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A cooperative calculation and analysis of electric fields,
induced dipole vectors and lattice energies for
rotationally ordered ices IX, II and disordered Ih

by EDWIN S. CAMPBELL and MIHALY MEZEIt

Department of Chemistry, New York University, New York,
New York 10003, U.S.A.

(Received 20 August 1979 ; revision received 14 Fune 1980)

A non-additive model previously tested on 229 Hartree—Fock dimer
energies and on trimer energies has been supplemented with different dis-
persion contributions and used to calculate the following properties of
rotationally ordered ices IX and II and of disordeed Ih: (a) the different
contributions to the lattice energy; (5) the induced dipole vectors, electric
fields and angle relations as a function of lattice site and of molecular
orientation for Th. The calculated results are discussed in terms of an
interpretation of the preferred relative orientations of water molecules.
The non-cooperative contribution for this model was found to be enhanced
in a range from 50 to 100 per cent over that for trimer interactions.

1. INTRODUCTION

This paper reports calculations of the lattice energy, the induced and total
dipole vectors and the local electric field in disordered and ordered forms of
ice based on a model that has been proposed and tested [1, 2] on the water—
water dimerization [3,4] and the non-additive trimer [4,5] and tetramer
energies [4] based on wave-functions of near Hartree—Fock accuracy. It has
been shown [1] that it reproduces 229 dimerization energies with an accuracy
somewhat better than that of an alternative additive analytical model [3, 4]
and that it provides a useful first approximation [1, 2] to the non-additive
trimer and tetramer energies [4,5]. This model for U(n), the interaction
energy of # molecules, consists of the following terms :

Uln) = U, (n) + Uy(m) + Ua(n) + Uy(n). (1)

U, is the first order Coulomb interaction energy, Uyn) the non-additive
contribution involving induced multipole moments, Uy(n) the dispersion
energy and U (n) the repulsion energy. All calculations involve the following
approximations to the general model (1). (i) U,(n) has been approximated
with permanent multipole expansions for each molecule [6] (cf. also §3.2).
(i) All terms in the derivatives of the fields have been neglected and in the
calculation of the induced dipole vectors only linear terms in the field com-
ponents, E .. +E; ,, evaluated at the oxygens, have been included [7, 8].

t Present address: Department of Chemistry, Hunter College, 695 Park Avenue,
New York, New York 10021.
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(iii) The spherically symmetric function of [1] has been used for U (n) and
alternative spherical approximations for Uy(n) (cf. §3.2) have been tested.
The algorithms developed and their tests have been given in other publications
[1, 6,9-13].

While the previous work was in progress, Jeziorski and van Hemert [14]
reported a variation—perturbation calculation of the energy of dimerization of
water. 'They noted that a calculation of the four contributions of (1) has the
advantage of providing a simple physical model for the hydrogen bond.

2. PARAMETERS FOR AND RELEVANT ASPECTS OF THE MOLECULAR AND
CRYSTAL GEOMETRIES

2.1. Molecular geometry

The intrinsic local frame has been chosen so that the molecule lies in the
(e, @) plane and e, lies along the C,-axis directed from the hydrogens to the
oxygen. All calculations are based on the rigid nuclear geometry of Kisten-
macher et al. [1 (a), 4], oy =09572 A, x HOH =104-87°, which is very close
to the experimental geometry for the isolated monomer [15], doy =0-93718 A,
4 HOH =104-523°. »

The extent of distortion in condensed phases is controversial. Studies of
ices IT and IX have shown increases varying from negligible to ~0-018 A and
1:5° [16, 17] over the vapour O-D length, 0-9575 A, and the DOD &, 104-474°
[15]. Conversely, increases by ~0-04-0-05 A and ~5° for ice Ih [18,19]
and by 0-02 A for D,O(/) [20] have been reported. Still other arguments
based on data of various types [16, 21] have led to our surmize that the O-D
bond is stretched in condensed phases by perhaps ~0-01 A.

