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Comparison of the percolation model with
computer simulation results on different water models
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(Recerved 22 December 1983 ; accepted 12 March 1984)

The predictions of the connectivity properties of the hydrogen-bonded
networks in liquid water based on the percolation model proposed by H. E.
Stanley and co-workers has been compared with Monte Carlo computer
simulations using the ST2 and MCY potentials at different temperatures.
The comparison is based on a geometric hydrogen-bond definition. Reasons
for the good agreement found for the average number of waters with exactly
j hydrogen bonds are discussed. Also, the conflicting conclusions on the
density of 4-bonded patches were re-examined and were found to be the
result of using different water models in the conflicting studies.

1. INTRODUCTION AND BACKGROUND

The percolation model of H. E. Stanley [1] has successfully predicted several
thermodynamic anomalies of the supercooled liquid water. The predictions of
the model on the molecular level can be checked against computer simulation
results, provided an operational definition of the hydrogen bond is adopted. This
can be obtained either by setting an energy threshold value such that if two mole-
cules interact stronger than the threshold value then they are considered hydrogen
bonded, or by setting limits on the intermolecular geometric parameters. The
former is called the energetic hydrogen bond and the latter the geometric
_ hydrogen bond. By changing the respective cutoffs, the strength of the hydrogen
bond can be modulated.

Comparison with computer simulation showed good agreement on topological
properties of the hydrogen-bonded networks: the distribution of unbonded
waters in several simulated systems using a geometric hydrogen-bond definition
agreed very well with the prediction of the percolation model [2] ; several cluster
distributions were computed by Stanley, Teixeira, Geiger and Blumberg [3]
using an energetic hydrogen-bond definition and again good agreement was.
found. Similar results were found by Okazaki et al. [4] in their study of a
simple water potential.

The connection between the topological properties of the network and the
thermodynamics is based on the assumption that the patches of waters having
four hydrogen bonds have lower density than bulk water. The verification of
this assumption requires also a definition of the local density or, equivalently,
the volume of such a patch. A straightforward definition of the local volume of
a patch is the volume of regions composed of points such that the molecule nearest
to any point in the region belongs to the patch. This is the union of the Voronoi
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polyhedra of the molecules belonging to the patch. A different approach com-
pares the number of neighbours in spheres drawn around the molecules as a
function of the radius of the sphere (‘ running coordination number’) for
molecules belonging to a patch with the same function for the rest of the
molecules. However, the results obtained using the different approaches gave
conflicting results. The study by Geiger and Stanley [5] found the local
density of 4-bonded waters to be decreased based on the running coordination
number difference function between 4-bonded and other waters, using the
ST2 model [6], while the study by Rapaport [7] found a slight increase, based on
comparisons between the Voronoi polyhedra of the 4-bonded and other waters,
using the MCY model [8].

The results presented in this paper extend the various comparisons discussed
above to the MCY and ST2 water models using a geometric hydrogen-bond
definition. An analysis is given for the success of the percolation model in
predicting quantitatively the connectivity properties of the hydrogen-bonded
networks in various water models. Also, the coordination number difference
technique is applied to both the MCY and ST2 waters, using both energetic and
geometric hydrogen bond definitions.

The basic assumption in the percolation model is that the liquid consists of a
hydrogen-bond network that is such that no water can have more than four
hydrogen-bonded neighbours. Some applications also use as a computational
aid an underlying network with some topological properties assumed. Based on
these assumptions, simple combinatorial arguments, given in [1], yield the
various distribution treated. A further aim of this note is to examine the
effect of the restriction of the maximum number of hydrogen-bonded neighbours
on the results.

Comparisons will be done between the percolation model and Monte Carlo
results on the following quantities.

(1) The probability f# of having exactly j hydrogen-bonded neighbours,
assuming that the maximum number of hydrogen bonded-neighbours is 2 and
the average number of hydrogen-bonded neighbours is nyp :

z ) »
f =(].)pB (1= pg)-, 1)

pp="nus/?.

(2) The weight fraction W2 of the isolated patches of s water molecules,
each having exactly 4 hydrogen bonds :

WA= ncBstDiy(] — c3/a)2s+2, 3)
¢=(nup/4)*, (4)
nm=1, n,=4, ny;=18. 5)

The expression for W2, besides assuming that each water can form at most
4 bonds, depends on the topology of the underlying network assumed, and
becomes successively more complex for higher s. [3 b] gives W, up to s=6
both for the Ice ITh topology and for the case where it is assumed that the smallest
loop in the network contains at least s+3 members (for example, the Cayley
tree). Equation (5) corresponds to this latter case, that is, the n, values are
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correct assuming that there are no 3, 4 or 5 membered loops in the network for
s=1, 2 and 3, respectively.

