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MOLECULAR PHYSICS, 1980, VOL. 41, No. 4, 883-905 

A cooperative calculation and analysis of  electric fields, 
induced dipole vectors and lattice energies  for 

rotationally ordered ices IX, II and disordered Ih 

by EDWIN S. CAMPBELL and MIHALY MEZEI t 

Depar tment  of Chemistry,  New York University, New York, 
New York 10003, U.S.A. 

(Received 20 August 1979 ; revision received 14 June 1980) 

A non-additive model previously tested on 229 Hartree-Fock dimer 
energies and on trimer energies has been supplemented with different dis- 
persion contributions and used to calculate the following properties of 
rotationally ordered ices IX and II and of disordeed Ih : (a) the different 
contributions to the lattice energy ; (b) the induced dipole vectors, electric 
fields and angle relations as a function of lattice site and of molecular 
orientation for Ih. The calculated results are discussed in terms of an 
interpretation of the preferred relative orientations of water molecules. 
The non-cooperative contribution for this model was found to be enhanced 
in a range from 50 to 100 per cent over that for trimer interactions. 

1. INTRODUCTION 

This  paper reports calculations of the lattice energy, the induced and total 
dipole vectors and the local electric field in disordered and ordered forms of 
ice based on a model that has been proposed and tested [1, 2] on the water -  
water dimerization [3, 4] and the non-addit ive tr imer [4, 5] and tetramer 
energies [4] based on wave-functions of near Har t r ee -Fock  accuracy. It  has 
been shown [1] that it reproduces 229 dimerization energies with an accuracy 
somewhat better than that of an alternative additive analytical model [3, 4] 
and that it provides a useful first approximation [1, 2] to the non-addit ive 
t r imer and tetramer energies [4, 5]. This  model for U(n), the interaction 
energy of n molecules, consists of the following terms : 

U(n) = Up(n) + Ui(n) + Ua(n) + Ur(n ). (1) 

Up is the first order Coulomb interaction energy, Ui(n ) the non-additive 
contribution involving induced multipole moments,  Ud(n ) the dispersion 
energy and Ur(n ) the repulsion energy. All calculations involve the following 
approximations to the general model (1). (i) U~(n) has been approximated 
with permanent  multipole expansions for each molecule [6] (el. also w 3.2). 
(ii) All terms in the derivatives of the fields have been neglected and in the 
calculation of the induced dipole vectors only linear terms in the field com- 
ponents, Izverm+ Eina, evaluated at the oxygens, have been included [7, 8]. 

I-Present address: Department of Chemistry, Hunter College, 695 Park Avenue, 
New York, New York 10021. 
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884 E.S .  Campbell and M. Mezei 

(iii) The spherically symmetric function of [1] has been used for Ur(n ) and 
alternative spherical approximations for Ud(n ) (cf. w 3.2) have been tested. 
The algorithms developed and their tests have been given in other publications 
[1, 6, 9-13]. 

While the previous work was in progress, Jeziorski and van Hemert [14] 
reported a variation-perturbation calculation of the energy of dimerization of 
water. They noted that a calculation of the four contributions of (1) has the 
advantage of providing a simple physical model for the hydrogen bond. 

2. PARAMETERS FOR AND RELEVANT ASPECTS OF THE MOLECULAR AND 

CRYSTAL GEOMETRIES 

2.1. Molecular geometry 
The intrinsic local frame has been chosen so that the molecule lies in the 

(el, %) plane and % lies along the C~-axis directed from the hydrogens to the 
oxygen. All calculations are  based on the rigid nuclear geometry of Kisten- 
reacher et al. [1 (a), 4], don =0"9572 A, & H O H =  104"87 ~ which is very close 
to the experimental geometry for the isolated monomer [15], doll = 0.95718 A, 
~_HOH= 104.523 ~ 

The extent of distortion in condensed phases is controversial. Studies of 
ices II  and IX have shown increases varying from negligible to ~0.018 A and 
1"5 ~ [16, 17] over the vapour O-D length, 0.9575 A, and the DOD ~,  104"474 ~ 
[15]. Conversely, increases by ~0.04-0"05 A and ~5 ~ for ice Ih [18, 19] 
and by 0-02A for D20(l ) [20] have been reported. Still other arguments 
based on data of Various types [16, 21] have led to our surmize that the O-D 
bond is stretched in condensed phases by perhaps ~ 0.01 A. 

2.2. Ice lh 
The O sites of Ih belong to the space group, Schoenflies symbol D6~ 4 

(International symbol, P6a/mmc), one of the two suggestions of Barnes [22]. 
Let 

al', a 2' : 2 unit cell vectors of hexagonal symmetry separated by an angle 
of 120 ~ ; a' 3 : the unit cell vector _1_ to the (a'l, a'2)-plane. (2) 

The unit cell has four distinct O positions whose fractional coordinates relative 
to the conventional origin are : 

(a) (1/3, 2/3, 1/i6);  (b) (2/3, 1/3, - 1 / 1 6 ) ; /  

(c) (1/3, 2/3, 7/16) ; (d) (2/3, 1/3, 9/16). ) (3) 

If all O-O distances were equal and all O-O-O angles had the ideal tetrahedral 
value of 109 ~ 28' 16-4" = 109.471 ~ then 

Ila'all/Ila'll 1 = (8/3)~/2~ 1-63299. 

Experimental evidence supports a small deviation of uncertain-magnitude from 
the ideal geometry [18, 19, 21-26]. The more consistent lower temperature 
data [24] give Ila'~ll/(la'lll 1.6279; Av. Dev.=_+0"00068 with no consistent 
trend in temperature. The differences in O-O distances have been either 
statistically insignificant [25 (a)] or marginally significant, 0.003 a [19]. 
Conversely, the two distinct O-O-O angles appear to be different [25 (a)] 
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Properties of ice 885 

and are 8' (5') less (greater) thar~ the ideal tetrahedral value, 109 ~ 28' 16" [19]. 
Scherer and Snyder [26] suggested that their measurement of the intensity 
ratio for v z and of the integrated intensities for H20 and D20 might be inter- 
preted in terms of H-bonding more nearly linear when the O-O line parallels 
the c axis. Since the deviations are small and uncertain, the ideal geometry 
has been assumed. Then the distances become a function of the single O-O 
nearest neighbour distance, r 0. The latter was estimated in four different 
ways as described in Appendix 1. 

Consider next the orientations of the hydrogens. Pauling [27] interpreted 
the difference between the spectroscopically calculated and calorimetrically 
measured entropy of ice [28] in terms of random orientations of the hydrogens 
subject to the following restrictions : 

(i) the crystal contains only H20 molecules ; 

(ii) the H20 are oriented to place one H approximately on each linel (4) 
between each pair of nearest neighbour O positions. 

This interpretation has been supported by such evidence as : (i) Nagle's [29] 
graph theoretical analysis of sets of orientations consistent with Pauling's rules 
gave S(0 K)=0-8145+0.0002eu compared with the experimental S(0 K ) =  
0.82 + 0.05 eu ; (ii) diffraction data as reviewed by Kamb [30] and confirmed 
at 77 K, which is below the temperature at which anomalies in the specific heat 
and elastic moduli had been reported; (iii) dielectric constant studies [31] and 
by the failure to find any evidence for a ferroelectric transition which had been 
suggested [32]. Nevertheless, recently attention has been again called to the 
possibility of partial order parallel to the a' 3 axis [33]. 

Since the occurrence of disorder implies that the energy difference between 
any two sets of orientations consistent with Pauling's rules (4) must be small 
compared to k T  in any temperature range in which the energy barrier permits 
reorientation at an experimentally significant rate, it was desirable to determine 
the predictions of the model for different sets of orientations. Because of the 
conditional convergence of dipole-dipole lattice sums [34] it was important to 
use the technique employed in a previous study [35], which is analogous to the 
model used in simulation studies of liquids. Let : Z0o 0 -  the set of four distinct 
positions given by (3) for a unit cell for O-positions ; zii k -  a similar set given 
by i, j ,  k unit translations along the a'l, a'~, a' 3 axes, respectively. Then all 
sets of orientations consistent with (4) were investigated for a lattice with a 
unit cell containing the 16 oxygen sites of 

ZoooZlooZolozllO. (5) 
The effect of modelling the disordered structure by a crystal with such a small 
unit cell had been previously investigated by sampling the configurations for 
a unit cell with the 32 oxygen sites of ZoooZlooZoloZllOzOOlZlOlZOllZll 1. All the 
dipole-dipole energies for a sample of 840 sets of orientations lay between the 
extreme limits of  those for the smaller cell [35]. The indexing of possible 
orientations which simplifies the following discussion is defined in Appendix 2. 

