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Virial-bias Monte Carlo methods 

Efficient sampling in the (T, P,N) ensemble  

by MIHALY MEZEI 

Department of Chemistry, Hunter College of the CUNY, 
New York, N.Y. 10021, U.S.A. 

(Received 5 August 1982 ; accepted 25 October 1982) 

A new sampling technique is proposed for the isothermal-isobaric 
(T, P, N) ensemble Monte Carlo computer simulation. The new method 
selects the volume perturbations by using the partial derivative of the volume 
with respect to the internal energy. Test  calculations on the Lennard-Jones 
fluid show significant improvements over the conventionally used method. 

1. INTRODUCTION AND BACKGROUND 

Computer simulation of liquids by the Metropolis method has recently 
become a frequently used tool of the liquid state theorist. The method was 
originally introduced in the (T, V, N) ensemble [1], but it can be generalized 
directly for use in the (T, P, N) [2, 3] or (T, V,/x) [4, 5] ensembles. The 
(T, P, N) ensemble method was formalized by Wood and used for hard spheres 
and Lennard-Jones particles. It was also applied successfully to molecular 
liquids by Owicki and Scheraga [6] and Jorgensen [7]. The convergence 
characteristics of the method were studied recently on liquid water by Jorgensen 
[81. 

The long runs necessary for achieving sufficiently converged results prompted 
several improvements in the sampling techniques. The framework of possible 
modifications of the Metropolis method was given by Hastings [9]. Generally, 
use of some detailed information about the system allows one to replace a 
uniform sampling distribution for a given parameter by a well defined new 
distribution. The choice of the parameter and the detailed information to be 
used characterizes the method. For example, in the gradient-bias methods 
[10-12], the displacement vectors of a given particle are sampled from a dis- 
tribution that gives higher weight to move along the direction of the force and 
the cavity-bias (T, V,/x) method attempts insertion of a new particle into 
cavities only [13]. 

The purpose of the present paper is to propose an improved sampling dis- 
tribution for the volume change in the (T, P, N) ensemble simulation. Model 
calculations are presented for the Lennard-Jones fluid to demonstrate the 
improvements achieved. 

2. THEORY 

Simulation in the (T, P, N) ensemble consists of two different steps : per- 
turbation of a particle and perturbation of the volume. The perturbation of a 
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1076 M. Mezei 

particle is done the same way as in the (T, V, N) ensemble and is not discussed 
here in detail. In the original realization of the (T, P, N) ensemble simulation 

• (in the following : TPN) the volume change 3V is chosen uniformly from the 
interval 

--AV<~SV<~AV (1) 

and the new configuration is accepted with probability 

Pac~=min{1, exp [(U o- Uo-P3V+kTN(ln V n - l n  Vo))/kT]}. (2) 

Here N is the number of particles in the system, k is the Boltzmann factor, T 
is the absolute temperature, P is the external pressure specified and U is the 
eonfigurational internal energy of a configuration. The subscripts o and n 
refer to the configurations before and after the perturbation, respectively. The 
last term in the exponential is equivalent to a factor of (Vn/Vo) u. It enters the 
formalism through the transformation to scaled coordinates that avoids inte- 
gration over changing volume. 

The improved sampling is developed by analogy with the improved dis- 
placement techniques mentioned above. For displacements, the force acting 
on a particle was used to obtain a sampling distribution for the particle dis- 
placements. For volume perturbation, the quantity that is the analogue of the 
the force acting on a particle is 

OU p kTN/V. (3) Fv=-~-#(U+PV-kTNln V)=~-#+  - 

For systems with pairwise additive potentials u, the volume derivative can be 
derived in the same way as the pressure equation is obtained [14] : 

] 0U 1 3 ( r i - r j ) .A iu ( r i ,  r~) +2~rpu(R~)g(Re)/3, (4) 
~V 

where R~ is the cut-off applied of the potential, p is the liquid density and g(R) 
is the radial distribution function. The second term in (4) is due to the finite, 
discontinuous cut-off usually applied to the potential. 

In the choice of the sampling distribution for 3 V, prior experience in sampling 
the coordinate perturbation can give useful guidance. Two sampling distri- 
butions were tried. The first was the direct analogy of the force-bias method 
of Pangali, Rao and Berne [11] and the second followed the ideas of Rossky, 
Doll and Friedman [12]. In the first case, that we call exponential virial-bias 
(T, P, N) method (in the following: EVB/TPN), the sampling distribution 
was chosen as 

exp [A3 VFv/k T]/n(V), (5) 

where n(V) is a normalization constant : 

n(V) = 2kT sinh (~FvA V/kT)/AFv (6) 

assuming that 3V is restricted to a finite interval (see (1)) and A is an empirical 
parameter. It was shown that for small AV, Z=0.5 is optimal. Random 
numbers from the distribution (5) can be sampled using the following ex- 
pression : 

V = k T In [exp ( - )~A VFv/k T) + ~n(V) AFv/k T], (7) 
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Virial-bias Monte Carlo methods 1077 

where ~ is a (pseudo) random number with uniform distribution between 0 
and 1. 