2.2, Ice Ih

The O sites of Th belong to the space group, Schoenflies symbol Dg,*
(International symbol, P6,/mmc), one of the two suggestions of Barnes [22].
Let

a,’,a,": 2 unit cell vectors of hexagonal symmetry separated by an angle
of 120°; a’;: the unit cell vector | to the (a’;, a’y)-plane. (2)

The unit cell has four distinct O positions whose fractional coordinates relative
to the conventional origin are :

(a) (1/3,2/3,1/16); (b) (2/3,1/3, —1/16);
(©) (1/3,2/3,7/16); (d) (2/3, 1/3, 9/16).

If all O-O distances were equal and all O-O-O angles had the ideal tetrahedral
value of 109° 28" 16-4” =109-471°, then

la’s]l /]2’ ] = (8/3) 2~ 1-63299.

Experimental evidence supports a small deviation of uncertain- magnitude from
the ideal geometry [18, 19, 21-26]. The more consistent lower temperature
data [24] give |a’s]//[]a’y] 1-6279; Av. Dev.= +0-0006; with no consistent
trend in temperature. The differences in O-O distances have been either
statistically insignificant [25 (a)] or marginally significant, 0-003 A [19].
Conversely, the two distinct O-O-O angles appear to be different [25 (a)]

)
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and are 8 (5') less (greater) than the ideal tetrahedral value, 109° 28’ 16" [19].
Scherer and Snyder [26] suggested that their measurement of the intensity
ratio for vy and of the integrated intensities for H,O and D,0 might be inter-
preted in terms of H-bonding more nearly linear when the O-O line parallels
the ¢ axis. Since the deviations are small and uncertain, the ideal geometry
has been assumed. Then the distances become a function of the single O-O
nearest neighbour distance, r,. The latter was estimated in four different
ways as described in Appendix 1.

Consider next the orientations of the hydrogens. Pauling [27] interpreted
the difference between the spectroscopically calculated and calorimetrically
measured entropy of ice [28] in terms of random orientations of the hydrogens
subject to the following restrictions : ‘

(1) the crystal contains only H,O molecules ;

(ii) the H,O are oriented to place one H approximately on each line (4)
between each pair of nearest neighbour O positions.

This interpretation has been supported by such evidence as: (i) Nagle’s [29]
graph theoretical analysis of sets of orientations consistent with Pauling’s rules
gave S(0 K)=0-8145+0-0002 eu compared with the experimental S(0 K)=
0-82+0-05 eu; (i1) diffraction data as reviewed by Kamb [30] and confirmed
at 77 K, which is below the temperature at which anomalies in the specific heat
and elastic moduli had been reported ; (iil) dielectric constant studies [31] and
by the failure to find any evidence for a ferroelectric transition which had been
suggested [32]. Nevertheless, recently attention has been again called to the
possibility of partial order parallel to the a’; axis [33].

Since the occurrence of disorder implies that the energy difference between
any two sets of orientations consistent with Pauling’s rules (4) must be small
compared to kT in any temperature range in which the energy barrier permits
reorientation at an experimentally significant rate, it was desirable to determine
the predictions of the model for different sets of orientations. Because of the
conditional convergence of dipole-dipole lattice sums [34] it was important to
use the technique employed in a previous study [35], which is analogous to the
model used in simulation studies of liquids. Let: zg,=the set of four distinct
positions givén by (3) for a unit cell for O-positions ; z;;;=a similar set given
by 7,7, k unit translations along the a’y, a’,, a’; axes, respectively. Then all
sets of orientations consistent with (4) were investigated for a lattice with a
unit cell containing the 16 oxygen sites of

%000%100%010%110° (5)
The effect of modelling the disordered structure by a crystal with such a small
unit cell had been previously investigated by sampling the configurations for
a unit cell with the 32 oxygen sites of 2yp2100%010%110%001%101%011%111- Al the
dipole-dipole energies for a sample of 840 sets of orientations lay between the

extreme limits of those for the smaller cell [35]. The indexing of possible
orientations which simplifies the following discussion is defined in Appendix 2.

