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Virial-bias Monte Carlo methods
Efficient sampling in the (T, P,N) ensemble

by MIHALY MEZEI

Department of Chemistry, Hunter College of the CUNY,
New York, N.Y. 10021, U.S.A.

(Received 5 August 1982 ; accepted 25 October 1982)

A new sampling technique is proposed for the isothermal-isobaric
(T, P, N) ensemble Monte Carlo computer simulation. The new method
selects the volume perturbations by using the partial derivative of the volume
with respect to the internal energy. Test calculations on the Lennard-Jones
fluid show significant improvements over the conventionally used method.

1. INTRODUCTION AND BACKGROUND

Computer simulation of liquids by the Metropolis method has recently
become a frequently used tool of the liquid state theorist. The method was
originally introduced in the (7, V, N) ensemble [1], but it can be generalized
directly for use in the (T, P, N) [2,3] or (T, V,n) [4, 5] ensembles. The
(T, P, N) ensemble method was formalized by Wood and used for hard spheres
and Lennard-Jones particles. It was also applied successfully to molecular
liquids by Owicki and Scheraga [6] and Jorgensen [7]. The convergence
characteristics of the method were studied recently on liquid water by Jorgensen
[81.

The long runs necessary for achieving sufficiently converged results prompted
several improvements in the sampling techniques. The framework of possible
modifications of the Metropolis method was given by Hastings [9]. Generally,
use of some detailed information about the system allows one to replace a
uniform sampling distribution for a given parameter by a well defined new
distribution. The choice of the parameter and the detailed information to be
used characterizes the method. For example, in the gradient-bias methods
[10-12], the displacement vectors of a given particle are sampled from a dis-
tribution that gives higher weight to move along the direction of the force and
the cavity-bias (7, V, u) method attempts insertion of a new particle into
cavities only [13].

The purpose of the present paper is to propose an improved sampling dis-
tribution for the volume change in the (7, P, N) ensemble simulation. Model
calculations are presented for the Lennard-Jones fluid to demonstrate the
improvements achieved.

2. THEORY

Simulation in the (7, P, N) ensemble consists of two different steps: per-
turbation of a particle and perturbation of the volume. The perturbation of a
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particle is done the same way as in the (7, V, N) ensemble and is not discussed
here in detail. In the original realization of the (T, P, N) ensemble simulation
. (in the following : TPN) the volume change 8V is chosen uniformly from the
interval

—AV<SV <AV (1)
and the new configuration is accepted with probability

P,..=min{l, exp [(U,— U,— P8V +kTN(In V,—1n V,))/kT]}. (2)

Here N is the number of particles in the system, & is the Boltzmann factor, T
is the absolute temperature, P is the external pressure specified and U is the
configurational internal energy of a configuration. The subscripts o and n
refer to the configurations before and after the perturbation, respectively. The
last term in the exponential is equivalent to a factor of (V,/V,)¥. It enters the
formalism through the transformation to scaled coordinates that avoids inte-
gration over changing volume,

The improved sampling is developed by analogy with the improved dis-
placement techniques mentioned above. For displacements, the force acting
on a particle was used to obtain a sampling distribution for the particle dis-
placements. For volume perturbation, the quantity that is the analogue of the
the force acting on a particle is

d aU
-2 - P . 3
Fy=5(U+PV—kTNIn V)==5+P—KIN[V 3)

For systems with pairwise additive potentials #, the volume derivative can be
derived in the same way as the pressure equation is obtained [14] :

P N
a—g= 1/[3 i;j("i —r;) - Bary, "j)] +2mpu(Ro)g(R.)/3, (4)
where R, is the cut-off applied of the potential, p is the liquid density and g(R)
is the radial distribution function. The second term in (4) is due to the finite,
discontinuous cut-off usually applied to the potential.