When 3 V is sampled from (5), the acceptance expression has to be modified : 

P~c~= min{l, exp [( Uo-  U,~- P~ V + k TN(In V n - l n  Vo) )/k T] • 

x [n(Vo)/n(Vn)] • exp [ -  A(F%+F%)3V/kT]}.  (8) 

The second sampling distribution for 8V, that we call brownian virial-bias 
(T, P, N) method (in the following : BVB/TPN) ,  samples 3V from the distri- 
bution 

(4Act) -1/2 exp ( - 3V~/4A) + AFv/kT,  (9) 

where A is a constant related to the stepsize parameter AV [12] : 

A = AVe~6. (10) 

In the expression (9) the second term is a deterministic term and thus one only 
has to be concerned with sampling from the gaussian distribution. A con- 
venient way is to approximate it as a sum of uniformly distributed random 
variables. 

For the BVB/TPN,  the acceptance expression is 

Pae~ = min {1, exp [( U o -  U ~ -  P3 V + k TN(ln Vn - In Vo) )/k T ] • 
x exp [ -  ((3V+ Fnv A / k T ) ~ - ( 3 V - F %  A/kT)2)/(4A)]}. (11) 

3. CALCULATIONS AND RESULTS 

Test calculations have been performed on the Lennard-Jones fluid at re- 
duced density 0*=0.8  and reduced temperature T*=0-75. A cut-off of 
Rc=2.5c~ was used on the potential. Previous calculations [15] gave the 
reduced configurational internal energy as U * = -  5.78 +_ 0.01 and the reduced 
pressure P* = - 0-32 + 0-1. These results have been corrected for the cut-off [14] 
and thus correspond to the infinite range Lennard-Jones potential. 

The system studied contained 100 particles under face-centred cubic periodic 
boundary conditions, where the smallest image to image distance is 5.6e. The 
maximum particle displacement was set to 0.15e for all runs and the particles 
were perturbed by the force-bias technique [11] with A=0.5. The particles 
to be perturbed were selected by the shuffled-cyclic procedure [16]. Volume 
perturbations were performed after every 50 particle perturbations. A relatively 
high value was chosen, partly to obtain good statistics on the volume perturba- 
tions characteristics and partly because the use of the force-bias particle 
displacement in general calls for more frequent volume perturbations. The 
system was first equilibrated in the (T, V, N)  ensemble at the exact density, 
resulting U*=  -5 .775 and P * =  -0.281,  which fall well within the error limits 
of the previous study and thus verify most parts of the computer program 
used. 

For the (T, P, N) ensemble calculations, the reduced pressure was set to 
-0.02, a value that was obtained by deducing from -0-32  the contributions to 
the pressure from [ri-r~l >2-5cr and adding the correction due to the finite 
cut-off (see (4)). Starting from the equilibrated configuration, several 100 K 
long runs (1 K is equivalent to 1000 perturbations) were made in the (T, P, N) 
ensemble, using the different sampling techniques described. 
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1078 M. Mezei 

Th e  efficiency of the sampling can be characterized to some extent  by 
considering the changes in the acceptance ratio, ( P ~ e )  and the average of the 
magnitude of the accepted volume changes, (3V~).  Our 100 K configurations 
yield these quantities to 1-5 per cent accuracy. It is usually true that in- 
creasing (Pat.e) results in a decrease in (3Va)  and vice versa. If the successive 
volume values are considered to form a one dimensional random walk, then 
these two indices should be combined as (Pac~)(SVa) 2 [17]. 

As a final test, three long runs were performed using the A V and A values 
found optimal for the three methods studied here to compare the convergence 
of the average volume ( V )  and the isothermal compressibility K, a fluctuation 
property : 

~: = ( (  V z) - ( V)2)/k T 2 ( V )  ). (12) 

Tables 1-3 collect the convergence characteristics of the TPN, BVB/TPN 
and E V B / T P N  runs, respectively. The  op t imum value for A V was found to be 
5.0, 5.0 and 6"0-7.0 for the EVB/TPN, BVB/TPN and TPN methods,  res- 
pectively. For stepsizes near the optimal, A= 1.0 was found to be the best. 
However,  for larger stepsizes, progressively smaller values appear to be the 
best. Th e  reverse seems to be true for smaller stepsizes. 

