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The convergence characteristics of standard Metropolis Monte Carlo calculations on liquid water and
aqueous solutions are described, and documentation of the need for convergence acceleration procedures is
presented. The acceleration procedures are additional importance sampling schemes added to the Metropolis
method. The recently proposed “forced bias” and “preferential sampling” procedures are specifically
considered. Comparative studies on liquid water at T = 25°C using the force bias method show that
convergence is improved by a factor of 2-3 over standard Metropolis results. For aqueous solutions, force bias
and preferential sampling procedures used separately and together were studied on a prototype aqueous
solution problem based on the liquid water simulation. Neither method alone was found to be adequate for
describing structural characteristics of solutions in realizations of the length presently used for simulations on
pure liquids. A combination of the force bias and preferential sampling methods was found to be quite
successful, and makes aqueous solutions accessible to simulation studies at levels of rigor commensurate with
that obtained for pure liquids. Preliminary convergence acceleration results on [CH,},, using the combined
force bias-preferential sampling acceleration methods are also presented.

I. INTRODUCTION

Computer simulation is presently emerging as a
powerful and increasingly popular computational means
for the study of liquids and solutions. Applications
range from liquid state chemical physicsi"4 to water
and aqueous solution structure, ®% and most recently, to
organic liquids and solutions, ®!° and to water in bio-
logical systems,!1~!4 Simulation procedures are cur-
rently being extended to further study the solvation of
macromolecules, the organization of water in crystals
of hydrated macromolecules, and the structure of
liquids and solutions at interfaces, Considerable pro-
gress in further understanding of the structure and
properties of molecular liquids and solutions via com-
puter simulation is anticipated in the next few years.

One present problem with liquid state computer simu-
lation is that proper calculations on systems of chemi-
cal interest require very long realizations and are thus
very expensive, For example, 15 3 Metropolis Monte
Carlo calculation on liquid water represented as 216
water molecules under periodic boundary conditions
requires at least 1500 K configurations and roughly 15
h on a computer such as the IBM 370/168 to compute
stable values for internal energy and radial distribution
functions. Fluctuation properties such as heat capacity
may require twice as much sampling effort. Properties
such as dipole correlation functions required for the
calculations of the dielectric properties are even more
slowly convergent, due in part to another statistical
factor lost when less than full orientational averaging is
involved. Molecular dynamics calculations, for analogous
reasons in the deterministic realm, require roughly
equivalent amounts of computer time. The situation
is analogous but much worse in computer simulations
on aqueous solutions, due to the loss of a statistical fac-
tor in computing properties referenced to the solute.

The basis of Monte Carlo computer simulation for
fluids is a method first proposed by Metropolis
et al.!" (referred to as Metropolis or standard Metro-
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polis method), now used in virtually all liquid state
work. Following the seminal paper of Ceperly, Chester,
and Kalos!® on quantum liquids, several methods have
recently been suggested to accelerate the convergence of
Monte Carlo calculations, the main idea being to append
additional importance sampling criteria to the standard
Metropolis method., The principal procedures currently
under consideration are the force bias method by Pan-
gali, Rao, and Berne'®~?! and the preferential sampling
approach first used by Owicki and Scheraga®-% for
simulation studies of hydrophobic hydration, which has
subsequently been generalized by Owicki. % An al-
ternative force bias procedure based on Brownian dy-
namics has been proposed by Rossky, Doll, and Fried-
man. %

A recent paper from this laboratory!® described in
detail the convergence characteristics of the standard
Metropolis method applied to liquid water as described
by the quantum mechanical MCY-CI potential and by the
empirical ST2 potential. We report herein comparable
calculations on liquid water using force bias and pre-
ferential sampling methods. The force bias method is
applicable to simulations on both pure liquids and
aqueous solutions, and the preferential sampling method
is most appropriate for aqueous solutions. The results
from our previous study by the standard Metropolis
method will serve as a point of comparison to quantify
the extent of improvement achieved by additional im-
portance sampling criteria and the computational over-
head incurred. Preliminary studies in this investiga-
tion have been reported in proceedings of a recent
workshop conference on computer simulation. % paral-
lel studies on liquid water and agueous solution of
methane in conjunction with Metropolis and preferential
sampling schemes are being reported by Kincaid and
Scheraga, ¥’

1. BACKGROUND

The liquid state Monte Carlg computer simulation
methods presented herein involve the determination of
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average properties of an N-molecule system under
canonical ensemble conditions, with temperature T,
volume V, and number density N/V fixed. Monte Carlo
simulations in other ensembles (T, P, N)*® and (T, V,
)% are also being performed. We shall limit our dis-
cussion here to the (T, V, N) case, but the results have
clear implications for the work in other ensembles. For
general references, see the recent books by Hansen and
McDonald, ?® and by Ben-Naim, ¥

An N-molecule configuration of the system is specified
by the configurational coordinate vector XV,

XY ={Xy, X3, X3,. .., Xy}, (1)

where X; = (R,, ;) represents the configurational co-
ordinates of the molecule i, Here R; denotes the posi-
tional coordinates and £; the angular coordinates, re-
spectively. An average property of the system such as
internal energy U is given by the configurational inte-
gral

v= [ - [ EGMPX")ax" = (EEY) (2)
where E(X") is the configuration energy and P(X¥) is the
probability of finding the system in configuration X¥,

P(X”)=exp[—BE(X”)]/ f f exp[- BE(X")]dx" .
(3)

