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MOLECULAR PHYSICS, 1982, VOL. 47, No. 6, 1307-1315 

Excess free energy of different water models  
computed by Monte Carlo methods 

by MIHALY MEZEI 

Chemistry Department, Hunter College of the City University of New York, 
695 Park Avenue, New York, N.Y. 10021 U.S.A. 

(Received 13 April 1982 ; accepted 3 August 1982) 

The excess free energy and entropy of three water models (ST2, MCY and 
SPC) are determined using Monte Carlo thermodynamic integration, with 
soft spheres as a reference system. The method used is compared with two 
other methods, the umbrella sampling and the overlap ratio methods. A 
simple self check for the umbrella sampling method is proposed. 

1. INTRODUCTION 

Computation of the excess free energy from computer simulations of liquids 
is a challenging computational task, since the computation of the partition 
function or an equivalent is required. Several successful calculations have been 
reported for simple liquids. The problem, however, appears to be more difficult 
for associated liquids, and the appropriate methodology is not yet well 
established. 

In this paper we present a consideration of three methods for the computation 
of the excess free energy : thermodynamic integration (in the following : T I )  
[1], umbrella sampling (in the following : US) [2] and the overlap ratio method 
(in the following : OR) [3]. These methods have already been used to calculate 
the free energy of molecular liquids [3, 4, 5]. New calculations are reported here 
using TI .  

Calculations will be presented for three different pairwise additive water 
models : The ab initio MCY model [6], and the empirical ST2 [7] and SPC [8] 
models. 

In the following section the basic difficulty in computing the free energy is 
reviewed and brief descriptions of the TI ,  US and OR methods are provided. 
The calculations are described in w 3. The results are presented and discussed 
in w 

2. BACKGROUND 

Monte Carlo computer simulation of molecular liquids has up to this point 
been focused on the calculation of internal energy and other average properties 
of 'the system by the Metropolis method. The success of the Metropolis method 
for computing ensemble averages of the internal energy and related properties 
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1308 M. Mezei 

is based on two special features of the method : (1) the sampling is successfully 
reduced to the region of the configuration space where the energy is relatively 
low, fluctuating around its ensemble average and (2) the need to compute the 
partition function is eliminated. One finds the computation of heat-capacity to 
be already more difficult by the Metropolis method, since it requires adequate 
sampling of a larger region of the configuration space than the computation of the 
energy. The difficulty increases further in free energy calculations, for several 
reasons. First of all, the basic equation of statistical mechanics gives the Helmholtz 
free energy as 

A= - k T l n  Z, (1) 

where Z is the partition function, T is the temperature and k is the Boltzmann 
constant. Direct calculation of Z converges notoriously slowly and the motiva- 
tion of the Metropolis method was the elimination of the need to calculate Z in 
the determination of U, C v, etc. Thus, other routes are needed. 

Simple algebraic manipulation shows that 

/ exp ( -  U(X)/kT) dX= V~/<exp (+  U/kT)), (2) 
V 

where U(X) is the internal energy of the configuration X, N is the number of 
particles in the system, V is the volume of the system and ( ) denotes the 
Boltzman average. The free energy problem can thus be reduced to the computa- 
tion of an ensemble average, for which the Metropolis method can be used, at 
least in principle. In practice, however, the Metropolis limitation of the 
sampling to a small region of the configuration space makes it unsuitable for free 
energy calculations by (2), as argued very convincingly by Owicki and Scheraga 
[9] in their critique of the calculation performed by Sarkisov, Dashevsky and 
Malenkov [10]. In a successful use of (2), it would be necessary to sample the 
configuration space from energy values that are representative of the system 
under consideration to energy values that are representative of the reference 
system configurations, in this case a system with uniform distribution of con- 
figurations (that would correspond to infinite temperature). Thus, the key to 
successful calculation of the free energy is the sampling of a much larger part of 
the configuration space than the Metropolis method supports. 

An alternative approach is the use of the (T, V,/~) ensemble [11, 12] or the 
closely related particle insertion method [13, 14]. Unfortunately, they require 
adequate sampling of configurations with large enough cavities to fit in a new 
molecule and thus break down as the density of the system is increased. A 
technique is available to make more efficient use of existing cavities in a (T, V, ix) 
simulation and thereby extending the density range where the method is usable 
[15], but no way was found yet to increase the occurrence of these larger cavities. 
The (T, V, I~) ensemble approach, however, may provide efficiently a reference 
state that is close to the state under investigation [16]. 