In the choice of the sampling distribution for 8V, prior experience in sampling
the coordinate perturbation can give useful guidance. Two sampling distri-
butions were tried. The first was the direct analogy of the force-bias method
of Pangali, Rao and Berne [11] and the second followed the ideas of Rossky,
Doll and Friedman [12]. In the first case, that we call exponential virial-bias
(T, P, N) method (in the following : EVB/TPN), the sampling distribution
was chosen as

exp [NSVE,[kT]In(V), 5)
where n(1”) is a normalization constant :
n(V)=2kT sinh (AF,AV[kT)/AF, (6)

assuming that 8V is restricted to a finite interval (see (1)) and A is an empirical
parameter. It was shown that for small AV, A=0-5 is optimal. Random
numbers from the distribution (5) can be sampled using the following ex-
pression :

8V =kT In [exp (— AAVF,JkT)+ én(V)AF, KT, Q)
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where ¢ is a (pseudo) random number with uniform distribution between 0
and 1.
When 8V is sampled from (5), the acceptance expression has to be modified :
P, .=min{l, exp [(U,— U,—P3V+kTN(In V,—1In V,))/kT] *
x [(Vo)m(Va)] » exp [— MFo + F,)V[RT]}. - (8)
The second sampling distribution for 8V, that we call brownian virial-bias

(T, P, N) method (in the following : BVB/TPN), samples 6V from the distri-
bution

(4Am) Y2 exp (—8V?/4A)+ AF |kT, 9)
where A is a constant related to the stepsize parameter AV [12]:
A=AV?/6. (10)

In the expression (9) the second term is a deterministic term and thus one only
has to be concerned with sampling from the gaussian distribution. A con-
venient way is to approximate it as a sum of uniformly distributed random
variables.

For the BVB/TPN, the acceptance expression is

P,.,=min {1, exp [(U,— U, — P8V + kTN(In V,,—In V,))/kT] *
sexp [~ ((8V + Fr, AJRT):—(8V — Fo, ART)2)[(44)]}. (1)

3. CALCULATIONS AND RESULTS

Test calculations have been performed on the Lennard-Jones fluid at re-
duced density p*=0-8 and reduced temperature T*=0-75. A cut-off of
R,=2-50¢ was used on the potential. Previous calculations [15] gave the
reduced configurational internal energy as U*= —5-78 +0-01 and the reduced
pressure P*= —0-32 £+ 0-1. 'These results have been corrected for the cut-off [14]
and thus correspond to the infinite range Lennard-Jones potential.

The system studied contained 100 particles under face-centred cubic periodic
boundary conditions, where the smallest image to image distance is 5-66. The
maximum particle displacement was set to 0-15¢ for all runs and the particles
were perturbed by the force-bias technique [11] with A=0-5. The particles
to be perturbed were selected by the shuffled-cyclic procedure [16]. Volume
perturbations were performed after every 50 particle perturbations. A relatively
high value was chosen, partly to obtain good statistics on the volume perturba-
tions characteristics and partly because the use of the force-bias particle
displacement in general calls for more frequent volume perturbations. The
system was first equilibrated in the (7, V, N) ensemble at the exact density,
resulting U* = —5-775 and P*= —0-281, which fall well within the error limits
of the previous study and thus verify most parts of the computer program
used.

For the (T, P, N) ensemble calculations, the reduced pressure was set to
—0-02, a value that was obtained by deducing from —0-32 the contributions to
the pressure from |[r;—7;|>2-5¢ and adding the correction due to the finite
cut-off (see (4)). Starting from the equilibrated configuration, several 100 K
long runs (1 K is equivalent to 1000 perturbations) were made in the (7, P, N)
ensemble, using the different sampling techniques described.
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The efficiency of the sampling can be characterized to some extent by
considering the changes in the acceptance ratio, {P,..> and the average of the
magnitude of the accepted volume changes, (¥ ,>. Our 100 K configurations
yield these quantities to 1-5 per cent accuracy. It is usually true that in-
creasing {P,..> results in a decrease in {8V ,) and vice versa. If the successive
volume values are considered to form a one dimensional random walk, then
these two indices should be combined as (P,..>{3V,>? [17].

As a final test, three long runs were performed using the AV and A values
found optimal for the three methods studied here to compare the convergence
of the average volume (V) and the isothermal compressibility «, a fluctuation
property :

e =({V2) =<KV RT VD). (12)

Tables 1-3 collect the convergence characteristics of the TPN, BVB/TPN
and EVB/TPN runs, respectively. The optimum value for AV was found to be
5.0, 5-0 and 6:0-7-0 for the EVB/TPN, BVB/TPN and TPN methods, res-
pectively. For stepsizes near the optimal, A=1-0 was found to be the best.
However, for larger stepsizes, progressively smaller values appear to be the
best. The reverse seems to be true for smaller stepsizes.