The constant volume heat capacity in this notation is
given by the expression
Cy = (1/kT% [(E*X")) ~ (E(X"))*]

and analogous expressions may be formed for other
properties of the system, ¥

(4)

The configurational integral of Eq. (2) is well known
to be ill conditioned for direct numerical integration,
In the Metropolis method, the integration is carried
out by means of a stochastic walk through configura-
tion space, by generating a realization of an irreducible
Markov chain whose unique limiting stationary distribution
is the Boltzman distribution,

P(XY) ={PXY), PXY), P(X}),...}, (5)

where P(XY) denotes the Boltzmann probability [Eq. (3)]
of the ith configuration of the system. Thus, in a
realization of this process, the configurations X" are
sampled with a frequency proportional to P(X"), and the
determination of average properties reduces to a simple
summation over the energy of the individual configura-
tions X¥,
M

E=(1/m 2 Blx()]. (6)
Here the X(¢) denotes the state of the N-particle system
at the step ¢ of the Markov chain,

x()efxy, i=0,1,2,...}. (7)

As M-, E~ (E(X")), the cumulative average energy
becomes an increasingly good estimator of the energy
expectation value. The computation of heat capacity
and other properties of the system take analogous form,

The convergence and statistical error bounds of the
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calculations are generally monitored according to the
method of block averages (also known as the method of
batch means).® Here the Monte Carlo realization is
partitioned into several nonoverlapping blocks of equal
lengths, and the averages of the property under con-
sideration (e.g., mean energy) are computed over each
block. Letj‘; denote the property f computed over the
block i. Under the assumptions that the f,’s are indepen-
dent and normally distributed and that the Markov chain
is ergodic, the error bounds for the property f as a
95% confidence level are =24, where
K

¢*=[1/KK =012, (7 -(7)"] (8)
and the summation runs over the K blocks. In com-
puter simulations of small lengths, the above assump-
tions are honored more in the breach than in obser-
vance, and thus computed error bounds by the method
of batch means are to be taken with caution.

The details of the Metropolis method and the con-
vergence acceleration procedures under consideration
herein niay all be specified in a convenient general nota-
tion based on the work of Hastings, 31 Here the elements
of the one-step transition probability matrix of the
Markov chain, p,,,

par=PriX(t+1)=1]X(1) = &} (9

are written as a product of the two terms,

Pri=qpi Oy « (10)

The first term g¢,, is dependent on the method of generating
the state ! fromthe state . in a single step transition.
The way in which state ! is accepted such that the micro-
scopic reversibility conditions are satisfied when sam-
pling from the Boltzman distribution P(X") [Eq. (5)]
leads to expressions for the second term.

Hastings discusses several choices for the a,,. The
Metropolis choice,

ayy = min(1, P(XY)q,,/ P(X}) q,) (11)

has been shown by Peskun®” to be asymptotically opti-
mum, The elements of the one-step transition prob-
ability matrix for the Markov chain can be rewritten into
a more popular notation

brr=qrpminl, p1g 1 /Dade) »  k#1, (12)

and

Pre=1- Zpkl’ k=1, (13)
REI

The various sampling methods discussed herein dif-
fer essentially in the definition of ¢,;, i.e., the way in
which state ! is generated from state % in a single step
transition. In principle, all the sampling schemes al-
low for more than 1-particle moves, However, in
practice, for convergence efficiencies, the moves are
restricted to a single particle, Thus, the configura-
tional coordinates of the state [ are related to the con-

figurational coordinates of state %,
XY=x¥+o", (14)

where
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TABLE I, Results of the Monte Carlo simulations on MCY-CI water using Barker—Watts and

Euler treatments for sampling the angular configurational space,
computed from 10 K long runs,

The statistical averages are

Step-sizes Mean angular Mean square
Ar A Acceptance displacement displacement®

Method (ang) (deg) rate (6w {6r%)y
Metropolis 0.25 20,0 0.53 4.65 0.231
Barker—Watts

Metropolis 0.25 20.0 0.52 4.65 0.210
Euler

Force bias 0.50 30.0 0,64 7.92 0.615
Barker—Watts

Force bias 0. 50 30.0 0,65 8,02 0.474
Euler

aer®y =(1/N 2, f -2l +(yf -yl +(zf —2))*, where N is the
Jnotes the last configuration, 0 the initial configuration, and x,
c.m. of the molecule,

8" ={0,0,...,8(X,),0,...},

and 8(X,) is a displacement vector for the molecule m
selected for the move. For rigid polyatomic molecules,

8(X,) ={0%c.m.> BVe.ms OZc.m> Ots £}, (16)

where 60X, m.s 0Vc m.» 0Z. m are the displacements for
the center-of-mass and 5o is the rotation around a
chosen axis £, passing through the center-of-mass of
the molecule m. The magnitudes for the center-of-
mass displacement and for the rotation angle are fur-
ther restricted by certain step-size parameters Ar and
Aa, which are optimized in the initial stages of the
simulation.