Recent reviews of the several approaches that have been put forward for the 
calculation of the excess free energy using Monte Carlo methods can be found in 
Refs. [17, 18]. In the remaining part of this section we limit ourselvesto the 
presentation of the three methods mentioned in the introduction and comment on 
their relative strength and weaknesses. 
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Free energy of liquid water 1309 

2.1. Thermodynamic integration 

The TI  method obtains the excess free energy difference between two states 
of a system as an integral over a coupling parameter : 

2xA' = A'I - A'o 

: - h T ( l n  I exp ( -  U I ( X ) / k T  ) d X - l n  I exp ( -  Uo(X)/kT ) d X ~  
\ V V / 

1 

= - h T  I d~ (d/d~)In .~ exp ( -  U~(X)/kT) d X  
0 

1 

0 

(3) 

A U =  U1- 7 Uo, (4) 

ue=(1-f)Uo+ U  (5) 

where the subscripts 0 and 1 refer to the two different states, state 0 being called 
the ' reference state'  and ( )~ denotes a Boltzmann average with potential energy 
U~. The integration is carried out numerically and each point is a result of a 
separate Monte Carlo run. It should be stressed that in each calculation only the 
expectation value of the energy is required, which is known to be the fastest 
converging quantity [19]. 

There is little accumulated experience for the determination of the number of 
quadrature points needed. The minimum number of points is three since 
(AU)~ is not a linear function of ~:. A helpful fact is that the integrand (AU)~ 
is a monotonous function of ~: since straight differentiation shows that 

d(  A U)~/d~ = - ( ( A U2)~ - ( A U)~2)/h T <~ O. (6) 

In the previous calculation from this laboratory [4] of the excess free energy 
difference between the MCY water at 25~ and an ideal gas at the liquid density 
an 8-point gaussian quadrature was used since (A U)~ was varying strongly near 

=0. For the problems studied here fewer points should be sufficient since 
here we are integrating between much more similar states and thus (AU)~ 
varies over a relatively narrow range. 

2.2. Umbrella sampling 

The US method is based on the following expression for the excess free 
energy difference between two states of a system [2, 17] : 

A A ' =  - k T  In (exp ( - A U / k T ) )  o 

= - k T  In (exp ( + A U/kT) )  1. (7) 

Notice that the second expression in (7) is a generalization of (2). For reasons 
discussed in relation with (2), the application of (7) for Monte Carlo evaluation is 
limited to rather small differences. Basically, the range of AU sampled in a 
practical realization of the Metropolis Monte Carlo method is much smaller 
than the range that significantly contributes to the integral in (7). To overcome 
this, the US method changes the distribution from which the Markov chain is 
sampled in a direction that ensures the sampling of regions of the configuration 
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1310 M. Mezei 

space that would have not have been sampled by the conventional Metropolis 
Monte Carlo method. In this application, the sampling distribution is chosen 
as w(AU)exp ( - U o / k T  ) where w(AU) is a weighting function chosen to 
selectively give larger weight to configurations with energy that is much different 
from the average energy of the reference state. Using the weighted distribution, 
the excess free energy difference can be obtained as 

A A ' =  - k T  In (exp ( -  AU/kT)/w(AU)),~/(1/w(AU)) w, (8) 

where the subscript w refers to the change in the distribution sampled by the 
Markov chain. Torrie and Valleau [2] used w(AU) in a tabular form. A 
simpler, but not necessarily optimal choice was described recently by Scott and 
Lee [5]. The presence of (1/w(AU))w in (8) points to the limitation of the US 
method : In order to sample a large enough range for AU one needs a w that 
varies several orders of magnitudes over its range but this in turn will generate 
progressively larger errors in (1/w(AU)),o. 

If the systems 1 and 0 are very different, the above limitations on the choice of 
w necessitates the computation of AA'  in several steps. At each step the excess 
free energy difference between a system with potential energy U~, and U~,+, is 
computed with the US method. It follows that the multistage US calculation 
can also provide the quadrature points for the integral in (3) at ~0 = 0, fa . . . .  , 
~k=l .  Thus, a multistage US calculation can also provide the required 
quadrature points for TI .  

