
agreed very well with the prediction of the percolation model [2] ; several cluster 
distributions were computed by Stanley, Teixeira, Geiger and Blumberg [3] 
using an energetic hydrogen-bond definition and again good agreement was  
found. Similar results were found by Okazaki et al. [4] in their study of a 
simple water potential. 

The connection between the topological properties of the network and the 
thermodynamics is based on the assumption that the patches of waters having 
four hydrogen bonds ha.ve lower density than bulk water. The verification of 
this assumption requires also a definition of the local density or, equivalently, 
the volume of such a patch. A straightforward definition of the local volume of 
a patch is the volume of regions composed of points such that the molecule nearest 
to any point in the region belongs to the patch. This is the union of the Voronoi 
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polyhedra of the molecules belonging to the patch. A different approach com- 
pares the number of neighbours in spheres drawn around the molecules as a 
function of the radius of the sphere (' running coordination number ') for 
molecules belonging to a patch with the same function for the rest of the 
molecules. However, the results Obtained using the different approaches gave 
conflicting results. The study by Geiger and Stanley [5] found the local 
density of 4-bonded waters to be decreased based on the running coordination 
number difference function between 4-bonded and other waters, using the 
ST2 model [6], while the study by Rapaport [7] found a slight increase, based on 
comparisons between the Voronoi polyhedra of the 4-bonded and other waters, 
using the MCY model [8]. 

The results presented in this paper extend the various comparisons discussed 
above to the MCY and ST2 water models using a geometric hydrogen-bond 
definition. An analysis is given for the success of the percolation model in 
predicting quantitatively the connectivity properties of the hydrogen-bonded 
networks in various water models. Also, the  coordination number difference 
technique is applied to both the MCY and ST2 waters, using both energetic and 
geometric hydrogen bond definitions. 

The basic assumption in the percolation model is that the liquid consists of a 
hydrogen-bond network that is such that no water can have more than four 
hydrogen-bonded neighbours. Some applications also use as a computational 
aid an underlying network with some topological properties assumed. Based on 
these assumptions, simple combinatorial arguments, given in [1], yield the 
various distribution treated. A further aim of this note is to examine the 
effect of the restriction of the maximum number of hydrogen-bonded neighbours 
on the results. 

Comparisons will be done between the percolation model and Monte Carlo 
results on the following quantities. 

(1) The probability fj~ of having exactly j hydrogen-bonded neighbours, 
assuming that the maximum number of hydrogen bonded-neighbours is z and 
the average number of hydrogen-bonded neighbours is nnB : 

[ j z = ( j )  PBJ(1--pB)z-J , (1) 

PB =nHdz. 
(2) The weight fraction Ws 4 of the isolated patches of s water molecules, 

each having exactly 4 hydrogen bonds : 

W~ ~ = n~c (3,+x)14,( 1 - c 3/4 )2~+2, (3) 

c=(nnB/4) 4, (4) 

nx=l ,  n2=4, n3=18. (5) 

The expression for Ws a, besides assuming that each water can form at most 
4 bonds, depends on the topology of the underlying network assumed, and 
becomes successively more complex for higher s. [3 b] gives W84 up to s = 6 
both for the Ice Ih topology and for the case where it is assumed that the smallest 
loop in the network contains at least s + 3 members (for example, the Cayley 
tree). Equation (5) corresponds to this latter case, that is, the n s values are 
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Percolation model 1005 

correct assuming that there are no 3, 4 or 5 membered loops in the network for 
s= 1, 2 and 3, respectively. 

(3) The change in the average number of neighbours within a radius r 0 
between 4-bonded and other waters ((1, 2) of [5]) : 

ru 

An(ro)=4*rP I r2[g<(r)--g4(r)] dr, (6) 
o 

where p is the density of the liquid and g<(r), q4(r) are the radial distribution 
functions for the less than 4-bonded and 4-bonded waters, respectively. The 
more positive this function is the smaller t h e  density of the 4-bonded clusters. 
No quantitative conclusion can be drawn, however, since contributions to the 
integrand come from waters of all kinds, especially when the 4-bonded clusters 
are small. 

