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Metropolis Monte Carlo computer simulation results are presented for liquid water as represented by the
MCY and ST2 potentials to study the temperature dependence of the calculated internal energy, heat
capacity, pressure, and the molecular distribution functions and to present the hydrogen—oxygen and
hydrogen-hydrogen radial distribution functions, the distribution of the near-neighbor dipole angles and pair
energies, the size distribution of cavities in the liquid, and the radial distribution function for molecules with a
given coordination number. A detailed comparison with available experimental data documents the degree of
agreement to be expected from computations at this level of approximation and characterizes the sensitivity of
results to the choice of intermolecular potential function. The simulations performed at 37 and 50 °C on the
MCY water at the corresponding experimental densities reveal a small but significant shift in the direction of

structure loss when compared with our previous results at 25 °C.

. INTRODUCTION

In a series of recent paper from this Laboratory, !™*
we have described the structure of liquid water as de-~
termined from Metropolis Monte Carlo computer simu-
lation assuming pairwise additive intermolecular inter-
actions, The focus in this work has been on the compo-
sitional analysis of the system in terms of quasicompo-
nent distribution functions (QCDF)® for coordination
number, binding energy and hydrogen-bonding charac-
teristics, and on the characterization of the convergence
properties of the Metropolis method as applied to mo-~
lecular liquids.

The purpose of the present paper is twofold. First,
the temperature dependence of the MCY water proper-
ties is investigated by comparing the results obtained
for 25 °C with the results of two new Monte Carlo cal-
culations performed at 37 and 50°C. Second, the pre-
viously presented description of liquid water based on
the MCY (Ref. 6) and ST2 (Ref. 7) intermolecular poten-
tials is extended to include consideration of hydrogen—
oxygen and hydrogen—hydrogen radial distribution func-
tions, the distribution of the near-neighbor dipole angles
and pair energies, the size distribution of cavities in
the liquid, and the radial distribution function for mo-
lecules with a given coordination number, Also, quan-
titative calculations of the pressure for MCY and ST2
waters are reported.

Section I presents the background and the motivations
for the present work, Sec. III describes the theory in-
volved, and Sec, IV gives the details of the Monte Carlo
calculations and their analyses, The results are pre-
sented and discussed in Sec. V. Section VI gives a
summary and the conclusions drawn from the results.

Il. BACKGROUND

Liquid water has been the focus of a considerable
number of computer simulation studies in recent years
both from the probabilistic Monte Carlo point of view
and from the deterministic method of molecular dynam-
ics. This work is summarized in several current re-
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views from this group®® and other laboratories.'®!! In
this section we briefly review the results obtained in
our previous papers and closely related works relevant
to the consideration of the present study in context.

This series of studies began with a (T, V, N) ensemble
liquid water computer simulation based on the MCY
potential function carried out for a temperature of 25°C,
at a volume commensurate with the observed density.
Ensemble averages initially reported! were based on
500 K configurations for 125 molecules under periodic
boundary conditions, subsequently extended to 4400 K
configurations to validate convergence and also for fur-
ther study of the convergence problem.® The calculated
thermodynamic internal energy from the 4400 K realiza-
tions was ~8.65+0,3 kcal/mol, compared with an ob-
served value of - 9.9 kcal/mol. The discrepancy of
~13% was ascribed mainly to the assumption of pairwise
additivity in the configurational potential. The calcu-
lated heat capacity was found to be 20,1 cal/moldeg
versus a measured value of 18 cal/moldeg at 25°C.
The calculated pressure was reported to be considerably
in error, ¥? indicative of the limitations yet remaining
in the shape of the configurational potential.

Our analysis of the structure of liquid water was car-
ried out in terms of the radial distribution function g(R)
and the QCDF’s x(X) for coordination number K and
xg(v) for binding energy v. This general approach to
structure defined on the statistical state of the system
had recently been systematically formalized by Ben-
Naim, ° and the water structure problem had been asso-
ciated with the modality of xz(v) (Ref. 13). The calcu-
lated x5(v) for liquid water in our simulations was found
to be continuous and unimodal, and thus supportive of
the energetic continuum model for the structure of lig-
uid water. A similar result was simultaneously ob-
tained from (7, P, N) Monte Carlo computer simulation
by Owicki and Scheraga.!* The Rahman~Stillinger mo-
lecular dynamics calculation produced a continuous dis-
tribution of hydrogen-bond energies with similar impli-
cations about the continuum model. Examination of
computer-drawn stereographic views of significant mo-
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lecular structures extracted from the liquid water sim-
ulation confirms a notable prevalence of bent hydrogen
bonds in the system.