2.3. Ices I I i  and I X  

Whereas dielectric dispersion measurements have provided clear evidence 
that at higher temperatures ice I I I  is orientationally disordered [36], dielectric 
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constant measurements [37 (a)] indicated an ordering transition over a tempera- 
ture range of pseudostability from - 6 5  ~ to - 108~ apparently without change 
~n the geometry of the oxygen sites, to a phase called ice IX. This view has 
been supported by the interpretation of I.R. spectra [38] and the entropy of 
phase transition [39, 40]. Since single crystal neutron diffraction data favour 
a structure in which 96 per cent of the D in D20(s ) are at sites for an ordered 
structure [17 (a)], the calculations reported in this article are based on perfect 
rotational order. Earlier single crystal X-ray diffraction [41] established a 
tetragonal unit cell P4121~ for the O atom sites with 

a -- 6.73 + 0.01A, c = 6 . 8 3 + 0 - 0 1 A  ( t = - 1 7 5 ~  6) 

These values are for a state of pseudo-equilibrium in which the pressure has 
been released to 1 atm for the experimental measurements. They were 
assumed in the neutron diffraction studies and have been used in our calcula- 
tions. However, c/a= 1.015 + 0.003 from (6) is not quite consistent with c/a 
from powder photographs [42] (1.044+0.005 at - 2 4 ~  and 2-7 kbar for ice 
I I I  and 1.000 + 0.003 for ice IX at both 1 bar and 1 kbar). 

The unit cell has the twelve following sites of two types:  O(I , j ) ,  1 ~<j~< 8 
at sites of no point symmetry;  O( I I , j ) ,  9~<j~< 12 at sites on a twofold axis. 
The oxygen site coordinates used were derived by applying symmetry trans- 
formations to the neutron-diffraction data since they were accompanied by 
slightly smaller error estimates. Then the hydrogen coordinates for our 
monomer geometry (w 2.1) were determined by adopting the neutron diffrac- 
tion DOD angle bisectors and the DOD molecular planes. Appendix 3 gives 
the coordinates derived for all atoms in the unit cell and identifies the donor 
and acceptor nearest neighbours for each site. 

2.4. Ice 1I 

Evidence from I.R. spectra [38] and X-ray diffraction [43] that ice II  has 
an ordered arrangement of hydrogens in the metastable state after pressure 
has been released to 1 atm was confirmed by single crystal neutron diffraction 
on D20(s ) at ca. - l l 0 ~  [17 (a)]. The AS of transition to the rotationally 
disordered Ih [43 (a)], 0-5 R, and the absence of dielectric disperion throughout 
its range of stability [36 (a)] indicate that it is also ordered under pressure. 
The X-ray and neutron diffraction data were interpreted with the twinned 
rhombohedral R E structure. The X-ray data gave the unit cell parameters at 
t =  - 150~ [43 (b)]: 

a =  7.78 + 0.01A, ~=113-1_+ 0"2 ~ (7) 

The unit cell contains 12 molecules of two types:  O(I , j ) ,  1 <j~<6; O( I I , j ) ,  
7~<j~< 12. Each type forms six-membered puckered rings. For these calcula- 
tions the orientations of the monomers (w 2.1) were determined by assigning 
them the experimental DOD angle bisectors and the DOD molecular planes. 
The coordinates of all sites in the unit cell and the identification of donor and 
acceptor nearest neighbours for each site are given in Appendix 4. 

2.5. Elements of the polarizability tensor 

Because of the agreement between the trace for the equilibrium positions 
5e=9.74 au and &expt=9.82, we adopted the values [44] used in the previous 
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Properties of ice 887 

study [1], despite the evidence [45] that the uncoupled Hartree-Fock technique 
leads to substantial errors. The errors for water are shown by comparison 
with coupled electron pair values [46] for the static tensor, for which the aniso- 
tropies have been estimated to be correct to 5-15 per cent, and which have 
been confirmed to better than these limits by Rayleigh depolarization data [47]. 

Source ~e 11 Cr ~e 22 0r ~e 33 0r ~e ~Ot 
W M [ 4 6 ]  9.64 9-79 9.81 10.14 9.59 9.66 9.68 9.86 
LM [44] 9.80 11:14 8.27. 9.74 (8) 

3. RESULTS AND DISCUSSION 
3.1. Permanent multipole andinduced dipole energies for ice Ih ," energetic and 

symmetry interpretation of rotational disorder 
The overwhelming experimental evidence summarized above for the exist- 

ence of rotational disorder in ice Ih and the successful interpretation of the 
entropy discrepancy by Pauling's model with equal statistical weights for all 
orientations consistent with (4) posed two problems for this study. First, as 
Rahman and Stillinger [48] observed, the evidence that the energy bias has 
minor effects on the proton distribution deserves a theoretical check, parti- 
cularly since experimentalists have at times justifiably qualified the interpreta- 
tions of their evidence for disorder by inclusion of a phrase such as ' . . .  no 
very significant change in proton ordering occurs . . . '  [19 (a)]. The second 
problem was to determine the aspects of the water molecule responsible for 
this disorder. 

The previous inference [35] of possible energy differences between con- 
figurations was limited by :  (i) the use of point charge models (even though 
tested by a wide range of models) ; (ii) the consideration of only the first order 
electrostatic energy; (iii) the truncation of the corresponding permanent 
multipole representations using a single centre for each molecule at order 8, 
which left undesirably large error bounds [6] ; (iv) the restricted number of 
different configurations considered. Since the range of energy differences 
seemed high (ca. 0.1 to 0.66 kcal mol-lJ~, cf. pp. 2704-5 and table XI  [35]), 
this study was undertaken to eliminate or at least sharply reduce each limitation. 

Since the energies of transition between the rotationally disordered Ih and 
the ordered form II  have been estimated as only -,,0-019 kcal mo1-1 [49 (b)] 
and between Ih and I I I (which at lower temperatures transforms to the ordered 
form IX) as of the order of 0.1 to 0.2 kcal mo1-1, compared with a lattice energy 
of 14 kcal mo1-1 for ice Ih [50], it follows that a study of energy as a function 
of orientation for any assumed model should be carried to a consistency as 
near this order of magnitude as possible. Since the previous studies had 
shown that low order multipole approximations, which represent the symmetry 
of the molecule poorly, were completely inadequate for this purpose (e.g. the 
dipole-dipole and fourth order approximations gave as little as 24 and 83 per 
cent of the total permanent multipole lattice energies, respectively [35]), the 
present calculations included all orders ~< 14 to increase the accuracy of the 

J-The values are for the axis system assumed in w 2.1, the subscript ' o '  refers to 
vibrationally averaged values. Multiplication of the entries by 1'648 776 x 10 -~1 yields 
in the units of C m/V m -1 = C 2 m2/J. 

1 kcal =4.184 kJ. 
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888 E .S .  Campbell and M. Mezei 

representation of the molecular symmetry, The following evidence supports 
the conclusion that there is a small but definite difference between the permanent 
multipole contribution to the lattice energies of different hypothetical ordered 
configurations. The permanent multipole energy was computed for each of 
the 856 configurations consistent with the 16 molecule unit cell of (5)t. After 
division of all configurations into those 55 classes whose members all had 
identical energies for all permanent multipole interactions of order ~< 5 for 
any arbitrarily assumed charge distribution consistent with the symmetry of 
the water molecule [35], the members of each class had the same permanent 
multipole energy of order ~< 14 for this wave function. A heuristic estimate 
of the uncertainty due to the truncation of the multipole expansion is given 
by the greatest l(multipole energy for orders ~< 14)-(multipole energy for 
orders ~< 13)1 which was found for any of the 55 classes. With r0=2-72 A, 
this was 0.026 kcal mo1-1. Since the greatest absolute difference between the 
permanent multipole energies for orders ~< 14 between any pair of the 55 classes 
was 0.145 kcal mo1-1, this particular wave function predicts different permanent 
multipole contributions to the lattice energy for different hypothetical orienta- 
tions. The entire set allows the comparison of alternative polar and non- 
polar structures (cf. Appendix 5 for other energetic consequences of a polar 
structure). The configurations, which like real Ih are non-polar, fall into 
10 energy classes (cf. Appendix 2). At r0= 2.741 A, the greatest absolute 
difference in permanent multipole energies was 0.094 (0.135)kcal mo1-1 or 
0-47 (0.67 per cent) of the total permanent multi'pole contribution for the 10 (55) 
energy classes. Since the calculated dipole moment ~ 1.2 (experimental) and 
since the spread in dipole-dipole energies makes the greatest contribution, the 
energy difference may be ~ 30 per cent too large. 