(15)

In Metropolis sampling, the components of the dis-
placement vector § are obtained by uniformly sampling
from the domain D, centered at the coordinates of the
molecule m in the state k2, and defined by the step-size
parameters Ar and Aa. The elements g,, of the transi-
tion probability matrix Q are then

qp=aconstant, X} eXY+D, (1

and

q,=0, leiéxf"'D . (18)

Moreover, Q is a symmetric matrix,

The methods for the selection of the rotation axis ¢
need further elaboration. The two most common
methods employed in the literature are a method due to
Barker and Watts?®~% and another generally referred
as the Euler angle treatment. 3% In the procedure of
Barker and Watts, the axis £ is selected by uniformly
sampling from the x, y, and z axes defined in a fixed
frame of reference. In the Euler angle treatment, the
axis ¢ and the rotation angle da are obtained by uni-
formly sampling from the three Euler angles. The
choice of the Euler angles often varies. In the method
discussed herein, the polar angles 6 and ¢ of the £ with
respect to a fixed frame of reference are two of the
Euler angles, and the rotation angle 5« around the ¢ axis

number of molecules, f de-
¥, z are the coordinates of the

forms the third. The Euler angle 6 is uniformly sam-
pled from the cos(6) (-1 to 1) distribution, ¢ from 0 to
27, and 5¢ from - Aa/2 to + Aa/2.

In all the Metropolis Monte Carlo work published from
this laboratory, -1 the rotation axis ¢ has been sampled
according to the Barker and Watts procedure. We have
recently also implemented the Euler angle treatment as
described above. Our exploratory simulations on liquid
water, as shown in Table I, show no convergence dif-
ferences between the two sampling schemes, Thus, all
our Metropolis Monte Carlo results to be discussed in
this paper refer to the Barker and Watts sampling for
the angular space,

In a typical Monte Carlo computer simulation on a
molecular liquid in the (7, V, N) ensemble, the system
consists of a simulation cell containing N molecules in
a volume V determined by N/p, where p is the experi-
mental density at the system temperature T. The sys-
tem is presented with a condensed phase environment by
means of periodic boundary conditions, with the central
cell surrounded at each face, edge and vertex by a self-
image. The configurational energy of the system is
computed by means of analytical potential functions.
Calculations from this laboratory use mainly simple
cubic or face centered cubic boundary conditions and
spherical and/or minimum image cutoff criterions for
the potential functions. The initial segment of the cal-
culation is an equilibration phase, and is discarded in
the formation of ensemble averages.

The reference calculation for the convergence ac-
celeration procedures described herein is a long realiza-
tion of the 4400 K configurations on liquid water carried
out in this laboratory's using the standard Metropolis
method and a potential function representative of quan-
tum mechanical calculations of the intermolecular inter-
action energy developed by Matsuoka, Clementi, and
Yoshimine. The calculated radial distribution function
2 (R) for the molecular centers-of-mass obtained from
this simulation is presented along with the corresponding
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experimental g(R) 18 in Fig. 1. The calculated position
of the successive hydration shells, 3.3, 5.7, and 8.0

A, serves as an index of comparison for the convergence
studies described in this paper.

The convergence profile from this study is shown in
Fig. 2. Note particularly the expanded scale chosen
for the energy ordinate here and in subsequent analogous
figures; the convergence characteristics here are dis-
cussed in tenths of kcal/mol. The calculation achieves
a mean energy of —8.57 kcal/mol after 200 K con-
figurations. The mean energy oscillates within 0. 1
kcal/mol of this value for the next 1000 K configura-
tions. The convergence profile indicates a mean energy
value of —8.56 +0. 03 kcal/mol for this section of the
run, At N=1200-1400 K, the control function shows
a sharp decline of 0, 13 keal/mol in energy to —8.78
kcal/mol at N=1400 K, and the onset of a region of
1600 K configurations with a mean energy -8.75+0, 02
keal/mol. Concomitant with this decline is a sharp in-
crease in heat capacity. At N=3000 K, the control func-
tion rises again, and at termination is oscillating about
—8.64 10,03 keal/mol, The heat capacity is relatively
constant from N=2000 K on. The general appearance
of the control function suggests that the high frequency
oscillations in the control function are sumperimposed
on a grand oscillatory cycle with an amplitude of 0.2
keal in the realization, of which our calculation covers
1 and 1/2 cycles, Similar behavior has also been dis-
cussed by Pangali et al:® The cumulative mean energy
is = 8. 65 kcal/mol, with a heat capacity of 14.1 cal/
mol deg, which after the kinetic energy correction re-
sults in - 6, 87 keal/mol, and 20. 1 cal/mol deg for mean
energy and heat capacity, respectively.

Based on these results, a hierarchy of calculated
properties of the system, with respect to computa-
tional effort, was provisionally established as follows:
mean energy and orientationally averaged radial distri-
bution functions are the quantities most accessible to

2.8

- MCY-CI

0.0 T T T T T T L
08 !6 24 32 40 48 56 64 7.2 80

R(R)—>

FIG. 1. Comparison between the calculated (Ref, 15) (a) and
the experimental (Ref, 16) (—) g(R)’s, where R is the distance
between the center-of-masses, for liquid water.
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FIG. 2. Convergence curves (Ref. 15) for the Metropolis Monte
Carlo simulations onliquid water based onthe MCY-Clpotential.

calculation by computer simulation. Fluctuation prop=-
erties such as heat capacity require at least twice as
many configurations to be calculated with the same rela-
tive precision. The calculations of dipole correlation
functions and other quantities not based on fully orienta-
tional averaging can be expected to remain problematic
at this time,

11l. CALCULATIONS, RESULTS AND DISCUSSIONS

The convergence acceleration procedures under con-
sideration here are the force bias method, applicable
to both pure liquids and solutions, and the method of
preferential sampling, designed for use in simulations
on solutions. The force bias results in this section
are presented in the context of convergence studies on
liquid water, [H,0],, at 25°C. The liquid water simula-
tion is subsequently analyzed as an aqueous solution
problem of one “solute” water in the remaining “sol-
vent” waters, denoted as [H,0],,, and used to demon-
strate in prototype some significant convergence prob-
lems of aqueous solution simulations. Results on con-
vergence acceleration in Monte Carlo simulations on
[Hzo],q by both force bias and preferential sampling
methods are then presented. Finally, the force bias
and preferential sampling techniques are applied to the
aqueous solution problem [CH,],, at 25°C, studied pre-
viously in this laboratory by the standard Metropolis
method.