In subsequent work in the area of liquid water struc-
ture, we reported* a detailed analysis of the structure
of liquid water in terms of QCDF’s based explicitly on
hydrogen-bond indices. The average intermolecular
hydrogen-bond angle was found to be ~20°, in close
accord with Pople’s 1951 assumption in the original con-
tinuum model paper!® and the value recently inferred
from vibrational spectroscopic data by Sceats ef al.®
This result is supported by Jorgensen’s analysis of the
hydrogen-bond structure!” of his water model.!® The
extent of hydrogen-bond networks in our simulated water
as determined by the network analysis approach devised
by Geiger, Rahman, and Stillinger'® revealed, in agree-
ment with their results based on molecular dynamics
computer simulation using the ST2 potential, that for
any reasonable definition of a water—water hydrogen
bond, all molecules of the system are tied up in the net;
i.e., the number of water monomers in the system is
negligibly small. The most recent and definitive spec-
troscopic results on liquid water fully support this con-
clusion.?® In summary, the structural view of liquid
water emergent from this work and of all related com-
puter simulation studies from other laboratories is that
the statistical state of the system is best described as
a fully developed network of water molecules interact-
ing via bent hydrogen bonds.

The above description of the structure of liquid water
is supplemented in the present paper by the calculation
of a number of other quantities obtainable from the
analysis of our Monte Carlo simulations, The distribu-
tion of the relative orientations of neighboring water
molecules gives important indications as to the nature
of the water-water intermolecular interactions and
quantifies the localizing effect of both the hydrogen-bond
and the dipolar interaction. In the previous work, the
relative orientations were characterized in terms of the
hydrogen-bond angle QCDF’s, xy(8y) and xx(81p) (Ref.
4). The present work gives a complementary charac-
terization in terms of the dipole angle correlations,
using the QCDF xp(6p).

In the study of the composition in terms of energetic
indices, the unimodal nature of the QCDF of the binding
energy was found to be of great importance for deciding
the applicability of the early mixture models to liquid
water as modeled by the MCY or ST2 potentials.®” Fur-
ther information on the energetics is available from the
QCDF of the pair energy €, x,(¢), reported for both po-
tential functions herein. Comparison of these results
further quantifies the sensitivity of energetic properties
of the system to the choice of the potential function.

Joint QCDF’s are in general capable to describe more
complex structural properties than single (one-param-
eter) QCDF’s. The possible existence of interstitial
water, postulated by earlier mixture models can go un-
detected by the consideration of the g(R) or the x¢(K)
only. To examine this problem in more detail, we com-
puted the radial distribution functions for waters with
coordination numbers 3, 4, 5, and 6 separately. Any

evidence of interstitial waters should appear in the g(k
for the six-coordinated species since a water molecule
sitting in the center of an Ice Th cage would have six
neighbors at a distance of 3.0 A and another six neigh-
bors at a distance of 3.5 A.

The free energy required to form a cavity of a given
size is an important quantity in the theory of solvation,
and is closely related to the probability of finding a
cavity of that size in the liquid. This latter quantity is
readily accessible from the results of a computer sim-
ulation and calculation of the cavity distributions in the
MCY and ST2 waters are reported herein,

The calculated results on the pressure have frequently
been cited to point out deficiencies remaining in the
intermolecular potentials. The pressure of the MCY
water has been previously reported to be “above 3000
atm,”!2 It is of interest to know its actual value, par-
ticularly when temperature effects are studied in order
to ensure that the changes observed were not greatly
influenced by the concomittant pressure change. The
results are compared with the ST2 result reported by
Rao et al., '™ corrected here with the contribution due
to the finite cutoff (see Sec. II). The significance of
these results with respect to the calculated structure of
the liquid is further discussed.

iIl. THEORY AND METHODOLOGY

Here we briefly review the standard way of the com-
putation of configurational internal energy, constant
volume excess heat capacity, and the pressure from
Monte Carlo calculations. The configurational internal
energy is obtained as a simple average over the Markov
chain,

M
U= (E(X*)) =(1/M) jZl EXY), (1)

where M is the number of configurations in the Markov
chain. The notation ( ) will be used to denote configu-
rational averaging. The excess constant-volume heat
capacity is obtained from the fluctuations in the internal
energy over the Markov chain:

