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Excess free energy of different water models
computed by Monte Carlo methods

by MIHALY MEZEI

Chemistry Department, Hunter College of the City University of New York,
695 Park Avenue, New York, N.Y. 10021 U.S.A.

(Received 13 April 1982 ; accepted 3 August 1982)

The excess free energy and entropy of three water models (ST2, MCY and
SPC) are determined using Monte Carlo thermodynamic integration, with
soft spheres as a reference system. The method used is compared with two
other methods, the umbrella sampling and the overlap ratio methods. A
simple self check for the umbrella sampling method is proposed.

1. INTRODUCTION

Computation of the excess free energy from computer simulations of liquids
is a challenging computational task, since the computation of the partition
function or an equivalent is required. Several successful calculations have been
reported for simple liquids. The problem, however, appears to be more difficult
for associated liquids, and the appropriate methodology is not yet well
established.

In this paper we present a consideration of three methods for the computation
of the excess free energy : thermodynamic integration (in the following : TI)
[1], umbrella sampling (in the following : US) [2] and the overlap ratio method
(in the following : OR)[3]. These methods have already been used to calculate
the free energy of molecular liquids [3,4, 5]. New calculations are reported here
using T'I.

Calculations will be presented for three different pairwise additive water
models : The ab initio MCY model [6], and the empirical ST2 [7] and SPC [8]
models.

In the following section the basic difficulty in computing the free energy is
reviewed and brief descriptions of the TI, US and OR methods are provided.
The calculations are described in § 3. 'The results are presented and discussed
in §4.

2. BACKGROUND

Monte Carlo computer simulation of molecular liquids has up to this point
been focused on the calculation of internal energy and other average properties
of the system by the Metropolis method. The success of the Metropolis method
for computing ensemble averages of the internal energy and related properties
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1308 M. Mezei

is based on two special features of the method : (1) the sampling is successfully
reduced to the region of the configuration space where the energy is relatively
low, fluctuating around its ensemble average and (2) the need to compute the
partition function is eliminated. One finds the computation of heat-capacity to
be already more difficult by the Metropolis method, since it requires adequate
sampling of a larger region of the configuration space than the computation of the
energy. The difficulty increases further in free energy calculations, for several
reasons. First of all, the basic equation of statistical mechanics gives the Helmholtz
free energy as

A=—kTIn Z, (1)

where Z is the partition function, 7 is the temperature and % is the Boltzmann
constant. Direct calculation of Z converges notoriously slowly and the motiva-
tion of the Metropolis method was the elimination of the need to calculate Z in
the determination of U, Cy, etc. Thus, other routes are needed.

Simple algebraic manipulation shows that

J exp (— U(X)/kT) d X =VN[{exp (+ U/kT)), (2)

where U(X) is the internal energy of the configuration X, N is the number of
particles in the system, ¥ is the volume of the system and { ) denotes the
Boltzman average. The free energy problem can thus be reduced to the computa-
tion of an ensemble average, for which the Metropolis method can be used, at
least in principle. In practice, however, the Metropolis limitation of the
sampling to a small region of the configuration space makes it unsuitable for free
energy calculations by (2), as argued very convincingly by Owicki and Scheraga
[9] in their critique of the calculation performed by Sarkisov, Dashevsky and
Malenkov [10]. In a successful use of (2), it would be necessary to sample the
configuration space from energy values that are representative of the system
under consideration to energy values that are representative of the reference
system configurations, in this case a system with uniform distribution of con-
figurations (that would correspond to infinite temperature). Thus, the key to
successful calculation of the free energy is the sampling of a much larger part of
the configuration space than the Metropolis method supports.

An alternative approach is the use of the (7, V, u) ensemble [11, 12] or the
closely related particle insertion method [13, 14]. Unfortunately, they require
adequate sampling of configurations with large enough cavities to fit in a new
molecule and thus break down as the density of the system is increased. A
technique is available to make more efficient use of existing cavitiesin a (T, V, p)
simulation and thereby extending the density range where the method is usable
[15], but no way was found yet to increase the occurrence of these larger cavities.
The (7, V, 1) ensemble approach, however, may provide efficiently a reference
state that is close to the state under investigation [16].