Table  4 gives the value of the volume and the isothermal compressibility at 
various stages of the three long runs. Th e  error bounds given for ( V )  were 
computed  from 50 K block averages with the method of batch-means [18, 2]. 

T h e  values obtained for ( V )  are well within the respective error bounds,  
providing a rather good verification of the different sampling codes. T h e  
direction of the deviation from the reference value, 125o s, is in accord with the 
deviation of the pressure f rom the reference value obtained in our (T, V, N)  
ensemble run. 

Table 1. Convergence characteristics of the TPN method. 

AV (~Va) (Pace) (Pacc)(~Va) z 

4.0 1.58 0.590 1-48 
5.0 1-73 0-513 1.54 
6.0 1.97 0.438 1.70 
7.0 2-08 0.393 1-70 

10.0 2.23 0-267 1.33 

Table 2. Convergence characteristics of the BVB/TPN method. 

AV (~Va~ (Paec~ (Pace) (~Va~ 2 

3-0 1.47 0-914 1.96 
4-0 1-95 0.817 3-I1 
5-0 2-27 0.678 3-49 
6.0 2.55 0-504 3.28 
7-0 2.25 0-346 1.76 

10.0 1.53 0.130 0.30 
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Virial-bias Monte Carlo methods 

Table 3. Convergence characteristics of the EVB/TPN method. 

1079 

AV A <SVa> <Pace> <Paee><~Va> 2 

4-0 0.5 2.05 0-825 3.48 
4-0 0-7 2.67 0.863 4.03 
4-0 0.8 2.26 0.871 4.44 
4.0 0.9 2-35 0-886 4-91 
4.0 1-0 2-31 0.871 4.63 
4.0 1.1 2.46 0.860 5.19 
4.0 1.2 2.52 0.856 5.42 
4.0 1-3 2-46 0.841 5.10 
5.0 0-4 2.39 0.671 3-83 
5-0 0.5 2.47 0.717 4.37 
5.0 0.6 2-62 0.723 4.96 
5.0 0.7 2.74 0-735 5.52 
5.0 0-8 2.84 0.685 5.55 
5.0 0.9 2-92 0-714 6-10 
5.0 1.0 3.08 0-677 6.42 
5-0 1.1 3-05 0-670 6-27 
5-0 1.2 3.10 0.646 6.22 
6-0 0.5 2.89 0.557 4.65 
6.0 0.7 3.08 0.531 5-06 
6.0 1-0 3.64 0-478 6.37 
7-0 0-5 3.27 0-445 4.78 
7-0 0-6 3-22 0-434 4-51 
7.0 0.7 3.63 0.368 4-85 
7.0 0-8 3.60 0.347 4.51 
7-0 0-9 3.78 0.335 4-79 
7.0 1.0 3.79 0.323 4-66 

10.0 0.1 2-49 0-318 1.97 
10.0 0-2 2-79 0-289 2-25 
10-0 0.3 2.84 0.268 2-17 
10.0 0.4 3-20 0.234 2-40 
10.0 0-5 3-36 0-168 1.90 
10.0 0-6 3.24 0.158 1-66 

The  compressibility values still show significant differences although the 
longer TPN run appears to approach the E V B / T P N  result. The  compressibility 
obtained by the B V B / T P N  is much lower than the value obtained with the other 
two methods. However, it was also observed that the 50 K block averages are 
significantly more correlated for the B V B / T P N  than for either the TPN or the 
EVB/TPN, a fact that can account for the low value. 

4. DISCUSSION 

The  results obtained show that the sampling techniques presented in this 
paper allow better sampling of the configuration space using the (T, P, N)  
ensemble. The  variations experienced in the values of the isothermal com- 
pressibility again highlight the difficulties in getting reliable values for fluctuation 



D
ow

nl
oa

de
d 

B
y:

 [N
ew

 Y
or

k 
U

ni
ve

rs
ity

] A
t: 

18
:3

3 
16

 J
ul

y 
20

07
 

1080 

Table 4. 

M. Mezei 

Convergence of the volume and the isothermal compressibility. K using different 
sampling techniques. 