A. Studies on the pure liquid case

1. Force bias procedures

In the force bias sampling, % the particle moves are
biased in the direction of forces and torques on the
molecule selected for the move. The elements g,; of the
transition probability matrix for force bias sampling are
given by the expressions

Gei= Q'(XY) exp{A(F ,(XY) . 6r + N (XY) . 6a) /ET} ,
XVex¥+D (19)

and
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XYdXy+D . (20)

Here 67= (6%, ms 0Ve.m> OZc.m)s Oa=a, where £isa
unit vector along the rotation axis, @(X¥) is a normaliza-
tion constant, and A is a parameter to be optimized dur-
ing the sampling. The quantities F,, (X¥) and N(X¥) are
the forces and torques in the state & on the particle to be
moved, Note that q,,#¢,,. In our force bias calcula-
tions, A is set equal to 0, 5 following Rossky ef dl. %

4u=0,

As in the Metropolis case discussed in the preceding
section, we have implemented both the Barker and
Watts method and the Euler angle treatment for sampling
angular coordinates. The Barker and Watts sampling
was used in the first paper on the force bias sampling by
Pangali, Rao, and Berne.'® These authors subsequently
reported a force bias sampling version incorporating the
Euler angle method. % Intuitively, it appears that Euler
angle treatment in conjunction with force bias sampling
should lead to an improved sampling, because the selec-
tion of the rotation axis is also biased in the direction of
the torque. Our exploratory calculations on liquid water
summarized in the Table I, suggest that the Euler angle
treatment does not lead to significant improvements
here. Since the additional computational overhead in
implementation of the Euler angle method is significant,
we adopted the Barker and Watts procedure for the cal-
culations presented herein.

For an absolute comparison between Metropolis sam-
pling and force bias sampling, the magnitudes of the
step-size parameters Ar and Aa and other setup char-
acteristics must be optimized as fully as possible in
an initial short segment of the realization. One useful
criterion for this optimization, based on translational
and angular diffusion of particles, was reported by
Pangali et al. 20 A different criterion related to par-
ticle diffusion was also considered. Using the analogy
of random walks, Kalos®® has proposed the quantity
ar(A) as an index of sampling efficiency, where A de-
notes the acceptance rate. To include the cage effect
to first order, we have modified this index to Ar (A
x(1+ (cos(8))), 3" where 6 is the angle between the suc-
cessive accepted moves of a molecule, The best posi-
tional and angular displacement for the force bias meth-
od, according to the new criterion, were found to be
neary double of the respective displacement in the stand-
ard Metropolis method.

2. Force bias results

Convergence acceleration studies using force biaswere
carried out on MCY-CI water at 25°C and analyzed in
terms of particle diffusion, “rate” ofequilibrationand
the evolution of internal energy and heat capacity during
the Monte Carlo realization. The particle diffusion rate
was found to be four times greater in the force bias com-
putation, indicative of the increased sampling of the
configuration space for individual particles. The
equilibration of the computation in the initial segment
of the realization was found to be 2-3 times faster with
force bias. The convergence profile, Fig, 3, shows that
both internal energy and heat capacity are well settled
down after 1000 K configurations, an improvement of a
factor of 2 to 3 over the standard Metropolis results

Mehrotra, Mezei, and Beveridge:
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FIG. 3. Convergence curves for the force bias Monte Carlo
simulation on liquid water based on the MCY-CI potential,
Notation follows that of Fig, 2.

shown in Fig. 2. Preliminary studies of the energy auto-
correlation function for the force bias and standard
Metropolis method show that in the latter, significant
correlations persist even after some 2000 X configura-
tions of sampling. In the force bias simulations the
energy correlations are greatly reduced after mere

500 K configurations. These findings on MCY-CI water
are in general accord with the force bias results of
Pangali ef al.? on ST2 water.

While the convergence acceleration achieved by force
bias on MCY-CI water is quite significant, the overhead
incurred in a force bias simulation is also large. The
extra computation time for the forces involves an addi-
tional facter of ~1.2. For medium size (N=100-300)
systems, there is a further expense. In the standard
Metropolis method, the recomputationof the N pair en-
ergies at every accepted step can economically be
avoided by storing all pair energies in an N(N - 1)/2
matrix in the main memory. For the force bias algo-
rithms, pair forces (a three component vector), pair
torques (a six component vector) and virial sum con-
tribution (for the pressure calculation) must also be
stored requiring 11 times as much core storage. This
exceeds reasonable limits in most computer facilities,
so in force bias the pair energies, forces, torques,
and virial sum must be recomputed at every accepted
step, increasing the computation time by a further fac-
tor of (1+ acceptance rate). (For calculations where
the pressure is required, the force calculations are
necessary anyway, but if the standard Metropolis method
is used, the forces for pressure calculations can be
computed periodically, e.g., at every 2*N step, adding
only a 1.3 factor to the Metropolis method.) Thus, in a
125 molecule liquid water simulation, the economies
realized in the acceleration of convergence are to some
extent offset by the computational overhead. In larger
systems, where the pair energy storage algorithm is no
longer applicable, the factor of 2-3 improvement ap-
plies overall, The essential result is that convergence
is significantly accelerated by the force bias procedure
while the cost of the calculation in terms of computer
time at worst stays about the same or at best goes down
by a factor of 2-3, For [H,0],, these results indicate
that force bias sampling is a definite improvement over
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the standard Metropolis method, and is a preferred
procedure for doing the simulation.