2. CALCULATIONS 

Monte Carlo calculations have been performed on the following systems: 
216 ST2 waters [6] at 10~ 1.000 g./ml ; 125 MCY waters [8] at 25~ 0.997 g/ml : 
216 MCY waters at 37~ 0.993 g/ml. These calculations have been described 
in detail earlier [9, 10]. The analysis of the hydrogen bonding on these systems 
along the lines of Geiger, Stillinger and Rahman [11] was also given earlier, 
using a geometric definition of the hydrogen bond [2], that places cutoffs on the 
oxygen-oxygen distance, Roo , hydrogen-oxygen-oxygen angle OH, lone pair- 
oxygen-oxygen angle, 0Lp and the hydrogen-oxygen-oxygen-lone pair dihedral 
angle, 33. (The lone pair is the tetrahedrally located site like the negative 
charges in the ST2 model.) It is to be stressed that this was the sole criterion for 
hydrogen bonding and it could quite easily yield more than four hydrogen-bonded 
neighbours. As opposed to the analysis done in [3 a] on the molecular dynamics 
run on the ST2 water, we did not discard any of these bonds. 

Geiger, Stillinger and Rahman found that the essential parameter for the 
clescription of the network properties is the average number of hydrogen bonds 
per molecule, nnB. This result was subsequently confirmed on the analysis of 
the Monte Carlo results. For this reason, we will always specify nHB only, 
since the actual combination of cut-offs is of little importance in the network 
analysis. 

The analysis reported in this paper was performed using the history tape of 
the Monte Carlo runs mentioned above, analysing every 500th configurations. 
This was shown to cause neglible error only, due to the correlated nature of the 
Markov chain generated by the Metropolis method. 

3. RESULTS AND DISCUSSION 

This section describes the comparisons obtained on the bond percolation 
represented by (1, 2), on the site percolation represented by (3, 5) and on the 
density of 4-bonded patches. 

3.1. Bond percolation results 
The /j(nnB ) values computed from the different Monte Carlo calculations 

are compared with fja(nnB ) in figure 1. The agreement is excellent f o r j = O  
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( n H B )  

Figure 1. Computed fl(nnB) compared with the fj4(nHB) obtained from Monte Carlo 
simulations on the MCY and ST2 waters. Full line: fj4(nrIB); �9 f0(nHB); 
A, fl(naB) ; 0 ,  fa(nnB) ; x ,  fs(nnB) ; I ,  f4(naB). 

and 1 for the full range of naB. For  j = 2, discrepancies start to appear f rom 
nab  = 3, f o r j  = 3 after n u B =  2.5. F o r j  = 4, the agreement is still excellent until 
n a ~ = 2 . 5  but  for the larger values a qualitative differences appears, since 
[44(nHB) is a monotonously  increasing funct ion while the [4(nnB) values obtained 
from the computer  simulation exhibit  a maximum, as f o r j  = 1, 2 and 3. I t  is to 
be noted that hydrogen-bond definitions resulting in naB > 2.5 are already fairly 
weak [2, 11]. T o  obtain a bet ter  understanding,  we prepared a plot of/j~(nnB ) 
for all possible combinations of j = 0 ,  1, 2, 3, 4, 5 and z = 3 ,  4, 5, 6 on figure 2. 
I t  is rather remarkable that for low nHB or l o w j  values/j.~(nnB ) is nearly indepen-  
dent  of z. As a consequence,  setting z = 4 is not a serious restriction for these j 
and nrIg values. Comparison of figures 1 and 2 shows that when /~4(nnB ) 
deviates f rom /j6(nHB ) (i.e, for naB > 2.5) fiS(nnB) is a bet ter  approximation to 

ti(n~B). 

Figure 2. 

Z 
fj 

| . 0 -  

0.8- 

0:6- 

0.4- 

0.2- / 

0.0 ~ 
O.O 

fz z 
1 f3 

i i i 

I .o 2.o 

z z 

i i t i i 

3.0 4.0 5.0 
(nHB> 

fj4(nHB) computed for various z values. The location of the maximum defines j 
and the point where a curve reaches the x-axis, defines z. 
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Figure 3. The best z values as a function of nHB for the MCY and ST2 waters. 

The question of the best z value was also examined by a numerical com- 
parison of the set of [j(n~aB) values obtained from a given hydrogen bond 
definition with the corresponding [j~(nm~ ) values with different zs. The best 
z value was obtained by minimizing the sum of absolute deviations overj. The 
values obtained are shown on figure 3 for both the ST2 and MCY waters. For 
the nnB range I-5-3.5, z = 4  gives the best agreement between the computer 
simulations and the percolation model. As discussed earlier, this range largely 
coincides with ' reasonable '  hydrogen bonds. As expected, for larger nrtBs z 
values greater than 4 give the best agreement. On the other hand, it is some- 
what of a surprise that for nnB < 1.5 z = 5 is better than z = 4. However, this 
latter discrepancy between the simulation and the percolation model is quite 
insignificant since there is very little difference between [~(ni_iB ) and [jS(nm3 ) 
in this range. 