Recent reviews of the several approaches that have been put forward for the
calculation of the excess free energy using Monte Carlo methods can be found in
Refs. [17, 18]. In the remaining part of this section we limit ourselves-to the
presentation of the three methods mentioned in the introduction and comment on
their relative strength and weaknesses.
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2.1. Thermodynamic integration

The TI method obtains the excess free energy difference between two states
of a system as an integral over a coupling parameter :

A=A~ A,

- —kT(ln § exp (— U(X)kT)dX —In § exp (— Uy (X)/kT) dX>
|4 14

- _kTOj1 d¢ (djdg)In | exp (— U(X)/kT) dX

vV

1
= OS dECAUY,, (3)
AU=U,- U, “)
Ug=(1-§€)U,+ £U, (5)

where the subscripts 0 and 1 refer to the two different states, state 0 being called
the ‘ reference state’ and { ), denotes a Boltzmann average with potential energy
U, The integration is carried out numerically and each point is a result of a
separate Monte Carlo run. It should be stressed that in each calculation only the
expectation value of the energy is required, which is known to be the fastest
converging quantity [19].

There is little accumulated experience for the determination of the number of
quadrature points needed. The minimum number of points is three since
(AU}, is not a linear function of ¢. A helpful fact is that the integrand (AU,
is a monotonous function of ¢ since straight differentiation shows that

AU dE= —((AU?, — (AU 2)RT <0. (6)

In the previous calculation from this laboratory [4] of the excess free energy
difference between the MCY water at 25°C and an ideal gas at the liquid density
an 8-point gaussian quadrature was used since (AU}, was varying strongly near
£=0. For the problems studied here fewer points should be sufficient since
here we are integrating between much more similar states and thus (AU,
varies over a relatively narrow range.

2.2. Umbrella sampling

The US method is based on the following expression for the excess free
energy difference between two states of a system [2, 17} :

AA = —kT In {exp (— AUJET)>,
= —kT In {exp (+ AURT)),. (7)

Notice that the second expression in (7) is a generalization of (2). TIor reasons
discussed in relation with (2), the application of (7) for Monte Carlo evaluation is
limited to rather small differences. Basically, the range of AU sampled in a
practical realization of the Metropolis Monte Carlo method is much smaller
than the range that significantly contributes to the integral in (7). 'T'o overcome
this, the US method changes the distribution from which the Markov chain is
sampled in a direction that ensures the sampling of regions of the configuration
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space that would have not have been sampled by the conventional Metropolis
Monte Carlo method. In this application, the sampling distribution is chosen
as w(AU) exp (— Uy/kT) where w(AU) is a weighting function chosen to
selectively give larger weight to configurations with energy that is much different
from the average energy of the reference state. Using the weighted distribution,
the excess free energy difference can be obtained as

AA’ = —kT In <exp (= AUJET)/w(AU)>,,/<1/0(AU)>,, (8)

where the subscript w refers to the change in the distribution sampled by the
Markov chain. Torrie and Valleau [2] used w(AU) in a tabular form. A
simpler, but not necessarily optimal choice was described recently by Scott and
Lee [5]. The presence of {1jw(AU)>, in (8) points to the limitation of the US
method : In order to sample a large enough range for AU one needs a w that
varies several orders of magnitudes over its range but this in turn will generate
progressively larger errors in {1jw(AU)>,,.

If the systems 1 and 0 are very different, the above limitations on the choice of
w necessitates the computation of A4’ in several steps. At each step the excess
free energy difference between a system with potential energy Uy, and Uy, is
computed with the US method. It follows that the multistage US calculation
can also provide the quadrature points for the integral in (3) at £,=0, &, ...,

x=1. Thus, a multistage US calculation can also provide the required

quadrature points far TT.

There is an opportunity for a self check in a multistage TT calculation that has
not been pointed out before. By simple manipulation of terms and recognizing
that Uy, — Uy, = AUAE,, it can be shown [20] that

KU, = Uy exp (= AUAERT) )y [ (exp (— AUAERT) )y, )

where Aé;=¢,,; — £,. Since a TI run with Uy, as the reference state should sample
adequately configurations with both U, ~ (U,>,, and U;x(U,),,,, (9) can be
expected to hold to a good precision and the value of (U, ),,,, obtained from the
Uy, run using (9) should agree with the value obtained from the Uy,,, run using
its definition. If they do not agree the sampling was certainly inadequate and the
result is in error,

The above argument shows the relative strengths of the two methods : The
US is more efficient than the T in covering the whole range of the coupling
parameter and in fact one US run can be used to obtain more than one quadrature
points for the TI by applying (9) to U and arbitrary A¢:

(AU, o= (AU exp (= AEAUJRT))¢exp (= AEAUIRT)Y;.  (10)

On the other hand, the possibility of interpolation/extrapolation of the integrand
in (3) may allow the computation of A4’ without sampling the whole range of
AU. A further advantage of the T1 is that relatively short runs are sufficient
since only the expectation value of a rapidly converging quantity is needed.