Table 4 gives the value of the volume and the isothermal compressibility at
various stages of the three long runs. The error bounds given for (V) were
computed from 50 K block averages with the method of batch-means [18, 2].

The values obtained for (V) are well within the respective error bounds,
providing a rather good verification of the different sampling codes. The
direction of the deviation from the reference value, 1250, is in accord with the
deviation of the pressure from the reference value obtained in our (7, V, N)
_ensemble run.

Table 1. Convergence characteristics of the TPN method.

AV V> {Pacc) {Pace><8Va>?
4-0 1-58 0-590 1-48
50 1-73 0-513 1-54
60 1.97 0-438 1-70
7-0 2-08 0-393 1-70
10-0 2:23 0-267 1-33

Table 2. Convergence characteristics of the BVB/TPN method.

AV {8Va> {Pace> {Pace>(8Va>*
3-0 1-47 0-914 1.96
40 1-95 0-817 311
5-0 2-27 0-678 3-49
6-0 2-55 0-504 3.28
7-0 2:25 0-346 1.76

10-0 1-53 0-130 0-30
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Table 3. Convergence characteristics of the EVB/TPN method.

AV A {8Va> {Pace> {Pace><dVa>?
4-0 0-5 2:05 0-825 3-48
40 0-7 2:67 0-863 4-03
4-0 0-8 2:26 0-871 4-44
4-0 0-9 2-35 0-886 491
4-0 1.0 231 0-871 4-63
4-0 1-1 2:46 0-860 5-19
4-0 1-2 2:52 0-856 5-42
4.0 1-3 2:46 0-841 5-10
5-0 0-4 2-39 0-671 3-83
5-0 0-5 2:47 0-717 437
50 0-6 2-62 0-723 4-96
5:0 0-7 2.74 0-735 5-52
5.0 0-8 2-84 0-685 5-55
5-0 0-9 2-92 0-714 6-10
5-0 1.0 3.08 0-677 6-42
5-0 1-1 3.05 0-670 6-27
5-0 1.2 3-10 0-646 6-22
6-0 0-5 2-89 0-557 4-65
6-0 0-7 3.08 0-531 5-06
6-0 1-0 3-64 0-478 6-37
7-0 0-5 3.27 0-445 4-78
7-0 0-6 3.22 0-434 4-51
7-0 07 3-63 0-368 4-85
7-0 0-8 3-60 0-347 4-51
7-0 0-9 3.78 0-335 479
7-0 1-0 3.79 0-323 4-66
10-0 0-1 2-49 0-318 1.97
10-0 0-2 2-79 0-289 225
10-0 03 2-84 0-268 2-17
10-0 0-4 3-20 0-234 2-40
10-0 0-5 3-36 0-168 1-90
10-0 0-6 3.24 0-158 1-66

The compressibility values still show significant differences although the
longer TPN run appears to approach the EVB/TPN result. The compressibility
obtained by the BVB/TPN is much lower than the value obtained with the other
two methods. However, it was also observed that the 50 K block averages are
significantly more correlated for the BVB/TPN than for either the TPN or the
EVB/TPN, a fact that can account for the low value.

4. DiscussiON

The results obtained show that the sampling techniques presented in this
paper allow better sampling of the configuration space using the (7, P, N)
ensemble. The variations experienced in the values of the isothermal com-
pressibility again highlight the difficulties in getting reliable values for fluctuation
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Table 4. Convergence of the volume and the isothermal compressibility « using different
sampling techniques.