2.3. Ices IT1I and IX

Whereas dielectric dispersion measurements have provided clear evidence
that at higher temperatures ice 111 is orientationally disordered [36], dielectric
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constant measurements [37 (a)] indicated an ordering transition over a tempera-
ture range of pseudostability from —65° to — 108°C, apparently without change
in the geometry of the oxygen sites, to a phase called ice IX. This view has
been supported by the interpretation of I.R. spectra [38] and the entropy of
phase transition [39, 40]. Since single crystal neutron diffraction data favour
a structure in which 96 per cent of the D in D,O(s) are at sites for an ordered
structure [17 (a)], the calculations reported in this article are based on perfect
rotational order. Earlier single crystal X-ray diffraction [41] established a
tetragonal unit cell P, , , for the O atom sites with

a=673+0014, ¢=683+001A (t=-175°C). 6)

These values are for a state of pseudo-equilibrium in which the pressure has
been released to 1atm for the experimental measurements. They were
assumed in the neutron diffraction studies and have been used in our calcula-
tions. However, ¢/a=1-015+0-003 from (6) is not quite consistent with ¢/a
from powder photographs [42] (1-044 + 0-005 at —24°C and 2-7 kbar for ice
IIT and 1-000 + 0-003 for ice IX at both 1 bar and 1 kbar).

The unit cell has the twelve following sites of two types: O(1,), 1<5<8
at sites of no point symmetry ; O(II,;), 9<j< 12 at sites on a twofold axis.
The oxygen site coordinates used were derived by applying symmetry trans-
formations to the neutron-diffraction data since they were accompanied by
slightly smaller error estimates. Then the hydrogen coordinates for our
monomer geometry (§ 2.1) were determined by adopting the neutron diffrac-
tion DOD angle bisectors and the DOD molecular planes. Appendix 3 gives
the coordinates derived for all atoms in the unit cell and identifies the donor
and acceptor nearest neighbours for each site.

2.4. Ice I1

Evidence from I.R. spectra [38] and X-ray diffraction [43] that ice 1] has
an ordered arrangement of hydrogens in the metastable state after pressure
has been released to 1 atm was confirmed by single crystal neutron diffraction
on D,O(s) at ca. —110°C [17 (a)]. The AS of transition to the rotationally
disordered Ih [43 ()], 0-5 R, and the absence of dielectric disperion throughout
its range of stability [36 (a)] indicate that it is also ordered under pressure.
The X-ray and neutron diffraction data were interpreted with the twinned
rhombohedral Rj structure. The X-ray data gave the unit cell parameters at
t=—150°C [43 (b)]:

a=778+0-01 A, «=113-1+0-2° (7)

The unit cell contains 12 molecules of two types: O(1,j), 1<j<6; O(1L ),
7<j<12. Each type forms six-membered puckered rings. For these calcula-
tions the orientations of the monomers (§2.1) were determined by assigning
them the experimental DOD angle bisectors and the DOD molecular planes.
The coordinates of all sites in the unit cell and the identification of donor and
acceptor nearest neighbours for each site are given in Appendix 4.

2.5. Elements of the polarizability tensor

Because of the agreement between the trace for the equilibrium positions
&, =974 au and &, =982, we adopted the values [44] used in the previous
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study [1], despite the evidence [45] that the uncoupled Hartree-Fock technique
leads to substantial errors. The errors for water are shown by comparison
with coupled electron pair values [46] for the static tensor, for which the aniso-
tropies have been estimated to be correct to 5-15 per cent, and which have
been confirmed to better than these limits by Rayleigh depolarization data [47].