In summary, for systems that do not differ too much from each other, one or
two US can provide reliable results as opposed to at least three or more TI
calculations and is therefore the better choice. The same is true for systems that
are separated by a phase transition, since at quadrature points near the phase
transition the convergence of the run would drastically worsen. On the other
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hand, if the systems are different enough that 3 or more US runs are needed, it is
more likely that T'l will provide more reliable results with less intermediate
states, shorter runs and less human effort as well.

2.3. The OR method

The recently developed OR method combines the ideas of the US with those
of Bennett [21]. Tt is based on the following equation that is valid for certain
potentials [3] :

exp (AA'[RT) =exp (u)fyq(u)/fu,(»), (11)

where u is chosen to bean energy value that is sampled in simulations run by both
U, and U, and fy; () du is the fraction of the configurations that have energy
w'e[u, u+du] in the respective simulations. An interesting suggestion is given
for a weighting function to extend the energy range covered by a simulation.
A recent work [22] presents extensive calculations on liquid nitrogen and provides
numerical comparison with Bennett’s method.

The ensemble average of the weighting function used is not needed, which is
an advantage over the US method. However, if the two systems are too different,
again intermediate states have to be used. Furthermore, the OR method also
requires the calculation to cover fully the intermediate states and in particular
overlapping regions of two neighbouring states have to be sampled with rather
high precision. In our opinion, this latter is a drawback §ince in general the
uncertainties are the greatest in these regions. However, because of these
opposing arguments, actual comparisons are needed before any firm conclusions
can be drawn.

3. CALCULATIONS

Liquid water is considered the prototype associated liquid in Monte Carlo
methodology as witnessed by the numerous simulations published on this
system. Free energy calculations on liquid water have been performed using
(2)[10], TI[4], US[5]and even in the (T, V, i) ensemble using a system of only
four water molecules [23]. The present calculation of the excess free energy of
the MCY water uses a better choice of reference system as well as a larger cutoff
(70 A instead of 6-2 A) than [4] and is used as the basis for calculating the excess
free energy of the other two water models.

3.1. Thermodynamic integration calculations

The excess free energy of the MCY water was calculated using soft spheres
with p(e/kT)1/*=0-74 as the reference state (in the following : SS) [24]. The
MCY water then was used as a reference state for the calculation of the excess
free energy of both the ST2 and SPC waters. This is a logical choice of inter-
mediate state since the radial distribution functions show that the MCY water is
less structured than either the ST2 or SPC waters.

All systems included 64 molecules under face centred cubic periodic boundary
conditions, at a density of 0-997 g cm—® and a temperature of 250°C. This
system size implies that the distance between a molecule and its periodic image is
always greater than 14:0 A.  The potential cutoff is at 7-0 A.
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Table 1. Free energy and entropy results. (@) Energy is in k] mol~*. (b) entropy is in
JK-1mol™. (¢) Experimental results are from [10]. (d) SS data includes long
range correction. (¢) The ST2, MCY and SPC results used a 7-0 A cut-off.

SS MCY ST2 SPC Exp.
A4’ —34-02+0-25 —6-02+0-21 ~1-46 +0-46
A4’ 17-42 —-16-57 —22-59 —18:45 —20-02
<U> 8-89 —35-98 —44-02 —42-59 —41-4
S’ 28-6 —65-3 —-72-0 —-81-2 — 5384

Table 2. 'The values of (AU}, at the quadrature points of the thermodynamic integration.
3

The integral is approximated by the expression ¥, ¢i{AUDy,.
=1

i=

(AU, AU,
& ci ST2-MCY SPC-MCY
0-11270160 5/18 —~3-47+0-13 7-32+0-63
0-5 4/9 —5-86+0-13 —1.77 £0-38
0-88729833 5/18 —8-91+0-21 —9.83+0-38

Table 3. The values of (AU, at the quadrature points of the thermodynamic integration.
5

The integral is approximated by the expression Y, ci{AU;.
i=1

AU,
& i MCY-SS
0-046910 0-118463 51-844+0-63
0-230765 0-239314 45-69 +0-21
0-5 0-284444 36:69+0-13
O~769235 0-239314 25:06 £0-13
0-953089 0-118463 4.06+£0-21