No. of TPN BVB/TPN EVB/TPN
conf. '3 V> K V> 3 V>
S0 K 0-1396 125-70 0-1246 125-87 0-1284 124-87

100 K 0-1381 125-70 0-1103 126-30 0-1386 125-90

150 K 0-1215 127-45 0-1174 129-19 0-1207 126-59

200 K 0-1298 125-91 0-1150 126-32 0-1202 126-37

250 K 0-1323 126-06 0-1142 126-31 0-1240 126-53

300 K 0-1374 126-24 0-1092 126-40 0-1199 126-58

350K 0-1409 126-43 0-1044 126-38 0-1236 126-67

400 K 0-1387 126-18 0-1064 126-57 0-1218 126-59

450 K 0-1356 126-22 0-1054 126-58 0-1224 126-37

500 K 0-1312 126-20+1-5 0-1071 126-58+0-8 0-1228 126-21 +0-8

550 K 0-1301 126-14

600 K 0-1345 126-25

650 K 0-1301 126-14

700 K 0-1305 126-16

750 K 0-1281 126-13

800 K 0-1284 126-20

850 K 0-1273 126-09

900 K 0-1286 126-08

950 K 0-1293 125-95

1000 K 0-1293 126-03 +0-9

(a) Configurations are in units of 1000 particle perturbations (K); (4) AV =6-0, 5-0
and 5-0 was used for TPN, BVB/TPN and EVB/TPN, respectively ; (¢) A=1-0 was used
for EVB/TPN.

properties. There are significant variations between the performance of EVB/
TPN with different values and the theoretically derived A=0-5 is not the best.

There is an extra expense, however, namely the computation of the virial
sum in (4). In comparison with the original method, it is a significant addition,
since it requires the forces on each of the particles [19]. However, it was also
shown that the computation of the forces is cost effective for the use in the particle
perturbation already [11,12]. We can thus conclude, that if gradient-bias
particle perturbations are used, the extra effort is only the updating of the virial
sum. This becomes increasingly negligible as the potential gets more complex.

The quantitative assessment of the gains is a rather difficult task, since any
criterion applied is necessarily arbitrary to some extent. For stepsizes near
their optimal values, the acceptance rate showed a 25-40 per cent improvement
for the EVB/TPN over the TPN and a 15-25 per cent improvement for the
BVB/TPN over the TPN. The average magnitude of the accepted volume
changes also improved by 40-50 per cent for the EVB/TPN and ~ 25 percent
for the BVB/TPN.

The comparison of the error bounds on (¥) permits one quantitative
comparison of efficiency since it is known that to decrease the error on a Monte
Carlo average by a factor of ¢ one needs a run that is ¢? times longer. Due to
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the stronger correlations found in the BVB/TPN mentioned earlier, the error
bounds obtained by the method of batch means are less reliable, thus com-
parison will only be done between TPN and EVB/TPN. It is also worth
noting that while the cumulative averages appear to converge rather fast for all
techniques tried, the large error bounds obtained by the method of batch
means indicate that the batch averages fluctuate rather strongly and thus the
actual convergence may be less good than one could infer from the cumulative
averages alone.

By comparing the error bounds at 500 K in table 4, one can estimate that
(1-5/0-8)2=3-5 times longer TPN run is required to obtain the same precision.
Considering the error bounds on the TPN run at 1000 K it appears that this
factor is only slightly larger than two. The discrepancy between the two esti-
mates is due to the uncertainty in the error bounds obtained by the method
of batch means. Comparison of the combined index (P, . >{8V,>%shows a factor
of 3-8. Thus, by conservative estimates, the EVB/TPN offers a factor of two
increase in the sampling efficiency over the TPN and the gains may be as large
as a factor of 3-8.

It should be also stressed that the volume perturbation frequency was kept
constant during all runs. A possible way of realizing the economies offered by
the new sampling techniques proposed is to keep the run length the same but
reduce the frequency of volume perturbations. The best procedure, though,
would optimize the volume perturbation frequency separately for each tech-
nique. Values used in the literature vary in a wide range from perturbing the
volume at each step (hard spheres [2], Lennard-Jones mixtures [3]) to perturbing
at each 3N or 5N steps (liquid water [6, 7]).

In summary, we can conclude that the two new sampling techniques proposed
offer significant improvement over the conventional (7, P, N) ensemble method,
with EVB/TPN performing better than BVB/TPN. The fact that the improve-
ments are rather sensitive to the biasing distribution suggests that the presently
achieved gains can be further enhanced by better biasing functions.

This research was supported by NIH Grant No. 5-R01-GM-24914.  Fruit-
ful discussions with Professor D. I.. Beveridge and Mr. T. R. Vasu are gratefully
acknowledged.
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