Source ocell ocoll oce22 oc022 o 33 a033 Qe &OT
WM [46] 964 9-79 9-81 10-14 959 966 9:68 9-86
LM [44] 9:80 11:14 8:27. 9.-74 (8)

3. RESULTS AND DISCUSSION

3.1. Permanent multipole and induced dipole energies for ice Ih ; energetic and
symmetry interpretation of rotational disorder

The overwhelming experimental evidence summarized above for the exist-
ence of rotational disorder in ice Ih and the successful interpretation of the
entropy discrepancy by Pauling’s model with equal statistical weights for all
orientations consistent with (4) posed two problems for this study. First, as
Rahman and Stillinger [48] observed, the evidence that the energy bias has
minor effects on the proton distribution deserves a theoretical check, parti-
cularly since experimentalists have at times justifiably qualified the interpreta-
tions of their evidence for disorder by inclusion of a phrase such as ‘... no
very significant change in proton ordering occurs ..." [19 (@)]. The second
problem was to determine the aspects of the water molecule responsible for
this disorder.

The previous inference [35] of possible energy differences between con-
figurations was limited by : (i) the use of point charge models (even though
tested by a wide range of models) ; (ii) the consideration of only the first order
electrostatic energy; (iii) the truncation of the corresponding permanent
multipole representations using a single centre for each molecule at order 8,
which left undesirably large error bounds [6]; (iv) the restricted number of
different configurations considered. Since the range of energy differences
seemed high (ca. 0-1 to 0-66 kcal mol-'}, cf. pp.2704-5 and table XI [35]),
this study was undertaken to eliminate or at least sharply reduce each limitation.

Since the energies of transition between the rotationally disordered Th and
the ordered form II have been estimated as only ~0:019 kcal mol-* [49 (5)]
and between Th and III (which at lower temperatures transforms to the ordered
form IX) as of the order of 0-1 to 0-2 kcal mol~1, compared with a lattice energy
of 14 kcal mol~! for ice Th [50], it follows that a study of energy as a function
of orientation for any assumed model should be carried to a consistency as
near this order of magnitude as possible. Since the previous studies had
shown that low order multipole approximations, which represent the symmetry
of the molecule poorly, were completely inadequate for this purpose (e.g. the
dipole-dipole and fourth order approximations gave as little as 24 and 83 per
cent of the total permanent multipole lattice energies, respectively [35]), the
present calculations included all orders <14 to increase the accuracy of the

< >

+ The values are for the axis system assumed in § 2.1, the subscript ‘o’ refers to
vibrationally averaged values. Multiplication of the entries by 1:648 776 x 10~*! yields «
in the units of C m/V m—!=C? m?/].

1 1 keal=4-184 kJ.
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representation of the molecular symmetry. The following evidence supports
the conclusion that there is a small but definite difference between the permanent
multipole contribution to the lattice energies of different hypothetical ordered
configurations. The permanent multipole energy was computed for each of
the 856 configurations consistent with the 16 molecule unit cell of (5)t. After
division of all configurations into those 55 classes whose members all had
identical energies for all permanent multipole interactions of order <5 for
any arbitrarily assumed charge distribution consistent with the symmetry of
the water molecule [35], the members of each class had the same permanent
multipole energy of order <14 for this wave function. A heuristic estimate
of the uncertainty due to the truncation of the multipole expansion is given
by the greatest [(multipole energy for orders < 14)-(multipole energy for
orders <13)| which was found for any of the 55 classes. With r,=2-72 A,
this was 0-026 kcal mol-1. Since the greatest absolute difference between the
permanent multipole energies for orders < 14 between any pair of the 55 classes
was 0-145 kcal mol~Y, this particular wave function predicts different permanent
multipole contributions to the lattice energy for different hypothetical orienta-
tions. The entire set allows the comparison of alternative polar and non-
polar structures (cf. Appendix 5 for other energetic consequences of a polar
structure). The configurations, which like real Ih are non-polar, fail into
10 energy classes (cf. Appendix 2). At ro= 2-741 A, the greatest absolute
difference in permanent multipole energies was 0:094 (0-135) kcal mol~! or
0-47 (0-67 per cent) of the total permanent multipole contribution for the 10 (55)
energy classes. Since the calculated dipole moment ~1-2 (experimental) and
since the spread in dipole-dipole energies makes the greatest contribution, the
energy difference may be ~ 30 per cent too large.