Next consider the contribution from the dipole which is induced at each 
site by the permanent multipoles and, cooperatively, by the induced dipoles at 
all other sites. Arguments at the end of this section, which support the infer- 
ence that membership of a configuration in one of the above 55 energy classes 
is a consequence of certain symmetries of the water molecule and of the ice Ih 
lattice and does not depend on the character of the equations for the first order 
coulomb energy they define, are further substantiated by the fact that the 
same 55 classes were found to be valid for the induced dipole contribution as 
well. Induced calculations for different r 0 were executed for only one repre- 
sentative configuration from each energy class, defined for the set of 10 in 
Appendix 2. For r0=2.741 A the maximum minus the minimum energies 
were 0"55 (1.07)kcal mo1-1 for the 10 (55) classes. The arguments given 
below support the inference that the inclusion of higher order induced multi- 
poles would lower this spread, just as the inclusion of higher order permanent 
multipoles lowered the spread of 0.60 (2.32)kcal mo1-1 for dipole-dipole 
energies to 0-094 (0.135) for the 10 (55) energy classes. 

The argument rests in part on the answer to the second problem posed at 
the beginning of this section. The evidence (a-d) below supports the con- 
clusion that the three following aspects of the symmetry of water molecules 
lead to approximately tetrahedral coordination in condensed phases and to 
energy differences between possible orientations which are a small fraction of 

"l" The number of Configurations reported in a previous study [35] was reduced from 
2970 to 856 by elimination of sya'nmetry duplications. 
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Properties of ice 889 

the total lattice energy and, therefore, provide a qualitative basis for the exist- 
ence of  rotatianal .disorder in the ice Ih structure : (i) the molecule has two 
positive and one negative centre in a molecular symmetry plane ; (ii) the bond 
angle is approximately tetrahedral ; (iii) the charge distribution is sufficiently 
assymmetric that the gain from optimizing the relative orientations more than 
balances the loss from the decrease in density compared to the close packed 
structure assumed by the related H2S molecule [51]. (a) Neither of these 
structural features can be due to any tetrahedral symmetry of the monomer 
charge density. Although such a symmetry has often been inferred from the 
idea of lone pairs, Hankins' wave function of near Hartree-Fock accuracy did 
not show the expected approximately tetrahedral symmetry [52], and our 
calculations on the wave function of [53] showed that the maximum electron 
density in the lone pair plane did not occur at tetrahedral angles + 54.74 ~ but 
in the molecular plane. (b) Conversely, a wide range of models with triangular 
or tetrahedral symmetry [35] yield energy differences which are a small fraction 
of the lattice energy t .  Whereas the cylindrical symmetry of the dipole vector 
gives dipolar lattice energies which vary by a factor of about 2.6 for different 
configurations of ice Ih, when the symmetry of the models is more accurately 
reproduced by single centre multipole expansions of the eighth order about the 
O nucleus, the lattice energy differences are reduced to 5 per cent or less. 
(c) The following arguments suggest that the analytical fit [3, 4] using centro- 
symmetric point sources in the molecular plane at points at and near the 
corners of a triangle would also lead to differences which would be small 
compared to the lattice energy and of the same relative magnitude as we have 
found:  (i) both the strictly additive [3, 4] and the present non-additive 
potentials reproduce the same H F  dimer data [1] ; (ii) the additive component 
Up+ U r of the latter leads to a relative energy difference between the ten 
energy classes of only 2-8 per cent at r0=2.741 •. Their strictly additive 
[3, 4] should yield a similar result. (iii) Since a Monte Carlo calculation [54] 
using the analytical fit [3, 4] and a perturbation estimate for the dispersion 
contribution gave a reasonable representation of the O-O pair distribution 
function in H20(/), it follows that the triangular symmetry when the molecular 
plane is a symmetry plane, the bond angle is approximately tetrahedral and 
the angular dependence is sufficiently strong suffices to yield the preferred 
approximately four coordinate structure even in the fluid phase .  Conversely, 
the cylindrical symmetry of permanent dipoles should lead to a chain structure 
such as is observed in HCN(s) [55] and is distorted by other contributions to 
give staggered chains in HF(s) [56]. 

Finally, return to the problem of the much greater variation in the energy 
involving induced dipoles compared to the variation in the energy contributed 
by permanent dipoles alone. It follows from the above discussion of the 
symmetry of the water molecule and of the occurrence of rotational disorder 
in ice Ih that this range should be much smaller when the molecular symmetry 
is more satisfactorilY represented by the inclusion of higher order induced 
multipoles just as the range for the permanent multipole energies is much 
smaller when the molecular symmetry is more adequately represented by the 

This has been established in unpublished calculations for a wide range of plausible 
parameters for the point charge models of [35] which reproduce the experimental dipole 
vector. 
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inclusion of higher order permanent multipoles than the range when the 
molecular symmetry is replaced by the qualitatively different symmetry of the 
permanent dipole approximation. This inference is also supported by the 
observation that the field defined by permanent multipoles and cooperatively 
by induced dipoles does not always give a vanishing net unit cell induced 
dipole even when the net permanent dipole vanishes. Thus, the net induced 
dipole vector for a unit cell of 16 molecules varies from 0 to 0.026 au for those 
ten orientations in which the net permanent dipole vector vanishes. This 
should be compared to an induced dipole vector of ca. 0.5 au per molecule. 

3.2. L a t t i c e  energies 

The calculations of the lattice energy, U(oo), by (1) correspond to the 
energy difference, 

U ( ~ )  = A U = U(g )  - U(s)  + ( Uvibration(S ) -- Uvibration(g )). 

Whalley's [50] careful estimate of AU for ice Ih gives a vibrational correction 
of 2.76 kcal tool -1 which, when added to the experimental heat of sublimation 
at 0 K, 11"315 kcal tool -1, yields 14.08 kcal tool -1. Unfortunately, no similar 
estimate was found either for ice I I or ice IX. The size of the vibrational 
correction, which includes an intermolecular zero point energy correction of 
3-95 kcal tool -1 which would be expected to be different for different lattices, 
precludes a direct comparison with experimental data for I I and IX. The 
calculated results are shown in table 1 for the three different dispersion energy 
corrections defined in the legend. 

Since the total lattice energies have been computed using a model that 
reproduces the 229 Hartree-Fock energies of dimerization of [3, 4], the cal- 
culated values are to be viewed as a test of supplementing Hartree-Fock pair 
energies with a dispersion and a particular non-additive contribution. Since 
the wave function used in the dimer calculations gives an equilibrium dimeriza- 
tion energy of 4"37 kcal mo1-1 compared with a value of 3"67 kcal mo1-1 of 
pairs from a wave function including /-type harmonics on O and d-type on 
the Hs, the calculated lattice energies should be expected to be too large. Even 
without taking into consideration the neglect of the angular dependence of the 
dispersion contribution, the agreement for ice Ih is at least as good as can be 
expected for both the dispersion models a and b. Whereas our result that 5 U  

f o r  ice IX is somewhat less than for ice Ih is plausible, it seems unlikely that 
the zero point vibration correction for ice II  should be enough larger than the 
3-95 kcal tool -1 for ice Ih to account for the relative values for ice Ih and ice II. 
Since the sum of the permanent multipole and induced dipole contributions are 
in the expected order inferred from the compromise in preferred relative 
orientations caused by pressure (I U,~ + U i lib > [ U~, + Ui I ix > I Up + Ui I II), and 
since the increased near neighbour distances in the more dense forms yields an 
angularly averaged dispersion contribution in the order Ih>  II  ~ _ IX, the dis- 
crepancy should probably be assigned to the anomalously low repulsive contri- 
bution for ice I I. It seems to us that this may not be due to any inadequacy 
of the particular HF dimer potential, but the particularly simple form of U r 
previously chosen to test the model [1], since even the use of three rather than 
two terms in Ur yielded a decrease in the standard deviation of the fit to the 
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892 E .S .  Campbell and M. Mezei 

Hartree-Fock data from 0.0019 to 0.0012 and in the standard relative deviation 
from 0.19 to 0.16. A variation of this order could account for the difference. 