There is a simple reason for the success of the (1) to predict [i(naB). For 
j--0, 

[ d ( n H ~  ) = 1 - n ~ B  + O(naB~), (7) 

which approximates the 1--nab line for small nHg. In any event, the depen- 
dence of [~Z(nnB ) on z is only in the second order. For other j  values, consider 
fi~(nriB)/fj~+l(nHB). Using (1, 2) we obtained the following expression after 
straightforward algebraic manipulations : 

/7(nnB)/fT+l(nng) = • z -  nH U + 1 Z---~HB+ 1 (8) 

Considering nHB = j  (that is, at the maximum of fjZ(nRB)), the limit of the first 
factor (as z tends to infinity) is e, the limit of the third factor is 1/e and the 
second factor is identically one. Thus for z>>nnB, this expression approaches 
one, which expresses z the independence of fj from z at a smallerj values. In 
practice, the errors in the two approximations of e largely cancel so even for 
z - j  > 1 the ratio approaches unity within 5 per cent. 
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1008 M. Mezei 

3.2. Site percolation results 

It was found to be very fruitful in explaining the properties of supercooled 
water to consider the correlated site percolation problem where water molecules 
with exactly four hydrogen bonds are specially labelled and then the clusters of 
these labelled waters are studied. 

w i 

MCY water  

w? ~ W2 

A W 5 

~ ~ 
0.02 ~ 

0 
0 0.2 0.4 0.6 0.8 

C 

Figure 4. Ws(c) obtained for the percolation model and computer simulation. Full line : 
w~'(c) ; �9 W,(c) ; A, W~(c) ; A,  g~(c) ; x ,  w,(c). 

The weight fraction of clusters of size 1, 2, and 3, W 8 is shown in figure 4, 
obtained from the computer simulations on the MCY water. The agreement is 
good for s = 1 and only qualitative for s = 2 and 3. Furthermore, unlike for It, 
similar naB values obtained from different systems may yield different Ws 
values, showing that this quantity is more sensitive to the finer details of the 
system than ft. This is to be expected, since the derivation o f  W~ 4 not only 
assumes z = 4, but also excludes hydrogen-bonded loops of 3, 4 or 5 members for 
W1, W~ and Ws, respectively. Such loops, however, are known to exist in these  
water models [12, 13]. In particular, [12] found 0-06, 0.16 and 0-35 loops per 
water molecule of consisting of 3, 4 and 5 waters, respectively, when nHB = 3"88 ; 
0, 0"08 and 0.34 loops per water molecules when nab = 2-26. 

3.3. Density results 

The running coordination number difference technique of [5] (equation (6)) 
was used to examine the density difference between 4-bonded patches and bulk 
water. In this study both the energetic and geometric hydrogen-bond definitions 
were employed. The energetic hydrogen bonds were defined by VHB = 
--14"96 kJ mo1-1 and VHB = -  12"55 kJ mo1-1 for the ST2 and MCY models, 
respectively. These values coincide with one of the cut-offs used in [5] and [6], 
respectively. The geometric definition used the strong hydrogen bond, as 
defined in [2]. Other hydrogen-bond definitions were also examined but the 
results were found to be essentially the same and are not shown here. The 
resulting running coordination number difference curves are displayed on figure 5 
for the ST2 and MCY waters. The ST2 "An(ro) with the energetic hydrogen- 
bond definition is similar to the one in [5], although not identical, since they are 
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Figure 5. 
hydrogen  b o n d  ; 
geometr ic  hydrogen  bond  ; . . . . .  

T h e  funct ion An(r0) for the ST2  and M C Y  models .  Full  line : ST2,  energet ic  
, M C Y ,  energetic hydrogen  b o n d  ; . . . . .  , ST2,  

, MCY,  geometr ic  hydrogen  bond.  

based on different simulations performed in different thermodynamical en- 
sembles. The  An(r0)s obtained from the energetic hydrogen bond again display 
the conflicting behaviour reported in [5] and [6]. However, they demonstrate 
that the conflicting conclusions are simply due to the difference in the water 
models used. This comparison also serves as a confirmation that the Vornoi 
polyhedron technique and the coordination number  difference technique give 
essentially the same answer. The  comparison of the results using different 
types of hydrogen-bond definitions gives, however, a surprising result : while 
for the MCY water no significant difference was found, the predicted density 
shift of 4-bonded patches occur only with the energetic hydrogen-bond defini- 
tion. To our knowledge, this is the first example where the two kinds of defi- 
nitions give a significantly different answer. 
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