There is an opportunity for a self check in a multistage T I  calculation that has 
not been pointed out before. By simple manipulation of terms and recognizing 
that U~,+A~--U~,= AUA~i, it can be shown [20] that 

(gl)~,+, = ( U 1 exp ( -  AUA~i/kT))~,/(ex p ( - AUA~i/kT))~,, (9) 

where A~: i = ~i+1 - ~i. Since a T I  run with U~, as the reference state should sample 
adequately configurations with both U 1 ~ (U1)~, and U 1 ~ (U1)~,+,, (9) can be 
expected to hold to a good precision and the value of (U1)~,+~ obtained from the 
U~, run using (9) should agree with the value obtained from the U~,+, run using 
its definition. If they do not agree the sampling was certainly inadequate and the 
result is in error. 

The above argument shows the relative strengths of the two methods : The 
US is more efficient than the T I  in covering the whole range of the coupling 
parameter and in fact one US run can be used to obtain more than one quadrature 
points for the T I  by applying (9) to U and arbitrary A~: : 

(AU)~+~g= ( A g  exp ( -  AfAU/kT)}~/(exp ( -  A~AU/kT)}~. (10) 

On the other hand, the possibility of interpolation/extrapolation of the integrand 
in (3) may allow the computation of AA' without sampling the whole range of 
AU. A further advantage of the T I  is that relatively short runs are sufficient 
since only the expectation value of a rapidly converging quantity is needed. 

In summary, for systems that do not differ too much from each other, one or 
two US can provide reliable results as opposed to at least three or more TI  
calculations and is therefore the better choice. The same is true for systems that 
are separated by a phase transition, since at quadrature points near the phase 
transition the convergence of the run would drastically worsen. On the other 
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Free energy o I liquid water 1311 

hand, if the systems are different enough that 3 or more US runs are needed, it is 
more likely that T I  will provide more reliable results with less intermediate 
states, shorter runs and less human effort as well. 

2.3. The OR method 
The recently developed OR method combines the ideas of the US with those 

of Bennett [21]. It is based on the following equation that is valid for certain 
potentials [3] : 

exp (AA'/kT) = exp (U)fvo(U)/fv,(u), (11) 

where u is chosen to be an energy value that is sampled in simulations run by both 
U0 and U 1 and fu,(U) du is the fraction of the configurations that have energy 
u'e[u, u+du] in the respective simulations. An interesting suggestion is given 
for a weighting function to extend the energy range covered by a simulation. 
A recent work [22] presents extensive calculations on liquid nitrogen and provides 
numerical comparison with Bennett's method. 

The ensemble average of the weighting function used is not needed, which is 
an advantage over the US method. However, if the two systems are too different, 
again intermediate states have to be used. Furthermore, the OR method also 
requires the calculation to cover fully the intermediate states and in particular 
overlapping regions of two neighbouring states have to be sampled with rather 
high precision. In our 'opinion, this latter is a drawback gince in general the 
uncertainties are the greatest in these regions. However, because of these 
opposing arguments, actual comparisons are needed before any firm conclusions 
can be drawn. 

3. CALCULATIONS 

Liquid water is considered the prototype associated liquid in Monte Carlo 
methodology as witnessed by the numerous simulations published on this 
system. Free energy calculations on liquid water have been performed using 
(2) [i0], TI [4], USL[5 ] and even in the (T, V,/x) ensemble using a system of only 
four water molecules [23]. The present calculation of the excess free energy of 
the MCY water uses a better choice of reference system as well as a larger cutoff 
(7.0 A instead of 6.2 A) than [4] and is used as the basis for calculating the excess 
free energy of the other two water models. 

3.1. Thermodynamic integration calculations 
The excess free energy of the MCY water was calculated using soft spheres 

with p(E/kT)lI~=0.74 as the reference state (in the following: SS) [24]. The 
MCY water then was used as a reference state for the calculation of the excess 
free energy of both the ST2 and SPC waters. This is a logical choice of inter- 
mediate state since the radial distribution functions show that the MCY water is 
less structured than either the ST2 or SPC waters. 