Consider next the relative contributions to the lattice energy. The ratio 
[(interaction energy involving induced dipoles)/(interaction energy involving 
only permanent multipoles)] is (0.39, 0.44) for ices (IX, I I )  and varies over 
the range (0.336, 0.364) in the set of 10 classes for which the net permanent 
dipole vector vanishes. These ratios compare with the value 0-31 which 
Coulson and Eisenberg [59] obtained by a certain average over relative orienta- 
tions consistent with Pauling's rules for ice Ih (cf. (4)). Since they used a 
permanent dipole moment of only 1-78 D and very different quadrupole and 
octupole moments, the similarity of their and our values for ice Ih suggests 
that the effects of differences in multipole moments and even of truncation at 
the octupole level are largely cancelled in the ratio. 

The energetic importance of cooperativity for the ices was determined by 
calculating the contribution involving induced dipoles non-cooperatively, 
Uin~176176 the contribution using the dipole vectors which would be induced 
at each site by the E defined by only the permanent multipoles ignoring the 
cooperative contribution from the induced dipole vectors at other sites. This 
reduced JUil by (2.12, 2.48)kcal tool -1 for ices (IX, II)  and by amounts over 
the range (1-71, 2-19)kcal mo1-1 for the 10 classes of ice Ih. These give the 
ratios I(V~-Vin~176176 of (0.32,0.29) and (0.25,0.30) and of R~- 
I ( U i -  Uin~176176 + U i + Ur) I of (0"18, 0"20) and (0-15, 0.19), respectively. 
Thus the cooperative interaction through the lattice has enhanced R from 
/~=0.10 averaged over the frequency of trimer occurrence [5] in Ih. 

Two points should be considered in the interpretation of these calculations. 
The first is the validity of the use of a multipole representation of the first 
order Coulomb energy. This is dependent upon the particular molecules 
since some tests [60, 61] have given useful approximations even at distances 
in condensed phases, whereas others [62, 63] yielded good (including HF)  to 
useless results at van der Waals radii. After we had completed almost all 
calculations, Mulder and van Hemert [64] kindly provided us with a pre- 
publication comparison of the multipole approximation with the unexpanded 
first order Coulomb energy for one of the relative H 2 0 - H 2 0  orientations used 
by [14] and their H20 wave function. 

We repeated the multipole calculations using our split mode [6] including 
terms of order ~<14. Their and our multipole expansions agreed within 
6 per cent at 4 au and 0.6 per cent at ice distances. They found a difference 
of the order of 25 per cent at the nearest neighbour distances of ice Ih. The 
following arguments (a) and (b) lead us to believe that the difference must be 
much smaller. (a i) The preceding discussion has shown that an acceptable 
model for water should satisfy the following criterion: in the case of ice Ih, 
the values of lattice energy sums for different sets of water molecule orienta- 
tions which are consistent with Pauling's rules (4) should differ by at most a 
small fraction of the lattice energy. This has been established for both 
permanent multipole sums which are only asymptotically convergent (e.g. the 
present work) and sums which are truly convergent (e.g. a wide range of point 
charge models for which the charges for different lattice sites are contained in 
disjoint spheres [35]). (a ii) Let the permanent multipole lattice sum for any 
set of orientations, O, for ice Ih be written as the sum of a nearest neighbour 
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Properties o[ ice 893 

contribution, ON, and a sum of contributions from all more distant sites, Oa. 
Let O and O' be two different sets of orientations consistent with Pauling's 
rules (4). For many pairs O and O', 
(a iii) The calculations of van Hemert and Mulder lead to the reasonable con- 
clusion that the only significant discrepancy between the unexpanded evaluation 
of the first order Coulomb integral and the multipole expansion can occur in 
the lattice only for near neighbour sites. (a iv) If the difference between the 
unexpanded and expanded values at the nearest neighbour distance were ,-~25 
per cent, the lattice sums for the first order Coulomb energy could satisfy the 
criterion of (a i) only if a positive difference for one nearest neighbour orienta- 
tion were very nearly cancelled by a negative difference for another. This 
seems to us highly unlikely. (b i) Let us use the sequence of differences 
between permanent multipole sums of successive orders as a basis for an 
estimate of their asymptotic convergence. Let the relative error in the trun- 
cated asymptotically convergent series= I(error)/(permanent multipole sum)l. 
When the contributions of all orders ~< 14 were included, our expansions gave 
the following relative errors: a three centre expansion [6], <3 • 10-5; a 
single centre expansion, <3 x 10 -3. The conservatism of our estimates is 
shown by the fact that our expansions had a relative difference of 8.4 z 10 -4. 
(b ii) Our results on hundreds of pair interactions have shown that a large 
relative error for either type of expansion has always been reflected in a dis- 
agreement between their values. Whereas we would not be surprised by a 
substantial error in the permanent multipole sum for the first order Coulomb 
energy if the successive partial sums varied by a few per cent, we believe that 
a 25 per cent error in the multipole value for the nearest neighbour interaction 
in ice is unlikely when the relative error of the asymptotically convergent three 
centre expansion < 3 x 10 -5. 

The second point is the limitation of the non-additive contribution to terms 
involving induced dipoles. Recent results provide a further test of one of the 
limitations in this approximation. Calculations of the triple dipole interaction, 
the leading non-additive component of the dispersion contribution [65] indicate 
that it is about an order of magnitude smaller than the non-additive induced 
contribution for the very polar water molecule. Although the authors emphasize 
that they have calculated an approximation valid for long-range interactions, and 
although test calculations on three H atoms showed that in this case the approxi- 
mation gives a useful representation of the non-additivity only at distances 
significantly greater than the van der Waals minimum for non-bonded inter- 
actions [66], it seems unlikely that for the closed shell water molecule, the 

�9 errors in using the expanded form will be enough greater to alter the qualitative 
comparison. Thus, the induced contribution to non-additivity should be the 
more important one. 

3.3. Compression in condensed phases 
The minimum in the H20-H20 dimer potential energy surface occurs at 

do_o= 3.00 A for the near Hartree-Fock wave function of [4] and at 2.924 A 
for the extended CI wave function of [67]. These values compare with most 
probable nearest-neighbour distances in H20(I ) varying from 2-82 A at 4~ 
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894 E. S. Campbell and M. Mezei 

to 2"94 A at 200~ [68]]-. In ice Ih the nearest neighbour distance at 0~ is 
given as 2.76 to 2.77 A [25 (a)] and extrapolation of the data of [23] gives 
2.762 A~. 

Consider first the compressive effect of the non-additive contribution [5]. 
Although the compressive effect of any contribution clearly depends upon how 
it varies with distance, the relative contribution of various factors to the equi- 
librium lattice energy should provide an approximate ordering of the significance 
of their contributions to the compression. For ice Ih, the discussion of lattice 
energies gives values of 15-19 per cent for the cooperative contribution. Another 
important compressive contribution in condensed phases is a minimization of 
the lattice energy by decreasing distances for attractive interactions with sites 
outside the nearest neighbour shell with the sacrifice of part of the nearest 
neighbour contribution as the distance decreases. The importance of longer 
range interactions is shown by the ratio R~--{U(nearest neighbours)/U(lattice)}. 
For ice Ih, R N for the lead spherically averaged dispersion contribution is 0"78. 
The effect of the slower decrease with distance of the permanent multipole 
contribution is shown by an even smaller ratio. For one configuration of ice 
Ih and one charge model for H20, RN=0"63 for all multipole interactions of 
order ~< 4 [35 (d)]. 

3.4. Electric field vectors at the oxygen sites 

The values of the electric field vectors, E, are of particular interest because of 
the frequent discussion of the local field. Whereas the field components with 
respect to a crystal based frame will exhibit no apparent pattern, their essential 
simplicity and symmetry should be clear in a local frame fixed with respect to 
the molecule at each site. Consider such orthogonal frames with centres at 
the oxygen sites and basis vectors : 

ez= - ( O  H=+ O H~)/[I O H=+ O Hpll, ] 
e2= H~ H'e/ll H~H'eII' / ( 9 )  

e 3 = e 1 x e 2. 