C,=[(B(XV)?) - (E(X")Y]/RT?. (2)

Unfortunately, the computation of C} is much less reli-
able from Monte Carlo calculations than that of the in-
ternal energy because of the (E(X")?) term®"?; in case
of liquid water errors of ~40% can be encountered for

runs of medium (~1000 K) length.®

The pressure can be obtained through the computation
of the virial sum:

N
po=(RT/V) { N-(2 IR, aE(X”)/aR,]>} , @

i=1

where % is the Boltzmann constant, T is the absolute
temperature, and R, describes the location of molecule
i. Furthermore, the discontinuous cutoff applied to the
potential gives rise to a correction term that is due to
the Dirac § appearing in the derivative of the pair en-
ergy E®(R) at R=R,,:

be =(21/3)p* Ry px (E®(Rimax))a &(Rumax) » (4)
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here ( ), denotes configurational averaging over the
slative orientations of two molecules, In general,
TR )0 &(Rmas) €an be estimated from the Monte
arlo calculation as

(E® (R))q g(R) = (E®(R, R + AR))o/47R*AR, (5)

/here (E‘®(R, R + AR)) is the average of the pair ener-
;iies for any given molecule with all other molecules
vhose distance from this molecule is between R and
R+AR. In the case of the MCY potential two such cor-
rection terms arise, one from the cutoff applied to the
exponential terms (at R,,,=5.82 A) and an other from
the cutoff applied to the 1/» terms (at Ry, =7.75 A),
denoted by p¢ and py, respectively.

The distribution functions not defined previously in
the QCDF formalism are; near-neighbor dipole angle
correlation xp(8p), near-neighbor pair energy xp(€),
cavities xy(Rc) and radial distribution function for mol-
ecules with fixed coordination number g(X, R). The
near-neighbor dipole correlation function x,(fp) is
computed for water pairs with center-of-mass distance
less than or equal to Ry, the radius of the first solva-
tion shell. This function is defined as

N
xol6n)= [ 3 olof (X" - 65 POKY) CHX") X"/
i<

N

J 20 Py cuxryaxe, (6)
V iy
where 8y, is the angle between the HOH bisectors,

647 (X¥) is the angle between the dipoles of the molecules
iand j, 6] ]is the dirac delta, C*/(X") is one if the
distance between 7 and j is less than R, and zero other-
wise, and P(X") is the probability of the occurrence of
the configuration X", The normalized distribution,
xp(8p)/8indy, is also of interest since the normalization
factors out the effect of the difference in the volume of
configuration space corresponding to different 6y
values.

Next we consider the distribution of the pair energies.
This quantity is usually presented for all pairs of parti-
cles in the system. It has the disadvantage, however,
that the large peak around zero, corresponding to the
distant pairs, tends to dominate the curve. The quan-
tity of principal interest, the peak corresponding to the
optimum near-neighbor distance may only appear as a
shoulder in this distribution. However, by including
only near-neighbor water pairs (that is, waters whose
distance is R, or less), the dominant feature of the curve

595

will be the peak corresponding to the optimum near-
neighbor distance,® and the interpretation is then
straightforward. The distribution function x(€) is then
defined as

N
xy(€) = j;% 8 (X" - €] P(X") CH(XM) aX" /

N
[ 2pan et axy,

V ;i

O]

where €*/(X") is the value of the pair energy between
the molecules ¢ and j.

The distribution of cavities can be obtained by generat-
ing uniformly distributed test points and finding the dis-
tance of the closest water molecule to each test point.

To avoid arbitrary definition of the molecular radius
the distribution of the distance to the nearest water
center-of-mass is given. Thus the actual cavity size
is obtained by deducting the assumed molecular radius
of water from the distances shown here. The distribu-
tion function x4(R.) is defined as

*(Ro)= [ lim O, Re, AR/ AR/ V. (8)
if R<min | X, -X |=R+AR then: 1
C(X,R, AR)= ! (9)
otherwise: 0,

where the X, are the coordinates of the centers of
masses of the molecules,

The radial distribution function for different coordin-
ation numbers, g(K, R) is defined as

g(K,R)= lim N(K, R, R+ AR)/[4nR*ARpxo(K)], (10)
AR-0

where N(K, R, R+ AR) is the number of water molecules
whose distance from a water with coordination number
K falls between R and R + AR, p is the bulk density, and
x¢c(K) is the mole fraction of molecules with coordination
number X,