(3) The change in the average number of neighbours within a radius r,
between 4-bonded and other waters ((1, 2) of [5]):

An(ro) =4mp § 1*lg(r)—g.(r)] dr, (©)

where p is the density of the liquid and g_(7), ¢,(r) are the radial distribution
functions for the less than 4-bonded and 4-bonded waters, respectively. The
more positive this function is the smaller the density of the 4-bonded clusters.
No quantitative conclusion can be drawn, however, since contributions to the
integrand come from waters of all kinds, especially when the 4-bonded clusters
are small.

2. CALCULATIONS

Monte Carlo calculations have been performed on the following systems :
216 ST2 waters [6] at 10°C, 1-000 g/ml ; 125 MCY waters [8] at 25°C, 0-997 g/ml :
216 MCY waters at 37°C, 0-993 g/ml. These calculations have been described
in detail earlier [9, 10]. 'The analysis of the hydrogen bonding on these systems
along the lines of Geiger, Stillinger and Rahman [11] was also given earlier,
using a geometric definition of the hydrogen bond [2], that places cutoffs on the
oxygen—oxygen distance, R,,, hydrogen-oxygen-oxygen angle 8y, lone pair-
oxygen<oxygen angle, 0, p and the hydrogen—oxygen—oxygen—lone pair dihedral
angle, &y. (The lone pair is the tetrahedrally located site like the negative
charges in the ST2 model.) Itis to be stressed that this was the sole criterion for
hydrogen bonding and it could quite easily yield more than four hydrogen-bonded
neighbours. As opposed to the analysis done in [3 a] on the molecular dynamics
run on the ST2 water, we did not discard any of these bonds.

Geiger, Stillinger and Rahman found that the essential parameter for the
descrxptlon of the network properties is the average number of hydrogen bonds
per molecule, ngz. This result was subsequently confirmed on the analysis of
the Monte Carlo results. For this reason, we will always specify ny;; only,
since the actual combination of cut-offs is of little importance in the network
analysis.

The analysis reported in this paper was performed using the history tape of
the Monte Carlo runs mentioned above, analysing every 500th configurations.
This was shown to cause neglible error only, due to the correlated nature of the
Markov chain generated by the Metropolis method.

3. RESULTS AND DISCUSSION

This section describes the comparisons obtained on the bond percolation
represented by (1, 2), on the site percolation represented by (3, 5) and on the
density of 4-bonded patches.

3.1. Bond percolation results

The f(ngg) values computed from the different Monte Carlo calculations
are compared with f*(nyg) in figure 1. The agreement is excellent for j =0
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Figure 1. Computed fj(nup) compared with the fj*(nun) obtained from Monte Carlo
simulations on the MCY and ST2 waters. Full line: fi*(nus); O, fo(nus);
A, [i(nus); @, fo(nus); X%, fs(zus); W, fi(nus).

and 1 for the full range of nyp. For j=2, discrepancies start to appear from
ngp =23, for j =3 after nyy=2-5. Forj=4, the agreement is still excellent until
ngp=2-5 but for the larger values a qualitative differences appears, since
fsX(ngg) is a monotonously increasing function while the f,(nyy) values obtained
from the computer simulation exhibit a maximum, as for j=1,2 and 3. Itisto
be noted that hydrogen-bond definitions resulting in nyp > 2-5 are already fairly
weak [2, 11]. To obtain a better understanding, we prepared a plot of f#(ngg)
for all possible combinations of j=0, 1, 2, 3, 4, 5 and 2=3, 4, 5, 6 on figure 2.
It is rather remarkable that for low ngy or low j values f#(nyp) is nearly indepen-
dent of . As a consequence, setting s =4 is not a serious restriction for these j
and ngp values. Comparison of figures 1 and 2 shows that when fA(ngp)
deviates from f3(ngp) (i.e. for nyp>2-5) fS5(nyg) is a better approximation to

fj(”HB)-

et

Figure 2. f;*(nar) computed for various z values. The location of the maximum defines j
and the point where a curve reaches the x-axis, defines 2.
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Figure 3. 'The best 2 values as a function of nug for the MCY and ST2 waters.