The major component of the electric field at a given site defined by the permanent 
multipoles of all other lattice sites lies along the HOH angle bisector and the 
variation in the field with configuration in ice Ih and with the site for ices Ih, 
IX and I I are shown by table 2. 

3.5. Dipole vectors in ice 

It follows from w 3.4 that the same local systems (9) should be used for the 
discussion of the induced dipole vectors. The results are shown in table 3. 
Since the induced vectors were obtained from a cooperative calculation which 
includes the field contributions from induced dipole vectors at other sites, the 
variations with site, configuration of Ih and ice form, are in part due to the 
neglect of contributions from the derivatives of the field [7, 8]. 

]" These diffraction curves have been confirmed by Hajdu, Lengyel and Palinkas [69]. 
However, the small scale graphs in their article and a later article by Narten [70] cannot be 
used to check the exact values reported for the first maximum in the earlier article. 

$ Their data for the c-axis length which are more consistent than their data for the 
a-axis length have been used and a perfect tetrahedral geometry has been assumed. 
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Tab le  2. EP erm in ices Ih,  IX,  I1 in the  local f rame (9) (i). 

895 

Ice Ih  
conf igura t ion  
n u m b e r  (iii) 

ill 'per'nil • 10 2 {(E2perm)2+(E3Perm)2}l/2/l[[gperm 
M i n  (ii) Max  (ii) Max  (ii) M i n  (ii) 

412 4.09 4.10 9.66 x 10 3 1.22 x 10 3 
329 4.04 4.14 1.24 x 10 2 1.95 x 10 2 
352 4.04 4.13 1.80 x 10 -2 1.21 x 10 -2 
363 4.04 4.11 8-99 x 10 -3 9.73 x 10 -3 
108 4-07 4.10 4-66 x 10 -3 1-48 x 10 -2 
326 4.04 4.13 2-57 x 10 -3 9.76 x 10 -3 

22 4-00 4.14 9.44 x 10 3 9.17 x 10 3 
17 4.00 4.13 1.10 x 10 -2 5.45 x 10 -3 

338 4.00 4.16 9.04 x 10 -3 2.88 x 10 -3 
57 4.01 4-11 1-78 x 10 -3 1-03 x 10 -3 

Ice I I  (iv) 3-94 ( I )  4.33 ( I I )  5.28 x 10 2 1.03 x 10 1 
Ice I X  (iv) 4.03 ( I )  4.15 ( I I )  0 1.56 x 10 -x 

(i) l:lperm was calculated for  each oxygen site as the electric field def ined by  the p e r m a n e n t  
mul t ipoles  of all o ther  lattice sites. Single cent re  expansions  of order  13 were used at 
each oxygen site. T h e  values are in uni t s  of (electron cha rge ) / (bohr )  2. Mul t ip l i ca t ion  by  
5.142 250 x 1011 gives I: in V m t .  (ii) ][Fperm][Max is the  greatest ,  I] I:p . . . . .  [IMin is the  least 
IIEperml[ as a func t ion  of site in  the  un i t  cell. (iii) T h e  ten  conf igura t ions  for ice Ih  were 
chosen as representa t ives  f rom each of the  ten  classes wi th  a zero ne t  dipole vector.  T h e y  
are def ined in table 5 of Append ix  2. (iv) ( I )  and  ( I I )  refer  to the  lattice site types(cf .  
w167 2.3, 2.4). (v) T h e  l h  values are for r0=2.741  A. 

Tab le  3. Dipole  vectors  (a). 

Ice Ih  (f) IIt~ina]l i1~o~11 0 (b) II~n~ll/i!~o~ll 
n u m b e r  (d) M i n  (c) Max  M i n  (c) Max  M i n  (c) Max  M i n  (c) Max  

412 0.572 0.572 1.436 1.437 0-357 0-624 0.398 0.398 
329 0-534 0.573 1.398 1-437 0-053 1.557 0-382 0.399 
352 0.546 0-559 1.410 1.424 0.482 0.810 0.387 0.393 
363 0.549 0-556 1.413 1-421 1.074 1.161 0.388 0.392 
108 0-550 0.555 1.414 1.420 0.821 1.419 0.389 0.391 
326 0.535 0.556 1-400 1.420 0.470 1.397 0.382 0.392 

22 0.513 0.555 1-378 1.420 0.408 1.265 0.373 0.391 
17 0.529 0.554 1.394 1-418 0.352 0.989 0.380 0.390 

338 0-523 0.538 1.387 1.402 0.419 0.731 0.377 0.383 
57 0.529 0.542 1.393 1.407 0.336 0-949 0.380 0.385 

Ice I I  (e) ( I )  0.573 1-435 2.73 0.40 
( I I )  0.620 1.485 0.742 0.42 

Ice I X  (e) ( I )  0.569 1.430 2.55 0.40 
( I I )  0.557 1.414 0 0.39 

(a) ' T h e  dipole vectors,  I~, are in a.u. w i th  convers ion  factors of 2.541 765 (D/a .u . )  and  
8 . 4 7 8 4 1 8 x 1 0 - 3 ~  T h e  p e r m a n e n t ,  i nduced  and  total  dipole vectors  are 
denoted  by  [~perm, ~ina, ~ t o t ~ P t p e r m + ~ i n d .  (b) 0~-the  angle be tween  Ixtot and  [J.perm in 
degrees. (c) T h e  co lumns  headed M i n  (Max)  give the  least (greatest)  value of the  specified 
variable.  (d) T h e  ten configurat ions,  specified by  the conf igura t ion  n u m b e r s  in co lumn  1, 
for Ice I h  were chosen as representa t ives  f rom each of the ten classes wi th  a zero ne t  dipole 
vector.  T h e y  are def ined in table  5 of A p p e n d i x  2. (e) T h e  superscr ip ts  specify the  
lattice site type. T h e  symbols  I and  I I  are def ined in w167 2.3, 2.4. (f) T h e  Ih  values are 
for r0=2"741 A. 
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896 E . S .  Campbell and M. Mezei 

The  quantitative effect of the error in the wave function is difficult to assess 
because of varying quality of the moments it defines. Thus  the permanent  
quadrupole components for this wave function agree well with both those 
defined by the largest gaussian type orbital functions of "[71]]. (PKC[3] Q n =  
-5 .716,  Q22---4.171,  Q 3 3 = - 7 . 4 9 3 ;  NM[71] Q n = - 5 " 7 0 8 ,  Q 2 2 = - 4 " 1 8 0 ,  
Qa3= _ 7"482) and with the experimental values of [72] (PKC[3] 011- - -0 .028 ,  
022= +2.506, 033= -2 .478  ; exp 011= -0 .13 ,  022= +2.63, 033= -2.50)] ' .  
(For this comparison, Buckingham's convention [7] has been adopted in which 

OiJ=(3QiJ-~iJ ~ Qkk)/2, 

and the expansion centre has been translated to the centre of mass.) Conversely, 
the calculated dipole moment  of 2.197 D shows an 18 per cent error in com- 
parison with the experimental value of 1.8546 + 0.0004 D [73]~. 

The following argument reduces the average over classes for the total 
(induced) dipole moment in Ih from 3-588 (1-390) to 2-94 (1.089)D after 
correction for errors in E arising from the wave function assumed for water :  
(i) To a first approximation, one might expect that the contribution of higher 
order multipoles to E increases as l= increases. (ii) Since by tables 2 and 3 t=, 
~perm and ~ind are approximately collinear, the non-cooperative contribution 
(cooperative correction) to ['Lind should scale approximately as II~ll, and, 
therefore, as II ~tot II of the model assumed (multiplied by (1 - (AII ~/'ind II )/II [/'tot 11]) 
where A is the non-cooperative correction). These values can be compared 
with Coulson and Eisenberg's [74] values, 2-60 D and 0-82 D. Although 
they also report a ratio II~in~ucedll/ll~otalll =0.315, compared with the average 
of our data in table 3, 0"388, the averages smooth out important  differences. 
(Their  total dipole moment  is the average of values ranging from 1.9 to 3-1 D 
whereas the calculations reported here show that the variation is <4.2 (5-6 
per cent) for the set of 10 (55) classes, respectively). Finally, the value for total 
moment  can be compared with the estimate of 2.3 D obtained from the 
Onsager reaction field for the model of a single point dipole at the centre of a 
sphere of molecular size in a dielectric cont inuum [75 (a)]. 