The extent to which this conclusion may be generalized
remains to be seen. Each new system and really each
new potential function is a new problem, and broad ex-
perience will be necessary to evaluate the overall im-
provement to be expected for molecular liquids and solu-
tions from the force bias sampling algorithm, How-
ever, water is certainly a representative case of as-
sociated liquids, and we feel the convergence accelera-
tion by force bias for this system is quite impressive.

B. Studies on the aqueous solutions case

We turn now to a consideration of the use of the force
bias and the preferential sampling as a means of ac-
celerating the convergence of Metropolis Monte Carlo
calculations on aqueous solutions. In the preceding
calculations on pure water, configurational averages
are computed by averaging over all configurations and,
since all particles are identical, averaging also over
all of the N particles in the system. In a commensurate
simulation on aqueous solutions, there is one solute and
there are N-1 solvent particles. In calculating con-
figurational averages with respect to the solute such as
solute—water radial distribution functions and related
quantities, the statistics are aq priori reduced by a fac-
tor of 1/N with respect to the pure liquid case. Thus,
to attain an equivalent convergence stability, the Monte
Carlo realization would be N times as long, requiring
an unreasonably long computation time.

Current agueous solution work from this laborato-

6.4
[HZO]Gq’ T=25°C
Metropolis, 1500K
9
} 8
@ 7
< 6
o 5
g : 4
-' o
% ZS02
E: 2
o)
3 7
z o}
MCY-CL
0.0 T T T T T —
24 32 40 48 56 64 7.2

R(A%)—

FIG. 4. The solute—-water g(R)’s for the nine water molecules
randomly chosen from the 125 water molecule Metropolis Monte
Carlo simulation on MCY-CI liquid water. The total number of
configurations involved in computations of g(R)’s is 1500 K, and
constitute the 900-2600 K interval of the 4400 K run, The
curve o refers to the pure liquid water g(R) obtained by averag-
ing over all the 125 water molecules. Note. that the origins of
the various g(R)’s are shifted for clarity.
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TABLE II. Analysis of the Metropolis Monte Carlo simulation
on MCY-CI water, The number of configurations involved in
statistical averaging is 1500 K.

Minimum and maximum values

observed among 125 solute Pure liquid water

waters
(averaged over
Property minimum maximum 125 waters)
&R ) 2,15 3.12 2,67
K 3.81 4.73 4,30
%, (3) 0,06 0.32 0,15
%, (4) 0.30 0.67 0,47
x, (5) 0,14 0.43 0.29

ry*®-#! and elsewhere!!-13:23:44 hag typically relied on
roughly the same number of configurations as for simu-
lations on the pure liquid. As a result, the reported
error-bars on solute—solvent properties were found to
be an order of magnitude larger than those observed

for the solvent—solvent properties in pure liquid simula-
tions, 3-4! While these simulations yield the gross
structural and energetic features of the aqueous solu-
tions, the large errors become of particular concern
when studying small energetic and structural changes of
current interest, such as structure-making and struc-
ture-breaking, temperature dependence of aqueous solu-
tion composition, and the effect of solvent on the small
conformational energy changes in the solute. For such
studies, a higher degree of computational precision is
desired,

The severity of the problem may be quantified by
once again focusing on the system of pure water, and
treating it as an aqueous solution where one of the
waters is arbitrarily chosen as solute and the rest are
treated as solvent in a manner identical to that used in
a study of an infinitely dilute solution simulation. Here
we have the known results for the pure liquid available
for quantitative comparison, so effectively we know the
answer., Within the computer simulation results on the
pure liguid, there are N solute-water problems, and
the solute—-water g(R)’s and related properties can be
examined individually. In calculations fully converged
at a level appropriate for aqueous solution studies, all
solute—water g(R)’s and other equilibrium properties
should be identical to each other and to the g(R) and cor-
responding properties calculated for liquid water
(averaged over all the N particles of the system).,

To examine this, we first considered a 2400 K con-
tigous section of the 4400 K realization. The first 900 K
configurations were discarded and configurational aver-
ages were formed from the remaining 1500 K of the
section. The results are presented in Fig. 4 and Table
II. In Fig. 4, the solute—water g(R)’s [referred as
solute g(R)’s] for nine water molecules randomly se-
lected from the set of 125 water molecules are presented.
Note that R is the distance between the center-of-mass
(c.m.), of the solute water and the ¢. m. of the solvent
water, and N-1 distances (between 1 solute and N-1
solvent molecules) are involved in the computation for
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FIG. 5. The solute-water g(R)’s for the nine water molecules
randomly selected from the 216 water molecule Metropolis
Monte Carlo simulation on ST2 water. The total number of
configurations involved in computations of g(R)’s is the last
2200 K configurations of the 5000 K realization. The curve

o refers to the pure liquid water g(R) obtained by averaging
over all the 216 water molecules, Note that the origins of the
various g(R)’s are shifted for clarity,

each N-particle configuration. The differences among
the nine solute g(R)’s in Fig. 4 are clearly significant

in both the first hydration shell and beyond. We have

in fact examined the solute g(R) for all the 125 water
molecules, and similar differences are observed among
most of them., The clear implication is that realizations
on solutions are not well converged in runs of lengths
sufficient to stabilize corresponding results on a pure
liquid.