The question of the best & value was also examined by a numerical com-
parison of the set of f(nyy) values obtained from a given hydrogen bond
definition with the corresponding f(nyy) values with different zs. The best
z value was obtained by minimizing the sum of absolute deviations overj. The
values obtained are shown on figure 3 for both the ST2 and MCY waters. For
the nyy range 1-5-3-5, =4 gives the best agreement between the computer
simulations and the percolation model. As discussed earlier, this range largely
coincides with ‘ reasonable ’ hydrogen bonds. As expected, for larger nygs 2
values greater than 4 give the best agreement. On the other hand, it is some-
what of a surprise that for ngp <15 $=5 is better than z=4. However, this
latter discrepancy between the simulation and the percolation model is quite
insignificant since there is very little difference between fA(ngg) and f5(ngp)
in this range.

There is a simple reason for the success of the (1) to predict f(ngy). For
i=0,

fo'(rap) =1 —nygp + O(ngp®), (7)

which approximates the 1 —nyy line for small n,;5.  In any event, the depen-
dence of f#(nyp) on z is only in the second order. For other j values, consider
f#(map)/f# (ngp). Using (1,2) we obtained the following expression after
straightforward algebraic manipulations :

ff(nHB)/ff+l(nHB)=(zfl)z St A ( il ) (8)

A z"'nHB‘{"l 2-nHB+1

Considering ngp=j (that is, at the maximum of f#(ngg)), the limit of the first
factor (as z tends to infinity) is e, the limit of the third factor is 1/e and the
second factor is identically one. Thus for 2> nyy, this expression approaches
one, which expresses z the independence of f; from z at a smaller j values. 1In
practice, the errors in the two approximations of e largely cancel so even for
2z—j>1 the ratio approaches unity within 5 per cent.
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3.2. Site percolation results

It was found to be very fruitful in explaining the properties of supercooled
water to consider the correlated site percolation problem where water molecules
with exactly four hydrogen bonds are specially labelled and then the clusters of
these labelled waters are studied.

MCY water

0.06 o W,
a Wp
AW,

004 X Wa

wi
0.02
0 1

0.8

Figure 4. Wi(c) obtained for the percolation model and computer simulation. Full line :
Wit c); O, Wile); A, Wile); A Wile); X, Wio).

The weight fraction of clusters of size 1, 2, and 3, W, is shown in figure 4,
obtained from the computer simulations on the MCY water. 'The agreement is
good for s=1 and only qualitative for s=2 and 3. Furthermore, unlike for f;,
similar ngy values obtained from different systems may yield different W,
values, showing that this quantity is more sensitive to the finer details of the
system than f;. This is to be expected, since the derivation of W ! not only
assumes 2 =4, but also excludes hydrogen-bonded loops of 3, 4 or 5 members for
W,, W, and W, respectively. Such loops, however, are known to exist in these-
water models [12, 13]. In particular, [12] found 0-06, 0-16 and 0-35 loops per
water molecule of consisting of 3, 4 and 5 waters, respectively, when nyp=3-88 ;
0, 0-08 and 0-34 loops per water molecules when nyg=2-26.

3.3. Density results

The running coordination number difference technique of [5] (equation (6))
was used to examine the density difference between 4-bonded patches and bulk
water. In this study both the energetic and geometric hydrogen-bond definitions
were employed. The energetic hydrogen bonds were defined by Vgg=
—14-96 k] mol~! and Vgp= —12-55 k] mol~! for the ST2 and MCY models,
respectively. These values coincide with one of the cut-offs used in [5] and [6],
respectively. The geometric definition used the strong hydrogen bond, as
defined in [2]. Other hydrogen-bond definitions were also examined but the
results were found to be essentially the same and are not shown here. The
resulting running coordination number difference curves are displayed on figure 5
for the ST2 and MCY waters. The ST2 An(r,) with the energetic hydrogen-
bond definition is similar to the one in [5], although not identical, since they are



Percolation model 1009

Figure 5. The function An(r,) for the ST2 and MCY models. Full line : ST2, energetic
hydrogen bond ; — —— —, MCY, energetic hydrogen bond; —«- — - — , ST2,
geometric hydrogen bond ; ———-—-— , MCY, geometric hydrogen bond.

based on different simulations performed in different thérmodynamical en-
sembles. The An(r,)s obtained from the energetic hydrogen bond again display
the conflicting behaviour reported in [5] and [6]. However, they demonstrate
that the conflicting conclusions are simply due to the difference in the water
models used. This comparison also serves as a confirmation that the Vornoi
polyhedron technique and the coordination number difference technique give
essentially the same answer. The comparison of the results using different
types of hydrogen-bond definitions gives, however, a surprising result : while
for the MCY water no significant difference was found, the predicted density
shift of 4-bonded patches occur only with the energetic hydrogen-bond defini-
tion. To our knowledge, this is the first example where the two kinds of defi-
nitions give a significantly different answer.
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