We express our appreciation to the National Institutes of Health which 
supported this work under Grant  1R01 GM20436-02. 

APPENDIX 1 

Extrapolations for r o (0 K) 

Four different extrapolations of the nearest neighbour O-O distance, ro, 
were made. (i) Extrapolation of Barnes' [22] data gave a value used in earlier 
calculations, r o (0 K)=2-72  A [35 (b)]. (ii) Integration of Dantl 's [76] data 
on thermal expansion gave a better estimate, r 0 (0 K ) =  2.744 A [35 (b)]. How- 
ever, others [24] found no evidence of negative coefficients of thermal expansion 
at lower temperatures such as he reported and are found in some tetrahedral 

t The units are 1026 esu cm 2. The moments in frames (9) were calculated relative to 
the O nucleus using the definitions of [9] using the wave functions of the cited references. 

The conversion factors are 3-335 641 x 10 14 C m2/esu cm 2 and 3"335 641 • 10 -a~ 
C m/D. 
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Properties of ice 897 

lattices [30 (b)]. (iii) La Placa and Post 's [23] data on a ' x = a '  2 are anomalous, 
non-monotone  functions of temperature  over [ - 1 0 0  ~ - 1 3 0  ~ and are, there- 
fore, not suitable for extrapolation. Moreover,  if the O - O - O  angles were 
tetrahedral, their ratio []a'a]//lla'll I < (8/3)1/2 would imply []Ol-+Oa]] > ]101-+O41[, 
whereas Chamberlain,  Moore and Fletcher 's  [19] best estimate is that 
]101-->O4 ][ >'H Ol ->Oar[. However,  their values for Ill'all are monotone and 
are in general agreement with the data of [24]. To  test the possibility of 
combining their values for Ill'all with the assumption of ideal geometry of 
w 2.2, we extrapolated their data to 77 K to obtain r ~ (77 K) = 2.7441 A in agree- 
ment  with the best estimate of Chamberlain, Moore and Fletcher [19], 2.744 A. 
This  agreement is a result of the fact that the increase in the a' a component  of 
(Oa->O1) arising f rom the amount  their Oa-O1-O 4 angle exceeds the ideal 
tetrahedral value of (8/3) ~/2 almost exactly balances the amount  by which 
(Ol-+Oa) is shorter than (01--->O4). Therefore ,  La Placa and Post 's data on 
Ill'all were extrapolated to 0 K and the ideal geometry was assumed to obtain 
r 0 (0 K)=2-7407 A. (iv) The  extrapolation of Brill and Tippe ' s  [24] ][a'al I at 
13 K to 0 K  yields a correction of only 0.0001 A. Assumption of the ideal 
geometry o f  w 2.2 then gives r 0 (0 K ) =  2"7449 A. 

APPENDIX- 2 

Possible orientations for water molecules in ice Ih 

Let  O e be any oxygen site of the lattice at the geometric centre of four 
nearest neighbour sites, O n, n = l , . . . , 4 .  Th e  possible orientations for the 
central H20  consistent with Pauling's rules given by (4) are defined by speci- 
fying for each of the two H of the central molecule the particular O n, such that 
Oe-+H lies approximately along O~-+O'L Define an orthogonal sys tem:  

%=a'dlla' l[, ex=a',/lla' ll, % = e a •  ( a 2 . I )  
Let  : 

8 : the sole Oe-->O n which has zero e 1 and % components  ; z : the 
Oe->O n which has a negative % component  ; /3 : the Oc-->O n 
which has a positive e I c o m p o n e n t ;  y :  the Oe-+O '~ which 
has a zero e 1 and a non-zero % component .  (A 2.2) 

Table 4. Possible dipole directions, $, and orientations for water molecules in ice Ih. 

Positions (i) 
(a) (b) (c) (d) s 

VP(ii) DI(ii) VP DI VP DI VP D1 Sl sz sa(iii) 

~ .1 y6 12 etla 13 y6 24 0 -(2/3) 1/~ +(1/3) ~/2 
cxy 2 ~5 11 ecy 14 ~8 23 -(1/2) 1/2 +(1/6) 1/2 +(1/3) ~/2 
,,8 3 ~xy 10 a~ 15 ~y 22 -(1/2) 1/~ -(1/6) 1/~ _+(1/3) a/2 
lay 4 lab 9 lay 16 la6 21 +(1/2) 1/~ +(1/6) 1/2 _+(I/3) 1/~ 
lab 5 lay 8 lab 17 lay 20 +(1/2)  1/2 - ( 1 / 6 )  1/2 +(1/3)  1/2 
y8 6 e~la 7 y8 18 tzla 19 0 +(2/3) 1/2 +(1/3) 1/2 

(i) The positions are defined by (3). (ii) VP, vector pair; DI, dipole index. (iii) 
The upper sign applies to (a) and (b) positions. Thus, sa is negative for indices I and 12 
and positive for indices 13 and 24. 
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Table 5. 

E. S. Campbe l l  and M. Mezei  

Orientations for a representative from each energy class for which the net dipole 
vector vanishes. 

Dipole indices (c) 

NE No Zooo (d) Zloo Zolo Zno 
(a) (b) a b c d a b c d a b c d a b c d 

1 412 3 7 16 24 4 12 15 19 4 12 15 19 3 7 16 24 
2 329 6 7 13 24 5 9 14 22 2 7 17 24 4 12 15 19 
4 352 6 7 13 24 5 8 14 23 2 11 17 20 1 12 18 19 
7 363 6 7 13 24 4 9 15 22 4 9 15 22 6 7 13 24 
8 108 2 7 18 23 5 12 13 20 2 7 18 23 5 I2 13 20 

11 326 6 7 13 24 4 9 15 22 2 7 17 24 6 11 13 20 
16 22 3 7 14 23 4 12 15 22 4 8 18 23 5 9 13 20 
24 17 3 7 14 23 4 12 15 22 6 10 16 21 1 9 17 20 
30 338 6 7 13 24 4 9 15 22 6 7 13 24 4 9 15 22 
32 57 6 7 14 23 5 8 13 24 2 11 18 19 1 12 17 20 

(a) The energy classes ArE are defined in equation (30 b), p. 2698 of [35]. (b) The 
configuration numbers Ne are given for reference to the thesis of Gelernter (1965, Ph.D. 
Thesis, New York University). (c) The dipole indices are defined by table 4. (d) The 
unit cells zijk are defined by (5). 

T h e  possible dipole direct ions  and the indexing  which  simplifies the discuss ion 
results  is given by table 4. Tab le  5 gives the dipole indices of table 4 for  one 
representa t ive  f r o m  each of ten energy  classes whose  m e m b e r s  have zero net  
dipole vectors  for  the uni t  cells. 

APPENDIX 3 

Sites and orientations in ice I X  

T h e  coordina tes  given in table 6 for  the twelve water  molecules  were der ived 
as follows. T h e  fract ional  uni t  cell coordina tes  for the O a tom of each type  
have been  repor ted  f r o m  bo th  ne u t ron  di f f ract ion [17] and f r o m  X - r a y  diffrac- 
t ion exper iments  [41]. Since sl ightly smaller  er ror  l imits were assigned to the 
values f rom neu t ron  diffraction,  the latter were adopted .  T h e  O site coord ina tes  
were then  calculated us ing the uni t  cell constants  given by  (6), the general  
t r ans format ions  for  eight  equivalent  sites of no point  s y m m e t r y  for O ( I )  type  
sites and the t r ans format ions  for  four  equivalent  sites on a twofo ld  axis for  
O ( I I )  type  sites. Whereas  the two deu t e r i um sites for  O ( I )  type  O a toms  
were de t e rmined  in the same way as the O ( I )  posit ions,  the values for O ( I I )  
type  posit ions were der ived as follows. T h e  O ( I I )  is on  a s y m m e t r y  axis 
such that  the coord ina tes  given for  one D a tom ~a, b, c) yield the coord ina tes  
~b, a, - c )  for the other.  Since the D a toms  are not  themselves  on the  two-  
fold axis, the coordina tes  for the remain ing  three  molecules  were genera ted  by  
app ly ing  the general  t r ans fo rmat ions  for sites of no poin t  s y m m e t r y .  