In order to further appreciate the magnitude of dif-
ferences present in the first shell of the g(R)’s, we have
compiled, in Table 1I, the minimum and maximum val-
ues (observed among the 125 water molecules) of a few
properties dependent on the water molecules inside the

TABLE IIl. Analysis of the Metropolis Monte Carlo simulation
on ST2 water. The number of configurations involved in statis-
tical averaging is 2200 K,

Minimum and maximum values Pure liquid water
observed among 216 solute (averaged over

Mehrotra, Mezei, and Beveridge: Computer simulation on water

TABLE IV. Analysis of the force bias Monte Carlo simulation
on MCY-CI water. The number of configurations involved in
statistical averaging is 1500 K,

Minimum and maximum values
observed among 125 solute

Pure liquid water
(averaged over

waters 125 waters)
Property minimum maximum
Z{Rpnay) 2.35 2,89 2,61
K 4,01 4,46 4,23
%, (3) 0.11 0,22 0.16
x. (4) 0.36 0. 56 0.46
%, (5) 0.19 0.36 0,28

waters 216 waters)
Property minimum maximum
2R ya) 2,67 4.15 3,36
K 3.38 6.36 4.69
x.(4) 0.03 0,98 0.42
%, (5) 0.01 0,59 0.33
% (6) 0.00 0,47 0.15

first shell. For example, the height of the first peak,

as reflected in the first maximum of g(R), ranges from
2,15-3,25, The coordination number (computed for a
cutoff of 3.3 A) varies from 3.81 to 4.73. Similar dif-
ferences are also observed among individual quasi-
components of the coordination number. Further exa-
mination indicates that all the aforementioned dif-
ferences persist even when all the 3500 K post-equilibra-
tion configurations are included in the statistical averag-
ing.

We have also carried out an analogous analysis for
liquid water simulations based on ST2 water. The
Metropolis Monte Carlo simulation on ST2 water em-
ployed 216 water molecules, and the last 2200 K con-
figurations of 5000 K run published from this laboratory!®
were used in statistical averaging. The solute g(R)’s for
the nine randomly selected water molecules are presented
in Fig. 5, and the range of values observed for the height
of the first peak of g(R), coordination number, etc. are
compiled in Table IO. In comparison to the MCY-CI
water, the differences among individual water properties
are in fact larger for the ST2 water. In any case, this
indicates that the convergence problems on aqueous solu-
tion simulation case arise largely independent of the
choice of the potential functions.

1. Force bias results

In order to examine the effect of force bias sampling
in improving the convergence of solute properties in an
aqueous solution case, we have reanalyzed our force
bias liquid water simulation discussed in Sec. III A,
viewing it as a prototype aqueous solution problem,

The single water analysis is identical to one discussed
in the preceding section. The nine solute-water g(R)’s
computed over the 1500 K configurations are presented
in Fig. 6, and the results for coordination number, etc.
are presented in Table IV.

The results show that differences among individual
water properties are reduced by approximately half in the
force bias simulation compared to standard Metropolis
simulations of the same length. According to N!'/% law
of statistics, this amounts to a convergence improve-
ment of approximately four in the force bias simulation,
which is in accord with a factor of 2-3 discussed in the
pure liquid section. Despite this improvement, sizable
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FIG. 6. The solute—water g(R)’s for the nine water molecules
randomly selected from the 125 water molecule force bias
Monte Carlo simulation on MCY-CI water. The total number of
configurations involved in statistical averaging is 1500 K. The
curve o refers to the pure liquid water g(R) obtained by averag-
ing over all the 125 water molecules, Note that the origins of
the various g(R)’s are shifted for clarity.

significant differences among individual water properties
still exist, indicating that more configurations are re-
quired in the averaging before the differences among
individual water properties disappear,

In a recent study on the potential of mean force cal-
culations of two apolar solutes in 214 water molecules,
Pangali, Rao, and Berne*? in order to justify the ade-
quate convergence for the solute-solvent properties
compared a solute-water g(R) (computed over the two
water molecules instead of one), with the g(R) computed
over all 216 water molecules for ST2 water. Force
bias sampling was used, and the number of configura-
tions involved in the statistical averaging were O(1100
K). They reported a rather good agreement between
the solute and pure liquid water g(R)’s. In these more
extensive studies we do find that there are a few water
molecules whose solute g(R)’s are similar to the pure
liquid water g(R), but these are only a small fraction of
the total. Kincaid and Scheraga®’ also arrive at con-
clusions similar to ours, in their analogous studies on
liquid water,

2. Preferential sampling procedures

We subsequently set out to learn whether the con-
vergence of solute properties can be improved by using
preferential sampling. In both Metropolis and force bias
samplings on dilute solutions, all the solvent molecules
are sampled (selected for configuration perturbation)
with equal probability. On the other hand, many of the
interesting properties of the dilute solutions are pri-
marily determined by the solute~solvent and solvent-
solvent interactions near the solute, This suggests that

Computer simulation on water 3163

the computational efficiency for the convergence of many
solution properties could be expedited with sampling
concentrated primarily in the neighborhood of the solute.
Clearly the solvent molecules far away form the solute
should also be sampled, but not necessarily as frequently
as those near the solute. This strategy is the basis for
the method of preferential sampling first proposed by
Owicki and Scheraga for the Monte Carlo calculation on
[CH,],,. Owicki subsequently presented a generalized
version of the preferential sampling methodology. The
two preferential sampling schemes have recently been
applied by Bigot and Jorgensen'® to study the conforma-
tional equilibria of a n-butane in carbon tetra-chloride
liquid.