{V. CALCULATIONS

The results presented in this paper are based on the
previously reported Monte Carlo calculations on the
MCY and ST2 waters at 25 and 10 °C, respectively, 3
and on two new calculations on the MCY water at 37 and
50 °C described here the first time. The system size,
length of the run, potential functions used, temperature
and the boundary conditions applied are summarized in
Table I. All systems were studied at their experimental

TABLE I. Specification of the Monte Carlo calculations analyzed. The length of the run is in
the unit of L000 steps. sc stands for simple cubic and fcc stands for face-centered cubic periodic

boundary conditions. Runs 1, 4, and5 are described in Ref. 3.

Water—Water Boundary

potential N Length conditions Temp. p (g/ml)
1 MCY 125 4400 K sc 25°C 0.997
2 MCY 216 1500 K fce 37°C 0,993 360
3 MCY 216 2200 K fce 50°C 0,988 066
4 ST2 216 4900 K sc 10°C 1.000
5 ST2 155 1900 K fce 10°C 1.000
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TABLE II. Bulk thermodynamic properties as a function of temperature and potential. The energy is
given in kcal/mol, the heat capacity in cal/mol deg and the pressure in atm. The value for pg of the
ST2 water is computed from the p V/pk ' ~1= -0, 023 given by [Ref. 21(b)]. The p¥ value for the ST2

water was computed from our ST2 run (Ref. 3).
in the very long MCY run at T'=25°C.

The segments B and C refer to the grand cycle found

U cy bo pé pe’ p
Segment B —8.56+0.03
Segment C —8.64+0.03
256°C —-8.65+0.1 11.5+2 7552+ 238 -70+1 - 722+200 6760+ 311
37°C —8.57+0,04 14.0+1 7928 + 233 -69+1 —937+188 6922 + 299
50°C ~-8,40+0.03 13.0+2 8017 +148 ~70+1 —769+124 7178+ 193
ST2 -10.6 20.6 1232 - 689 543

densities, with the exception of the ST2 water where
p =1.000 g/ml was used to remain consistent with pre-
vious calculations.

The computed distribution functions from the Monte
Carlo run were based in every 4Nth configurations,
where N is the number of molecules considered. This
involves negligible loss of information since the change
between two configurations involve at most one molecule
and thus the successive configurations are strongly cor-
related., We have determined by comparing the results
with more frequent averaging at selected points that
errors from this source in the QCDF’s are less than 1%.

The statistical uncertainties in the computed expecta-
tion values and QCDF’s can be estimated in different
ways. The previous very long (4400 K) calculation at
T=25°C on the MCY water showed the emergence of
certain ‘“grand cycles” of very large (~1500 K) period
and small amplitude (~2%). The values of a given quan-
tity over two different parts of the grand cycle can pro-
vide a lower and upper bound for the total average. This
method was used for some of the 25°C MCY run. In
most of the cases the method described by Wood was
applied together with a statistical test to ensure that the
block averages used for the error estimate are uncor-
related. For the estimation of the error in C} neither
of the above methods are suitable. An approximate
estimate can be obtained from the amplitude of the os-

-8,27 MCY r22.0
T=37°
T -8.3 37°c Cy -200 ?
iy =)
S -84+ 180 ©
< £
g —8,5{ F16.0 ~
~ U ©
= L
= -8.6 r14.0 _
2 E
o -87 Ui L12.0 &
c [=}
=) (&)
QL -—
S -8.8- 100 g
T
-89 T T T T T T 8.0
500K 1000K 1500K
Configurations —
FIG. 1. Convergence of U and Cy; of the MCY water at 37°C.

The control function U; is computed using 25 K block averages.

cillations in the curve of C] as a function of the length
of the calculation,

V. RESULTS AND DISCUSSION

The control functions of the two calculations are dis-
played on Figs. 1 and 2. The grand cycles found at the
25 °C calculation are also in evidence here and ensem-
ble averages from our calculations cover approximately
one full cycle at each temperature. Based on our ex-
periences gained from the previous very long runs we
expect that the improvement of accuracy using much
longer runs would be marginal for most of the proper-
ties discussed.