T h e  or ientat ions  of the water  molecules  are such that  each O ( I , j )  has the 
four  neares t -ne ighbours ,  [ O ( I , j i ) ,  O ( I , j i i ) ,  O ( I I , j i i i ) ,  O ( I I , j i v ) ] ,  and each 
O(II, j)  the four [O(I,ji), O(I,jii), O(I,ji"), O( I , j ' ) ] .  Table 7 identifies 
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Properties o i ice 

Table 6: Coordinates for the sites in the unit cell of ice IX. 

899 

C1 C2 C3 

O(I,  1) 0.734 916 2-029 095 1.952 014 
D~(I, 1) -0 .083  452 2.235 033 1.459 571 
D#(I, 1) 0.765 874 1.061 321 2-027 144 

O(I,  2) 2.029 095 0.734 916 - 1.952 014 
D~(I, 2) 2.235 033 -0 .083  452 -1 .459  571 
D#(I, 2) 1.061 321 0.765 874 -2 .027  144 

O(I,  3) -0 .734  916 -2 .029  095 5.367 014 
D~(I, 3) 0.083 452 -2 .235  033 4.874 571 
D#(I, 3) -0 .765 874 -1.061 321 5-442 144 

O(I,  4) -2 .029  095 -0 .734  916 1-462 986 
D~(I, 4) -2 .235  033 0.083 452 1.955 429 
Dp(I, 4) - 1.061 321 -0 .765 874 1.387 856 

O(I,  5) 1.335 905 4.099 916 3.659 514 
D~(I, 5) 1.129 967 3.281 548 3-167 071 
Dp(I, 5) 2.303 679 4.130 874 3.734 644 

O(I,  6) 2.630 084 5.394 095 -0 .244  514 
D,( I ,  6) 3.448 452 5.600 033 0.247 929 
Dp(I, 6) 2.599 126 4.426 321 -0-319 644 

O(I,  7) 5.394 095 2.630 084 7.074 514 
D~(I, 7) 5.600 033 3.448 452 6.582 071 
Dp(I, 7) 4.426 321 2.599 126 7.149 644 

O(I,  8) 4.099 916 1.335 905 3-170 486 
D~(I, 8) 3.281 548 1.129 967 3.662 929 
Dp(I, 8) 4.130 874 2-303 679 3.095 356 

O(I I ,  9) 2.642 198 2-642 198 0.0 
D~(II ,  9) 2.020 346 2.418 762 0-721 931 
D~(II,  9) 2.418 762 2.020 346 -0-721 931 

O(I I ,  10) -2 .642  198 -2 .642  198 3-415 000 
D , ( I I ,  10) - 2-020 346 -2 .418  762 4.136 931 
Dp(II ,  10) -2-418 762 -2 .040  346 2-693 069 

O(I I ,  11) 0.722 802 6.007 198 1.707 500 
D~(II ,  11) 0.946 238 5.385 346 2.429 431 
D~(II,  11) 1.344 654 5.783 762 0.985 569 

O(I I ,  12) 6.007 198 0-722 802 5-122 500 
D~(II,  12) 5.783 762 1.344 654 5-844 431 
Dp(II ,  12) 5.385 346 0.946 238 4.400 569 

3 

Each site is at Z c i e iA  where e ,=a , / l l a ,  ll and Ilall]=lEa2H---6-73 h ,  Ila311=6.83 A, 
i--1 

and 1 .~=10  -1~ m. The types of the oxygen sites I, I I are defined following (6). In 
the notation of [17], D~(K,j) is a D5 site for O(K,j), K= I, and Dp(K,j) is a DG site for 
K=I .  For K = I I ,  both a a n d  f lare  D7 sites. 

for  each wa te r  m o l e c u l e  in the  un i t  cell the  two nea res t  n e i g h b o u r s  to w h i c h  
i t  dona t e s  a p r o t o n  to f o r m  an H - b o n d  and  the  two  f r o m  w h i c h  it accep t s  a 
p r o t o n .  
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Table  7. 

E. S. Campbell and M. Mezei 

Sets of nearest neighbours for all O-sites and the hydrogen bonding in the unit  cell (0, 0, 0 )  
of ice IX.  

Unit cell <j, nl, n2, n3) 
sites ~ ~p ~_/~ ~p 

0(I, 1) (`7, -1 ,  o, -1> (,11, O, -1 ,  o> <5, o, o, O) (`9, o, o, o> 
o(I,  2) (`6, o, -1 ,  o> (,12, -1 ,  o, -1> (`8, o, o, - 1 )  (,9, o, o, o) 
0(I, 3) <5, o, -1 ,  o> (,12, -1 ,  o, o> (,7, -1 ,  -1 ,  O> (,10, o, o, O> 
0(I, 4) <8 , -1 ,  O, o> (,,11, 0 , - 1 ,  o> (6, - 1 , - 1 ,  O> (,10, o, o, o> 
O(I, 5) (,1, o, 0, o> (,10, 1, 1, o> (3, o, 1, 05 (,11, o, o, o> 
0(I,  6) <4, 1, 1, o> <9, o, o, o> <2, o, 1, O> (,11, o, o, o> 
0(I ,7)  (`3, 1, 1, o> <9, o, o, 15 <1, 1, o, 1> (,12, o, o, o> 
0(I,  8) (`2, o, O, 15 (,10, 1, -1 ,  O> (`4, 1, o, O> (,12, o, o, o> 
0(II ,  9) (,1, o, O, o> (`2, o, o, o> (`6, o, o, O> <7, o, o, -1> 
0(II ,  10) <3, o, O, o> (`4, O, o, O> (`5, -1 ,  -1 ,  o> (`8, -1 ,  1, O> 
0(II ,  11) <5,, o, o, o> <6, o, o, o> (,1, o, 1, o> (`4, o, I, o> 
0(I t ,  12) <7, o, O, o> <8, o, o, o> (`2, 1, o, 1> (`3, 1, o, o> 

In each ordered 4-tuple, the first index j selects a particular O(I ,  j )  when 1 <) '  ~< 8 and an O(I  I, j )  
when 9 < j  ~< 12. The  last three indices select the unit cell so that the nearest neighbour  is located 

3 
r [O(K , j ) ]+  ~ niai, K= I, I I ,  and the ai are the unit  cell axis vectors. The  columns headed by 

i=1 
~ and ~fl give t h e  two nearest neighbours to which the unit cell water donates hydrogens ~ and ft. 
In  the notation of [17] : for O ( I , j ) ,  ~ is a D 5 type site and ~p is a D 6 type site ; for O ( I I , j ) ,  both  
are D7 types sites. The  columns headed d ~  and ~r give the nearest neighbours f rom which it accepts 
a hydrogen.  In the notation of [17] : for O ( I , j ) ,  ~ol~ accepts a Os type site hydrogen and .~'? a D 7 
type site hydrogen ; for O(I  I , j ) ,  both d ~  and ~r accept D 6 type site hydrogens. 

APPENDIX 4 

Sites and orientations in ice I I 

Since only approximate H atom coordinates could be inferred from single 
crystal X-ray diffraction of H20(s ) [43], the coordinates from neutron diffrac- 
tion of D20(s ) [16] were adopted in these calculations. Comparison of the 
trial (el. p. 1937) with the refined coordinates (cf. p. 1938) for oxygen sites 
indicated a printing error for those of the O( I I )  site that also occurred in the 
earlier paper. This was verified by comparing the computed with published 
a tom-atom distances. The  correct fractional unit cell coordinates for the 
O(I I )  site are the following permutation of those given:  (0-7571, 0-3389, 
0"4798). The computational algorithm assumes an orthogonal system which 
was defined as follows. L e t :  {ei} , {eiR}, {ein} : the sets of unit basis vectors 
for the new orthogonal system, the rhombohedral  unit cell of Ra, and the 
alternative hexagonal system. Then,  e 1 ~_ el H, e a= ea H and e 2 = e a x e 1. Thus  
the counterclockwise angle from e 2 to e2 H is + r  r/6. Let  the transformation 
matrix between the rhombohedral  and orthogonal systems be defined as 
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Properties of ice 901 

Table 8. Orthogonal coordinates for the sites in the rhombohedral unit  cell. 