Owicki’s sampling scheme® can be described as fol-
lows. Let w{R) be a weighting function which is non-
negative and decreasing function of R, where R is depen-
dent on solute~solvent distances., For each N-particle
configuration Xf define a probability distribution function
wX}),

W) = {wy(XY), Wy, ..., wyxD},

where the subscript refers to the molecule number and

(21

the solute is labeled as the molecule 1. Furthermore,
N
W, (X =w(R,) /2 wlR) . (22)
122

In preferential sampling, the solvent molecules are
selected for the moves by sampling from the probability
distribution W(XY). If m is the solvent molecule thus
selected in a single-particle move, then the elements
qr are

gy = const, *W,(X¥) . (23)
Clearly, g,, is not equal to ¢, and
q 1, = const, *W,(X¥) . (24)

The selection of the solute for the move follows a
different treatment, The preferential sampling scheme,
in principle, allows that the solute can be picked with
an arbitrary frequency, thus,

dr1=9q 1= const . (25)

In the limits, the solute is either never moved or is al-
ways selected for move. As Owicki peoints out, there
are definite statistical advantages if the solute is also
moved, because a solute move leads to perturbations
in N-1 solute-solvent pairs, whereas a solvent move
causes only one solute-solvent perturbation. On the
other hand, if the solute moves are attempted too fre-
quently there is little room for the solvent molecules
to properly relax. Clearly, a compromised approach is
desired. Instead of carrying out a complete optimiza-
tion requiring several long test runs, the solute mole-
cule, in present studies, is perturbed with the same
frequency as its neighboring solvent molecules,

The preferential sampling can be combined with the
Metropolis sampling as well as with the force bias
sampling. Then the elements ¢,, are the product of the
preferential sampling g,, with the Metropolis of the
force bias q,;, as the case may be., For the simple
weighting function as used in our studies, the com-
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putational overhead due to the preferential sampling is
negligible.

Preferential sampling simulations on [H,0],, in con-
junction with both the Metropolis sampling and the force
bias sampling were carried out as follows, Starting
from an equilibrated configuration from our 4400 K
Monte Carlo simulation, we arbitrarily label one water
as the solute. A weighting function of 1/R, where R
is the distance between the center-of-mass of the solute
water and the center-of-mass of the solvent water was
employed. The step-sizes used for the solute water are
same as for the solvent water. In comparison to a
standard Metropolis or force bias simulation on [H,0l,,,
the solute and its neighboring solvent molcules are per-
turbed 2. 5-3,5 times more frequently in our prefer-
ential sampling simulation. This frequency can be fur-
ther increased if weighting functions of the form 1/R?10-%
or 1/R%, ' are used instead of 1/R.

3. Preferential sampling results

The results of preferential sampling used in con-
junction with the Metropolis sampling are shown in Fig.
7. The 4.2 A peak in the g(R) is chosen as our index
of comparison, since it is both a sensitive test and an
essential element in the description of tetrahedrally
coordinated network of molecules in a waterlike system.
The solid line in each case is the pure liquid g(R) (aver-
aged over all particles) obtained in the previous 4400 K
simulation {cf. Fig. 1(a)] and can be considered the de-
sired result. The various dotted lines are the solute
g(R)’s resulting from simulations on [H,0),,. The re-
sults for standard Metropolis sampling after 1600 K
configurations and 3200 K configurations, curves 7(a)

[Hz0]gq, T=25°C

N
3]
T

n
o
T

MS,1600K
MS,3200K

PS, 1800K

Solute"-water g(R)—

y

0.0 1
2.0 3.0

o
o

20 50 60
R (A°) —

FIG. 7. The solute-water g(R)’s for the Metropolis Monte
Carlo MCY-CI liquid water simulations. All g(R)’'s refer to

the same water molecule., The same initial configuration was
used in all the simulations. (a) 1600 K Metropolis (MS) Monte
Carlo simulation; (b) 3200 K Metropolis Monte Carlo simulation;
and (c) 1800 K preferential sampling (PS) Monte Carlo simula-
tion. The solid line is the reference pure liquid water g(R) and
the origins of various curves are shifted for clarity.
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[H20] T=25°C

aqe

a FB,1500K

FIG. 8. The solute—water g(R)’s for the force bias Monte
Carlo simulation, The initial configuration and the water mole-
cule selected as the solute are same as in Fig, 7. (a) 1500 K
force bias (FB) Monte Carlo simulation:, (b) 2500 K force bias
Monte Carlo simulation; and (c) 1500 K preferential sampling
in conjunction with force bias (FB/PS) Monte Carlo simulation,
The solid line is the reference pure liquid water g(R) and the
origins of various curves are shifted for clarity.

and 7(b), respectively, do not accurately reproduce the
shell structure of the liquid. With preferential sampling,
curve 7(c), there is a marked improvement after 1800
K configurations, but clear discrepancies with the de-
sired result remain.