No. of TPN BVB/TPN EVB/TPN 
conf. ~ (V)  ~ (V)  ,~ ( V )  

50K 0.1396 125.70 
100K 0-1381 125.70 
150K 0-1215 127-45 
200K 0-1298 125-91 
250K 0.1323 126-06 
300K 0.1374 126-24 
350K 0.1409 126-43 
400K 0-1387 126.18 
450K 0.1356 126.22 
500K 0.1312 126.20 ± 1-5 
550K 0.1301 126.14 
600K 0-1345 126-25 
650K 0.1301 126.14 
700K 0-1305 126-16 
750K 0.1281 126-13 
800K 0-1284 126-20 
850K 0.1273 126.09 
900K 0.1286 126.08 
950K 0-1293 125.95 

1000K 0-1293 126-03 ±0-9 

0.1246 125.87 0.1284 124.87 
0.1103 126.30 0.1386 125.90 
0-1174 129-19 0.1207 126-59 
0.1150 126-32 0-1202 126-37 
0-1142 126.31 0.1240 126.53 
0.1092 126.40 0.1199 126.58 
0.1044 126.38 0.1236 126.67 
0.1064 126-57 0-1218 126.59 
0.1054 126.58 0-1224 126.37 
0.1071 126.58 ± 0.8 0.1228 126.21 ± 0-8 

(a) Configurations are in units of 1000 particle perturbations (K);  (b) AV=6.0, 5-0 
and 5.0 was used for TPN, BVB/TPN and EVB/TPN, respectively ; (c) A= 1.0 was used 
for EVB/TPN. 

properties.  The re  are significant variations between the performance  of EVB/  
TPN with different values and the theoretically derived ~ = 0-5 is not the best. 

The re  is an extra expense, however,  namely  the computa t ion  of the virial 
sum in (4). In  compar ison with the original method,  it is a significant addition, 
since it requires the forces on each of the particles [19]. However ,  it was also 
shown that  the computa t ion  of the forces is cost effective for the use in the pai'ticle 
per turbat ion already [11, 12]. We can thus conclude, that  if gradient-bias  
particle per turbat ions  are used, the extra effort  is only the updat ing of the virial 
sum. Th i s  becomes increasingly negligible as the potential  gets more  complex.  

T h e  quanti tat ive assessment of the gains is a ra ther  difficult task, since any 
criterion applied is necessarily arbi t rary to some extent. For  stepsizes near 
their  opt imal  values, the acceptance rate showed a 25-40 per cent improvemen t  
for the EVB/TPN over the TPN and a 15-25 per cent improvemen t  for the 
BVB/TPN over the TPN. T h e  average magni tude of the accepted volume 
changes also improved  by 40-50 per cent for the EVB/TPN and ~ 2 5  percent  
for the BVB/TPN. 

T h e  comparison of the error bounds  on ( V )  permits  one quanti tat ive 
compar ison of efficiency since it is known that  to decrease the error on a Monte  
Carlo average by a factor of c one needs a run that is c 2 t imes longer. Due  to 
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Virial-bias Monte Carlo methods 1081 

the stronger correlations found in the B V B / T P N  mentioned earlier, the error 
bounds obtained by the method of batch means are less reliable, thus com- 
parison will only be done between T P N  and EVB/TPN.  It is also worth 
noting that while the cumulative averages appear to converge rather fast for all 
techniques tried, the large error bounds obtained by the method of batch 
means indicate that the batch averages fluctuate rather strongly and thus the 
actual convergence may be less good than one could infer from the cumulative 
averages alone. 

By comparing the error bounds at 500 K in table 4, one can estimate that 
(1.5/0.8)2= 3.5 times longer TPN run is required to obtain the same precision. 
Considering the error bounds on the TPN run at 1000 K it appears that this 
factor is only slightly larger than two. The discrepancy between the two esti- 
mates is due to the uncertainty in the error bounds obtained by the method 
of batch means. Comparison of the combined index (Pacc)(~ V~) ~ shows a factor 
of 3.8. Thus, by conservative estimates, the E V B / T P N  offers a factor of two 
increase in the sampling efficiency over the T P N  and the gains may be as large 
as a factor of 3.8. 

It should be also stressed that the volume perturbation frequency was kept 
constant during all runs. A possible way of realizing the economies offered by 
the new sampling techniques proposed is to keep the run length the same but 
reduce the frequency of volume perturbations. The best procedure, though, 
would optimize the volume perturbation frequency separately for each tech- 
nique. Values used in the literature vary in a wide range from perturbing the 
volume at each step (hard spheres [2], Lennard-Jones mixtures [3]) to perturbing 
at each 3N or 5N steps (liquid water [6, 7]). 

In summary, we can conclude that the two new sampling techniques proposed 
offer significant improvement over the conventional (T, P, N) ensemble method, 
with E V B / T P N  performing better than BVB/TPN.  The fact that the improve- 
ments are rather sensitive to the biasing distribution suggests that the presently 
achieved gains can be further enhanced by better biasing functions. 

This research was supported by NIH Grant No. 5-R01-GM-24914. Fruit- 
ful discussions with Professor D. I,. Beveridge and Mr. T. R. Vasu are gratefully 
acknowledged. 
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