gl s r 

O(I, 1) 1.594 931 2.217 572 0.313 484 

D~(I, 1) 0-700 420 2.229 565 -0-025 012 

D4(I, 1) 1.478 736 2.441 316 1.255 185 

O(I, 2) -2 .717 939 0.272 465 0.313 484 

D2(I, 2) -2.281 070 -0 .508 201 -0.025 012 

D4(I, 2) -2 .853 609 0.059 965 1-255 185 

O(I, 3) 1.123 008 -2 .490 037 0.313 484 

D2(I, 3) 1.580 650 - 1.721 364 -0 .025 012 

D4(I, 3) 1.374 874 -2.501 280 1.255 185 

O(I, 4) - 1.594 931 -2 .217 572 -0 .313 484 

D~(I, 4) -0 .700 420 -2 .229 565 0.025 012 

D4(I, 4) -1 .478 736 -2.441 316 -1.255 185 

O(I, 5) 2.717 939 -0 .272 465 -0 .313 484 

Dz(I, 5) 2"281 070 0"508 201 0"025 012 

D~(I, 5) 2-853 609 -0"059 965 -1"255 185 

O(I, 6) - 1"123 008 2"490 037 -0"313 484 

D2(I, 6) - 1"580 650 1"721 364 0.025 012 

D,(I,  6) - 1"347 874 2"501 280 - 1"255 185 

O(II ,  7) 2"714 694 0"511 200 3.284 491 

DI(II ,  7) 2'107 101 1"219 533 3"200 701 

D3(II, 7) 3"532 607 0-742 814 2"731 726 

O(II ,  8) - 1-800 059 2-095 394 3"284 49I 
DI(II ,  8) -2 ' 109  697 1:215 036 3-200 701 

Da(II, 8) -2"409 599 2.687 921 2"731 726 

O(II ,  9) -0"914 635 -2-606 593 3.284491 

DI(II ,  9) 0'002 597 - 2 ' 4 3 4  570 3"200 701 

D3(II, 9) -1"123 008 -3"430 734 2"731 726 

O(II ,  10) - 2 ' 7 1 4 6 9 4  -0-511 200 -3 .284491 

DI(II ,  10) -2-107 101 -1"219 533 -3 .200 701 

Dz(II, 10) -3"532 607 -0"742 814 -2-731 726 

O(II ,  11) 1"800 059 -2"095 394 -3-284491 

DI(II ,  11) 2"109 697 - 1-215 036 -3"200 701 

Dz(II, 11) 2"409 599 -2-687 921 -2.731 726 

O(II ,  12) 0'914 635 2"606 593 - 3.284 491 

DI(II ,  12) -0-002 597 2-434 570 -3"200 701 

D3(II, 12) 1-123 008 3"430 734 -2"73I 726 

3 
Each site is at ~ cie, where the basis vectors are defined above, and the distances are 

i=1 
in A. The types of the oxygen sites I, I I  are defined following (7). The subscripts on 
D identify the O sites following the convention of [16]. 
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Table  9. 

E. S. Campbell and M. Mezei 

Sets of nearest-neighbours for all O-sites and the hydrogen bonding in the unit  cell (0, 0, 0> 
of ice I I .  

Unit cell <j, nx, no., n35 
sites ~ ~p ~'~ ~p 

0(I, 1) <6, o, o, o> (12, 1, 1, 1> (5, o, o, o> <10, 1, o, o> 
0(I, 2) <4, o, o, o> <10, 1, 1, 17 (6, o, o, o> <11, o, 1, o> 
0(I, 3) (5, o, o, o> (11, 1, 1, 1> (4, o, o, o> (12, o, o, 1> 
O(I, 4) (3, o, o, o> (9, -1 ,  - I ,  -1> (2, o, o, o> (7, -1 ,  o, o> 
0(I, 5) <1, O, O, O) <7, -1 ,  -1 ,  -15  <3, O, O, O> (8, O, -1 ,  O) 
0(I, 6) <2, O, O, O> <8, -1 ,  -1 ,  -15  <1, O, O, O> (9, O, 0 , -15  
O(II, 7) <12, 1, 1, 15 (4, 1, O, O> (11, 1, 1, 1> (5, 1, 1, 1> 
O(II, 8) (10, 1, 1, 15 <5, o, i, o> (12, 1, 1, 15 <6, 1, 1, 15 
0(II ,  9) <11, 1, 1, 15 <6, O, O, 15 (10, 1, 1, 15 <4, 1, 1, 15 
0(II ,  10) <9, -1 ,  -1 ,  -1> <1, -1 ,  O, O> <8, -1 ,  -1 ,  -15  (2, -1 ,  -1 ,  -15  
0(II ,  11) <7, -1 ,  -1 ,  -15  <2, o, -1 ,  o> <9, -1 ,  -1 ,  -15  <3, -1 ,  -1 ,  -15  
0(II ,  12) <8, - I ,  -1 ,  -15  <3, o, o, -15  ( 7 , - 1 ,  - 1 , - 1 5  <1, -1 ,  - 1 , - 1 5  

In  each ordered 4-tuple, the first index j selects a particular O ( I , j )  when 1 ~<j~<6 and an O ( I I , j )  
when 7<<.j<~12. The  indices ni select the unit  cell so that the nearest ne ighbour  is located at 

3 
r[O(•,j)]  + ~ niat, K= I, I I  and the as are the rhombohedral  unit  cell basis vectors. The  columns 

i=1 
headed by ~ and 2p  give the two nearest neighbours to which the unit  cell water donates a hydrogen 
and the columns headed by ~ and ~xI~ the nearest neighbours from which it accepts a proton.  For  
j - = 1 , 6 ( ~ = 2 ,  f l = 4 ) , f o r j = 7 , 1 2  (~=1 ,  f l=3) .  These  values are in the notation of [16]. 

follows : 

M =  

IXll 
(e l  R, e2 R, ea R) = (el, e2, e3)M~--~ x 2 = 

Lx3_J 

sin (~/2) (3) -1/2 sin (~/2) 

- s i n  (~/2) (3) ~ sin (~/2) 

0 - 2 ( 3 )  -1/2 sin (~/2) 

I x1R 

kx3RJ 
[(1 + 2 cos ~)13]~/~' 

[(1 + 2  cos ~)/311/2 

[(1 + 2  cos ~)/3]~J~ 

(A 4.1) 

; (A 4.2) 

: the rhombohedral  angle given by (7). (A 4.3) 

The coordinates for the orthogonal system, which are recorded in table 8 for 
the O sites were obtained using the unit cell constants given by (7), the corrected 
fractional rhombohedral  coordinates (vide supra) and the above transformation. 
The coordinates for the H sites were calculated according to the discussion 
following ( 7 ) .  

The orientations of the water molecules are such that each O(I, j) and each 
O ( I I , j )  has four nearest neighbours:  O ( I , j ) :  O(I , j i ) ,  O(I I , j i i ) ,  O(I , j i i i ) ,  
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Properties o[ ice 903 

O(I I , j iv )  ; O ( I I , j ) :  O( I I , j i ) ,  O ( I , j " ) ,  O ( I I , j m ) ,  O ( I , j ' ) .  Table 9 identi- 
fies for each water molecule in the rhombohedral  unit cell the two nearest 
neighbours to which it donates a proton to form an H-bond  and the two from 
which it accepts a proton. 

APPENDIX 5 

Some energetic consequences of a polar structure 

Consider the potential defined by a set of parallel dipoles at the sites of an 
orthogonal simple translation lattice. Although it is well known that the 
partial sums for those sites contained within an expanding sequence of con- 
centric spheres converge, it has been shown that : (i) the partial sums diverge 
for the Ewald summation order ;  (ii) for a union of such simple translation 
lattices, the necessary and sufficient condition that the partial sums converge 
for the Ewald summation order is that the net unit cell dipole vector vanish 
[34 (a)]. This  implies that the potentials for such finite polar lattices are 
shape dependent.  It is plausible to assume that the same conclusions would 
be valid for arbitrary non-orthogonal crystal axes. Any such structure for a 
real crystal would lead to stabilization by absorption of ions from the atmosphere 
and the r -2 dependence of ion-dipole energies should lead to a contribution 
to the specific energy of such a crystal ; (iii) the partial sums for the energy of 
interaction between a fixed dipole and a set of dipoles at the sites of a simple 
translation lattice converge for the summation order defined by growth of the 
crystal along its axes (the summation order implicitly assumed by the Ewald 
formulae). However, similar arguments to those used in Appendix C in that 
article show that the convergence for a crystal whose simple translation lattices 
define a unit cell with a vanishing net dipole is considerably more rapid. In 
this case, the expected dependence of the limit given by crystal growth defined 
by alternative shapes to growth along the crystal axes should be less important.  
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