4. Results from force bias and preferential sampling

The effect of force bias sampling used alone and in
conjunction with preferential sampling on [HZO],“l is
shown in Fig, 8. The results of force bias sampling
after 1500 and 2500 K configurations are shown as
curves 8(a) and 8(b) against the desired result {solid
line). Clear discrepancies between the computed and
desired result remain. In the last simulation, curve
8(c), we have combined the force bias and preferential
sampling procedures, and have carried out a realiza-
tion of 1500 K configurations. Here the result is a
curve almost exactly coincident with that desired. This
indicates that the Metropolis sampling enhanced with a
combination of force bias and preferential sampling
procedures has been successful at converging the simula-
tion results on an aqueous solution case using runs of
similar order of length used for the liquid water problem.

The conclusion is supported by results from a simula-
tion taking a different water as the reference solute.
In Fig. 9, the solute g(R) averaged over the 2000 K
configurations of the combined force bias-preferential
sampling simulation is compared with the solute g(R)
obtained from the 2500 K configurations of the force
bias simulation. The solid line once again represents
the pure liquid water g(R). Although there are small
differences between the solute g(R) and pure liquid
water g(R) for the combined simulation, these dif-
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FIG. 9. The solute-water g(R)’s for the force bias Monte Car-
lo gimulation, The initial configuration is same as used in de-
rivation of Fig. 9, but the water molecule labeled as solute is
different. (a) 2500 K force bias (FB) Monte Carlo simulation;
and (b) 2000 K preferential sampling in conjunction with force
bias (FB/PS) Monte Carlo simulation. The solid line is the
reference pure liquid water g(R) and the origins of various
curves are shifted for clarity,

ferences are negligible in comparison to large differ-
ences observed between the force bias solute g(R) and
the reference liquid water g(R).

One remaining point to consider is whether or not pre-
ferential sampling degrades the precision of simulation
results on solvent properties. The radial distribution
function computed for the solvent waters in [H,0],, are
shown in Fig. 10, where the solvent g(R) is compared
with the reference g(R) result for pure liquid water,
There are no noticeable differences between the two
results, indicating that the statistics for solvent prop-
erties are not degraded by the preferential sampling
procedure referenced to the solute, This is not sur-
prising because from simple geometric considerations
it follows that the solvent molecules more frequently

350

[H20]aq, T=25°C
30f
2.5f

2.0+

>

1.5
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1.0
3
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0.0 1 1 1 i 1 J
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Solvent-solvent g{(R)——

0.5

FIG. 10, The solvent—solvent g(R) for the force bias—prefer-
ential sampling simulation on MCY-CI water. The number of
configurations used in statistical averaging is 1500 K, The
solid line is the reference pure liquid water g(R).
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FIG, 11, The methane—water g(R)’s for the standard Metropoli:
Monte Carlo and for the force bias-preferential sampling Monte
Carlo simulations on [CH,],, (a} Metropolis sampling (MS). e,
g(R) computed over the first 750 K block, — g(R) computed
over the second 750 K block. (b) same as (a) except the use of
force bias-preferential sampling (FB/PS).

00

moved are relatively small in number, Thus, the de-
crease in the sampling frequency of the solvent mole-
cules far way from the solute is relatively small, and
the solvent statistics are not significantly degraded.

5. Results of the force bias and preferential sampling on
[CH,4] 4

In order to further document the improvements in
convergence observed for the force bias-preferential
sampling simulation over the standard Metropolis sam-
pling, Monte Carlo calculations were also carried out
on [CH,],, at 25°C. Starting from an equilibrated con-
figuration of an earlier Metropolis sampling simulation
on this system, *? a realization of 2000 K configurations
was generated employing the combined force bias-
preferential sampling procedure. The potential function
and other setup characteristics such as 7, V, N and
potential cutoffs are kept the same as in the standard
Metropolis run to provide for a consistent comparison.
The step-sizes, weighting function and other parame-
ters for the combined sampling simulation on [CH,],,
are identical to ones used for the [H,0],, simulation
discussed earlier,

The first 500 K configurations of the 2000 K con-
figurations realization were discarded. The remaining
1500 K configurations have been further divided into two
nonoverlapping blocks of 750 K each, The solute-—sol-
vent g(R) between the center-of-mass of the CH, and the
center-of-mass of the water, computed over the two
blocks are presented in Fig. 11(a). The results of a
parallel analysis for the Metropolis sampling simula-
tions are presented in Fig. 11(b) for comparison. The
results for the Metropolis sampling show the dif-
ferences between the two block averages are significant.
In the combined simulation, the differences are negli-
gible (especially in the first and second shells)., This
result reinforces the conclusions on the efficacy of a
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combination of the force bias and the preferential sam-
pling inferred from the prototype problem.

IV. SUMMARY AND CONCLUSIONS

The convergence characteristics of standard Metro-
polis Monte Carlo calculations on liquid water and
aqueous solutions are described, and documentation of
the need for convergence acceleration procedures was
presented. Comparative studies on liquid water at
T = 25°C using the force bias method show that con-
vergence is improved by a factor of 2-3 over standard
Metropolis results. For aqueous solutions, force bias
and preferential sampling procedures used separately
and together were studied on a prototype aqueous solu-
tion problem based on the liquid water simulation,
Neither method alone was found to be adequate for de-
scribing structural characteristics of solutions in
realizations of the order presently used for simulations
on pure liquids. A combination of the force bias and
preferential sampling methods was found to be quite
successful, and makes aqueous solutions accessible
to simulation studies at levels of rigor commensurate
with that obtained for pure liquids. Preliminary con-
vergence acceleration results on [CH4]mx using the force
bias-preferential sampling acceleration methods further
support the conclusion.
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