All systems included 64 molecules under face centred cubic periodic boundary 
conditions, at a density of 0.997 g cm -3 and a temperature of 250~ This 
system size implies that the distance between a molecule and its periodic image is 
always greater than 14.0 A. The potential cutoff is at 7.0 A. 
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1312 M.  M e z e i  

Table 1. Free energy and entropy results. (a) Energy is in kJ mo1-1. (b) entropy is in 
JK -1 tool 1. (c) Experimental results are from [10]. (d) SS data includes long 
range correction. (e) The ST2, MCY and SPC results used a 7.0 A cut-off. 

SS MCY ST2 SPC Exp. 

AA' - 34.02 • 0.25 - 6-02 _+ 0.21 - 1.46 • 0.46 
A '  17.42 - 16.57 - 22.59 - 18.45 - 20.02 
( U )  8.89 - 35.98 -44-02 - 42.59 - 4 1 . 4  
S' 28.6 - 65.3 - 72-0 - 81.2 - 58.4 

Table 2. The values of (AU}g,  at the quadrature points of the thermodynamic integration. 
3 

The integral is approximated by the expression ~ c~(AU}g,. 
i = 1  

~:i ci ST2-MCY  SPC-M CY  

0.11270160 5/18 - 3 . 4 7 •  7.32__+0-63 
0.5 4/9 - 5 . 8 6 •  - 1 . 7 7 •  
0-88729833 5/18 -8-91 +__0-21 -9-83__+0-38 

Table 3. The  values of (A U)~, at the quadrature points of the thermodynamic integration. 
5 

The integral is approximated by the expression ~ c~(AU)~c 
i = 1  

~:i c~ M C Y - S S  

0.046910 0.118463 51.84 • 0-63 
0.230765 0-239314 45-69 • 0.21 
0.5 0.284444 36.69 • 0.13 
0.769235 0.239314 25.06 • 0.13 
0-953089 0.118463 4.06 • 0.21 

Al l  t h r e e  ca l cu l a t i ons  e m p l o y e d  gauss ian  q u a d r a t u r e  [25]. T h e  n u m b e r  of 
q u a d r a t u r e  p o i n t s  was f ive for  the  M C Y - S S  ca l cu l a t i on  a n d  t h r e e  for  t he  w a t e r -  
wa te r  ca lcu la t ions .  W e  e s t ima te  tha t  the  r e l a t i ve ly  sma l l  n u m b e r  of q u a d r a t u r e  
p o i n t s  i n t r o d u c e s  on ly  an e r ro r  of 0-4 kJ mo1-1 or  less,  s ince  the  d i f fe rences  
b e t w e e n  the  w a t e r  m o d e l s  are  r e l a t ive ly  sma l l  (see t ab le s  2 a n d  3) a n d  ( A  U}g is a 
m o n o t o n i c  f u n c t i o n  of ~ (see (6)) .  T h e  l e ng th s  of t h e  r u n s  were  500 -700  K,  
a f te r  200 -300  K e q u i l i b r a t i o n .  

3.2. Umbrella sampling calculations 

W e  a t t e m p t e d  t h e  ca l cu l a t i on  of AA' b e t w e e n  t h e  S T 2  a n d  M C Y  wa te r s  wi th  
the  U S  m e t h o d  as well .  T h e  choice  of the  w e i g h t i n g  func t i on ,  h o w e v e r ,  p r o v e d  
to be  a m u c h  m o r e  d i f f i cu l t  t a sk  t h a n  t ha t  e n c o u n t e r e d  b y  T o r r i e  and  Va l l eau  for  
t he  L e n n a r d - J o n e s  f lu id .  I t  was f o u n d  t ha t  t he  effect  of t he  i n t r o d u c t i o n  of 



D
ow

nl
oa

de
d 

B
y:

 [N
ew

 Y
or

k 
U

ni
ve

rs
ity

] A
t: 

18
:3

1 
16

 J
ul

y 
20

07
 

Free energy o[ liquid water 1313 

w(AU) (used ifl tabular form with linear interpolation, following Torrie and 
Valleau) was mostly to shift the range of the A Us sampled but it has proven to be 
very difficult to increase this range. The AA' values obtained using different 
w(AU)s showed large variations, even when a three stage US was attempted. 
In hindsight, this appears to be reasonable since the topology of the subspace of 
the configuration space with A UE[u, u + du] is necessarily more complex than the 
topology of the subspace with U'~[u, u+du]. It is possible, that the half-US 
method of Scott and Lee [5] might have proven successful. However, for reasons 
given in w 2.2 we felt that the number of half-US calculations required would 
exceed the number of quadrature points necessary for the T I  at a given level of 
accuracy. 