Qur results for the thermodynamic properties of MCY
water are collected in Table II. The internal energy
increases (get less negative) with the increase of tem-
perature, as expected. The excess constant-volume
heat capacity C,; shows a maximum at T=37 °C, but the
error bounds on these values are larger than the differ-
ences and this behavior can not be considered statisti-
cally significant.

The calculated pressure requires some special com-
ments. Lie, Clementi, and Yoshimine estimated'? that
the pressure of the MCY water in their Monte Carlo
simulations was “above 3000 atm.” The 6760 atm ob-
tained in this study confirms this point. The results on
the temperature dependence of the pressure provide an
added reason for caution in the evaluation of the temper-

-8. F220

827 MCY
T -8.3 200 T
= Fi
= _gad liso 3
€ —
S €
S -8.54 16.0 <
= 3
= -8.64 Fi4.0 >
o -87 L12.0 8
c 3
(=}
U -—
= g8 100 S

T
-89 1 T T T T T T T — 8.0
500K 1000 K I500K 2000 K
Configurations —=

FIG. 2. Convergence of U and C, of the MCY water at 50°C.

The control function U; is computed using 25 K block averages.
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'ABLE III. Description of the center-of-mags radial distribution function as a function of temperature
nd potential. The segments A and B refer to two phases of the grand cycle found in the very long MCY
un at T=25°C. The radial distances are in A. Experimental distribution function refers to oxygen—

xygen distances.

g {r max1) r maxl g (r minl) 7 minl g (r max2) 7 max2
MCY Segment A 2,59 2,82 0.98 3.45 1,09 4,20
MCY Segment B 2.67 2.80 0.92 3.40 1.12 4.25
MCY 25°C 2,62 2.85 0.964 3.40 1.09 4,05
MCY 37°C 2.51 2.80 0.965 3.45 1.08 4.15
MCY 50°C 2.45 2,80 0,972 3.50 1.08 4,30
ST2 10°C 3.31 2.80 0.64 3.425 1.22 4.60
EXP 25°C 2.33 2,85 0.851 3.55 1.132 4.65
EXP 50°C 2.28 2.85 0.969 3.40 1.115 4.75

TABLE IV. Description of the hydrogen—oxygen radial distribution function as a function of temperature
and potential, The segments B and C refer to two phases of the grand cycle found in the very long MCY

run at T=25°C, The radial distances are in A.
Monte Carlo.

MD: Ref. 7, molecular dynamics; MC: Ref. 21(b),

g {r max1) r max1 g (v min1) ¥ minl g{r max2) 7 max2
MCY Segment B 1,185 1.90 0,252 2,50 1.718 3.30
MCY segment C 1.136 1.90 0.272 2.50 1.714 3.35
MCY 25°C 1.156 1.90 0.264 2,50 1.715 3.30
MCY 37°C 1,112 1.90 0.283 2,50 1,682 3.35
MCY 50°C 1.070 1.90 0.305 2.50 1.652 3.30
ST2 10°C MD 1.39 1.83 0.29 2,35 1.61 3.32
ST2 10°C MC 1.40 1.98 0,34 2,38 1,60 3.22

TABLE V. Description of the hydrogen—hydrogen radial distaibution function as a function of temperature
and potential, The segments B and C refer to two phases of the grand cycle found in the very long MCY

run at T=25°C. The radial distances are in &
Monte Carla.

MD: Ref, 7, molecular dynamics; MC: Ref. 21(b),

g (rmax1) 7 max1 g (r min1) 7 minl g (r max2) r max2
MCY Segment B 1,459 2,45 0.851 3.10 1.237 3.80
MCY Segment C 1.430 2.45 0.870 3.10 1.230 3.80
MCY 25°C 1.443 2.45 0.864 3.10 1.231 3.80
MCY 37°C 1. 417 2.45 0,881 3.10 1.216 3.80
MCY 50°C 1.400 2.45 0.886 3.10 1.208 3.80
ST2 10°C MD 1.561 2.46 0.77 2.98 1.16 3.92
ST2 10°C MC 1.53 2,33 0.77 3.04 1.15 3.83

ature dependence of expectation values in general from
Monte Carlo calculations. The rather large correction
terms obtained for the pressure further indicate that
while Eqs. (3) and (4) are adequate to obtain an approx-
imate value for the pressure, it is difficult to obtain an
accurate estimate for potentials with a discontinuous
cutoff since the correction term p. is in general negative
and rather large.