All three calculations employed gaussian quadrature [25]. The number of
quadrature points was five for the MCY-SS calculation and three for the water—
water calculations. We estimate that the relatively small number of quadrature
points introduces only an error of 0-4 k] mol= or less, since the differences
between the water models are relatively small (see tables 2 and 3) and (AU, is a
monotonic function of £ (see (6)). The lengths of the runs were 500-700 K,
after 200-300 K equilibration.,

3.2. Umbrella sampling calculations

We attempted the calculation of A4’ between the ST2 and MCY waters with
the US method as well. 'The choice of the weighting function, however, proved
to be a much more difficult task than that encountered by Torrie and Valleau for
the Lennard-Jones fluid. It was found that the effect of the introduction of
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w(AU) (used in tabular form with linear interpolation, following Torrie and
Valleau) was mostly to shift the range of the A Us sampled but it has proven to be
very difficult to increase this range. The AA’ values obtained using different
w(AU)s showed large variations, even when a three stage US was attempted.
In hindsight, this appears to be reasonable since the topology of the subspace of
the configuration space with AUe[u, u + du] is necessarily more complex than the
topology of the subspace with U’e[u, u+du]. It is possible, that the half-US
method of Scott and Lee [5] might have proven successful. However, for reasons
given in § 2.2 we felt that the number of half-US calculations required would
exceed the number of quadrature points necessary for the TT at a given level of
accuracy.

4. RESULTS AND DISCUSSION

The free energy and entropy results are collected in table 1. 'The entropies
are computed from the formula

S =(4' = {U)T. (12)

The {U), values were obtained from previous computer simulations. ~Since no
simulations were performed using the same system size and boundary condition
combination, previous results were corrected for the difference in the pair
potential cutoff (see table 1.) from calculations run with larger cutoffs.

The (AU}, values at the quadrature points are listed in tables 2 and 3.
The accompanying error estimates are based on the method of batch means due
to Blackman and Tuckey [26] and independently to Wood [27].

The effect of the length of the runs has been studied from two different angles
in the ST2-MCY calculation. For one of the runs, the calculation was con-
tinued for another 840 K. The value obtained remained well within the error
bounds established by the first 700 K. We also examined the résults that were
obtained by runs of shorter length. The AA’ values obtained using 300 K and
500 K long runs were —5-94+0-17kJmol! and —5-98+0-21 k] mol-},
respectively. This shows that the T1I calculations can be performed using rather
short runs without noticeable loss of precision.

It has been recognized earlier [2, 17] that for the computation of the free
energy relatively small systems are sufficient. For example, 32 Lennard-Jones
particles were sufficient to compute accurately the free energy of the fluid.
Similar behaviour was found recently for liquid nitrogen [22]. Thus it can be
expected that the relatively small system size used here is adequate to compute the
excess free energy of these water models with a 7-0 A cutoff.

The adequacy of the 7:0 A cutoff to represent liquid water is a separate
problem and is relevant to the computation of any property, not just the free
energy. Most (T, V, N) ensemble calculations reported use cutoffs of 7-5-
7-75 A for the MCY water and 8-46 A or less for the ST2 water. It is a positive
feature of T1 that it is based on the computation of energy-type quantities, and
thus any technique that estimates the contribution of the long range tail of the
potential to the internal energy can be applied independently to each of the
quadrature points and thereby provide an estimate of the long range contributions
to the excess free energy as well. No correction of this kind was attempted in
this work.
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The previous T1 calculation [4] that used the ideal gas at liquid density as a
reference state gave the excess free energy of the MCY water as —18:03
+0-29 k] mol— as opposed to —16-57 + 0-25 k] mol-1 from the present calcula-
tion. The difference between the previous and present result is more than the
indicated. error-bounds allow. The larger cutoff used in the present work
should make the excess free energy more negative, thus it can not account for the
difference. 'The likely sources of this discrepancy are : (1) The extrapolation of
the strongly varying (AU, to { -0 in the previous calculation that was implicit
in the use of the gaussian quadrature and (2) the extension of the repulsive part of
the MCY potential with a simple 1/Ry'* term for Ry <4-5a.u. For these
reasons, the value obtained in the present paper is considered to be the more
accurate.

The comparison of the entropies shows that all three water models studied are
more structured than real water. The relatively large difference between the
ST2 and SPC waters is somewhat surprising since the comparison of the O-0,
O-H and H-H radial distribution functions [28, 29] would suggest a similar
degree of structure in these water models. The agreement with the experi-
mental value is best for MCY water.

This research was supported by NIH Grant No. 5-R01-GM-24914 and a
CUNY Faculty Research Award. Fruitful discussions with Professor D. L.
Beveridge are greatly acknowledged.
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