4. RESULTS AND DISCUSSION 

The free energy and entropy results are collected in table 1. The entropies 
are computed from the formula 

S ' = ( A ' - ( U ) ) / T .  (12) 

The (U)~ values were obtained from previous computer simulations. Since no 
simulations were performed using the same system size and boundary condition 
combination, previous results were corrected for the difference in the pair 
potential cutoff (see table 1.) from calculations run with larger cutoffs. 

The (AU)~ values at the quadrature points are listed in tables 2 and 3. 
The accompanying error estimates are based on the method of batch means due 
to Blackman and Tuckey [26] and independently to Wood [27]. 

The effect of the length of the runs has been studied from two different angles 
in the ST2-MCY calculation. For one of the runs, the calculation was con- 
tinued for another 840 K. The value obtained remained well within the error 
bounds established by the first 700 K. We also examined the re'sults that were 
obtained by runs of shorter length. The AA' values obtained using 300 K and 
500K long runs were -5.94_+0-17kJmo1-1 and -5.98_+0.21kJmo1-1,  
respectively. This shows that the TI  calculations can be performed using rather 
short runs without noticeable loss of precision. 

It has been recognized earlier [2, 17] that for the computation of the free 
energy relatively small systems are sufficient. For example, 32 Lennard-Jones 
particles were sufficient to compute accurately the free energy of the fluid. 
Similar behaviour was found recently for liquid nitrogen [22]. Thus it can be 
expected that the relatively small system size used here is adequate to compute the 
excess free energy of these water models with a 7.0 A cutoff. 

The adequacy of the 7.0 A cutoff to represent liquid water is a separate 
problem and is relevant to the computation of any property , not just the free 
energy. Most (T, V, N) ensemble calculations reported use cutoffs of 7-5- 
7.75 A for the MCY water and 8.46 A or less for the ST2 water. It is a positive 
feature of T I  that it is based on the computation of energy-type quantities, and 
thus any technique that estimates the contribution of the long range tail of the 
potential to the internal energy can be applied independently to each of the 
quadrature points and thereby provide an estimate of the long range contributions 
to the excess free energy as well. No correction of this kind was attempted in 
this work. 
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1314 M. Mezei 

T h e  previous T I  calculation [4] that used the ideal gas at l iquid density as a 
reference state gave the excess free energy of the M C Y  water as -18-03  
__ 0.29 kJ mo1-1 as opposed to - 16.57 _+ 0.25 kJ mo1-1 f rom the present  calcula- 
tion. T h e  difference between the previous and present  result  is more than the 
ind ica ted  er ror -bounds  allow. The  larger cutoff used in the present work 
should make the excess free energy more negative, thus it can not  account for the 
difference. T h e  likely sources of this discrepancy are : (1) T h e  extrapolation of 
the strongly varying (A U)g to ~-~0 in the previous calculation that was implicit 
in the use of the gaussian quadrature  and (2) the extension of the repulsive part of 
the MC Y potential with a simple 1/R0o 12 term for Roo<4.5 a.u. For  these 
reasons, the value obtained in the present paper is considered to be the more 
accurate. 

T h e  comparison of the entropies shows that all three water models studied are 
more s t ructured than real water. The  relatively large difference between the 
ST2  and SPC waters is somewhat surprising since the comparison of the O-O,  
O - H  and H - H  radial distribution functions [28, 29] would suggest a similar 
degree of s t ructure  in these water models. T h e  agreement  with the experi- 
mental  value is best for MCY water. 

This  research was supported by N I H  Grant  No. 5 -R01-GM-24914  and a 
C U N Y  Facul ty  Research Award. Fruitful  discussions with Professor D. L. 
Beveridge are greatly acknowledged. 
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