The present result on the pressure of the MCY water
at the experimental density at 25 °C can be combined
with the result of Owicki and Scheraga on the volume of
the MCY water at the experimental pressure' to provide
an estimate for the isothermal compressibility, xr, at
25°C. Assuming that x, is independent of the pressure,
we obtain

Xp=[(Vy = Vo)/V,[/(P, - P)). (11)

Using (V, - V,)/ V;=0.24 (Ref. 14) and P, - P,=6760-1
atm, we obtain yr=3.6%10° atm™, This compares
reasonably well with the experimental value, 4.62x10°
atm™,

The location and the values of the first three extrema
of the center-of-mass radial distribution functions are
given in Table III. The changes found are in good agree-
ment with the changes in the experimental results of
Narten?: The increase in temperature lowers the first
maximum, raises the first minimum and shifts the lo-
cation of the second maximum to a larger distance. The
hydrogen-oxygen and hydrogen—hydrogen radial distri-
bution functions are shown on Fig. 3 for the MCY water
at 25 °C. The locations and the values of the first three
extrema are collected in Tables IV and V, respectively,
for all the temperatures studied, Corresponding results
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FIG. 3. Hydrogen—oxygen (full line) and hydrogen—hydrogen

radial distribution functions (broken line) for the MCY water
at 25°C.

on the ST2 water are also shown based on Refs. 7 and
21(b).

Table VI contains the values of xc(3), x¢(4), and xc(5)
at various temperatures. In this case there are two
opposing effects present. The increase in the temper-
ature in general increases the density fluctuations in a
liquid. As a consequence, the average coordination
number should decrease, thus giving rise to a higher
frequency of low water coordination number. On the
other hand, the generally low coordination number is
a consequence of the strongly directional hydrogen bond-
ing forces whose effect should decrease with the increase
in the temperature. The results show a statistically
significant increase in x(3), indicating that the dom-
inating effect is the increase of the density fluctuations,

The distribution of x(85) and of xp(8p)/sind, are
shown on Figs. 4 and 5 for the MCY water at 25 °C and
for the ST2 water at 10 °C, respectively. The distribu-
tions xp(0p) are rather wide in both cases, with a flat
peak in the range of 45-90°, On the other hand, the
distribution xp(6)/sinfy, is essentially bimodal, having
a large peak at 9, =0° and a smaller one at 6, =90°,
The first peak corresponds to a geometry featuring a
favorable dipole—dipole interaction while the second one
corresponds to the hydrogen-bonding geometry. The
significance of the dipole~dipole interaction is further
increased for the ST2 water. It should be stressed that
the relative magnitude of the two peaks are not repre-
sentative of the relative significance of the dipolar and
hydrogen bonding forces since a given dipole angle 6y

TABLE VI. Description of the coordination number
distributions as a function of temperature and poten-
tial. The segments A and B refer to two phases of
the grand cycle found in the very long MCY run at
T=25°C.

Xc (3) Xc (4) Xa (5)
MCY Segment A 0.156 0.449 0,288
MCY Segment B 0.146 0.474 0. 287
MCY 25°C 0.151 0.456 0.224
MCY 37°C 0,216 0,459 0.224
MCY 50°C 0,230 0, 447 0.217
ST2 10°C 0.049 0,404 0,337
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FIG. 4. Near-neighbor dipole-correlation functions for MYC

water at T=25°C. Full line: xp (6p): dotted line: xp(8)/
sinfp,.

can be realized with a wide range of hydrogen-bond
angles 8y and vice versa, In fact, the curve of xy(0y)/
sindy does not even show a second peak that would cor-
respond to the dipolar bond.* It might be concluded
from the joint consideration of xy(8y) and xp(8p) that the
particular geometry of the water molecule gives rise to
a favorable combination of these two forces to produce
a strongly bound network of water molecules in the
liquid state. The results at 7=37 °C and at 7=50°C
(not shown) are similar to the 77=25 °C results but the
peak representing the hydrogen-bonded interactions be-
came successively smaller, at 7'=50 °C degenerating
into a shoulder. This implies that at higher tempera-
tures the importance of the dipolar forces should in-
crease at the expense of the hydrogen bond.

The distributions of near-neighbor pair energies
xp(€), are shown on Fig. 6 for both the MCY water at

sT2

0.020

T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180
8p, (Deg)
FIG. 5. Near-neighbor dipole-correlation functions for ST2
water at T=10°C. full line: xp(6p), dotted line: xp(fp)/sinfy.
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FIG. 6. Distribution of near-neighbor pair energies for both
the MCY water at T=25°C (full line) and the ST2 water at
T=10°C (broken line).

25 °C and the ST2 water at 10°C. The dominant feature
of both curves is the single sharp peak and a shoulder
around 3~4 kcal/mol. This latter is probably due to the
cutoff applied for computing the distribution since the
contributions to the large positive values came from the
very close neighbors while the smaller values can arise
from either the very close or the distant neighbors.

The increase of temperature has very little effect on
xpl€): The peak is at ~ 4.4 kcal/mol for T=25°C and
T=387°C, and shifts to ~ 4.3 kcal/mol at T=50°C as
expected (not shown here).

The distribution of cavities of different sizes are
shown on Fig. 7 for both the MCY water at 25°C and
the ST2 water at 10°C. The two curves are rather
similar to each other at the first sight, but the differ-
ence is larger if the considerations are restricted to
R:.>2.4 A, i.e., to cavities of a size sufficient to ac-
commodate a water molecute. By integrating the distri-
bution from 2.4 A to infinity, it was found that the prob-
ability of finding a cavity larger than 2.4 A is 0.014 for
the MCY water and 0. 029 for the ST2 water. This dif-
ference is consistent with the larger pressure obtained
for the MCY water. The integrated probabilities of
finding cavities larger than 2.4, 2.6, and 2.8 A, re-
spectively, for the different water models are presented
in Table VII. The temperature dependence of the cavity
distribution is an interesting question since the often
postulated icelike clusters would produce a decline in
the appearance of molecular sized cavities while argu-
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FIG. 7. Probability of finding a cavity of radius R for both
the MCY water at T=25°C (full line) and the ST2 water at
T=10°C (broken line).

ments valid for regular liquids would imply increased

_occurrences of the larger cavities due to the increase

in the fluctuations in the system. A comparison of the
results at different temperatures show a consistent but
weak trend toward increased probability of finding mo-
lecular sized cavities as the temperature is increased
although the changes are not exceeding the error bounds
established. This change is consistent with the results
on the coordination numbers,

The radial distribution functions as a function of the
coordination number are displayed on Fig. 8 for the
MCY water at 25 °C. The curve for the ST2 water is
very similar and is not shown. There is a discontinuity
at R=Ry for all K reflecting the fact that if a molecule
has less neighbors within a sphere of radius R, than
the average coordination number then it is very
likely that there is one just outside the sphere and vice
versa, There is no evidence of peak around 3.5 A for
£(6, R) with either potentials, discounting the measur-
able existence of interstitial water for these water
models.

Vi. SUMMARY AND CONCLUSIONS

The description of liquid water in terms of pairwise
additive MCY and ST2 potentials obtained in previous
computer simulation studies has been supplemented by
the present work in two ways. First, the temperature
dependence of the description was studied in the range
of 25-50 °C for the MCY water. Second, additional dis-
tribution functions have been presented for both the
MCY and ST2 waters. As expected, the increase of the
temperature causes a small but statistically significant
loss of structuration, The new distribution functions
provide further support of the continuum model by the

TABLE VII. The probabilities of finding a cavity of at least R¢ as a function of the temperature,

potential and R.

Rc>2.84

Rg>2.44 Rc>2.6 A
MCY 25°C (1.41+0,08)E-2 (2.73+0,3)E-3
MCY 37°C (1.45+0, 07)E-2 (2.87+0,5)E-3
MCY 50°C (1.46 +0.06)E-2 {2.72+0. 2)E-3
ST2 10°C (2.91+0,08)E-2 (8.37+0.6)E-3

(3.20+0.7)E-4
(3.64+2,0)E-4
(3.41+1.0)E-4
(17.77+1.7E-4
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FIG. 8. Radial distribution functions (full line) and running
coordination numbers (broken line) for water molecules with
different coordination numbers for MCY water at T =25°C.
The curves belonging to different coordination numbers are
shifted upwards by one unit each.

unimodal nature of the near-neighbor pair-energy dis-
tribution [in agreement with earlier results in the

(T, P, N) ensemble results] and by the lack of any peak
at 3.5 A in the radial distribution function for water
molecules with coordination number 6. It is to be em-
phasized, however, that the possibility exists that the
inclusion of cooperative contributions might change this
conclusion. Also, the importance of the dipolar forces
was demonstrated through the distribution of near-
neighbor dipole correlation function.
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