Next consider the contribution from the dipole which is induced at each
site by the permanent multipoles and, cooperatively, by the induced dipoles at
all other sites. Arguments at the end of this section, which support the infer-
ence that membership of a configuration in one of the above 55 energy classes
is.a consequence of certain symmetries of the water molecule and of the ice Ih
lattice and does not depend on the character of the equations for the first order
coulomb energy they define, are further substantiated by the fact that the
same 55 classes were found to be valid for the induced dipole contribution as
well.  Induced calculations for different 7, were executed for only one repre-
sentative configuration from each energy class, defined for the set of 10 in
Appendix 2. For r,=2-741 A the maximum minus the minimum energies
were 0-55 (1:07) kcal mol~2 for the 10 (55) classes. The arguments given
below support the inference that the inclusion of higher order induced multi-
poles would lower this spread, just as the inclusion of higher order permanent
multipoles lowered the spread of 060 (2-32) kcal mol~! for dipole-dipole
energies to 0-094 (0-135) for the 10 (55) energy classes.

The argument rests in part on the answer to the second problem posed at
the beginning of this section. The evidence (a-d) below supports the con-
clusion that the three following aspects of the symmetry of water molecules
lead to approximately tetrahedral coordination in condensed phases and to
energy differences between possible orientations which are a small fraction of

+ The number of configurations reported in a previous study [35] was reduced from
2970 to 856 by elimination of symmetry duplications.
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the total lattice energy and, therefore, provide a qualitative basis for the exist-
ence of rotational disorder in the ice Ih structure: (i) the molecule has two
positive and one negative centre in a molecular symmetry plane; (ii) the bond
angle is approximately tetrahedral ; (iii) the charge distribution is sufficiently
assymmetric that the gain from optimizing the relative orientations more than
balances the loss from the decrease in density compared to the close packed
structure assumed by the related H,S molecule [51]. (a) Neither of these
structural features can be due to any tetrahedral symmetry of the monomer
charge density. Although such a symmetry has often been inferred from the
idea of lone pairs, Hankins’ wave function of near Hartree-Fock accuracy did
not show the expected approximately tetrahedral symmetry [52], and our
calculations on the wave function of [53] showed that the maximum electron
density in the lone pair plane did not occur at tetrahedral angles + 54:74° but
in the molecular plane. (b) Conversely, a wide range of models with triangular
or tetrahedral symmetry [35] yield energy differences which are a small fraction
of the lattice energyt. Whereas the cylindrical symmetry of the dipole vector
gives dipolar lattice energies which vary by a factor of about 2:6 for different
configurations of ice Ih, when the symmetry of the models is more accurately
reproduced by single centre multipole expansions of the eighth order about the
O nucleus, the lattice energy differences are reduced to 5 per cent or less.
(¢) The following arguments suggest that the analytical fit [3, 4] using centro-
symmetric point sources in the molecular plane at points at and near the
corners of a triangle would also lead to differences which would be small
compared to the lattice energy and of the same relative magnitude as we have
found: (i) both the strictly additive [3,4] and the present non-additive
potentials reproduce the same HF dimer data [1]; (ii) the additive component
U,+ U, of the latter leads to a relative energy difference between the ten
energy classes of only 2:8 per cent at r,=2:741 A. Their strictly additive
[3, 4] should yield a similar result. (iii) Since a Monte Carlo calculation [54]
using the analytical fit [3, 4] and a perturbation estimate for the dispersion
contribution gave a reasonable representation of the O-O pair distribution
function in H,O(/), it follows that the triangular symmetry when the molecular
plane is a symmetry plane, the bond angle is approximately tetrahedral and
the angular dependence is sufficiently strong suffices to yield the preferred
approximately four coordinate structure even in the fluid phase. Conversely,
the cylindrical symmetry of permanent dipoles should lead to a chain structure
such as is observed in HCN(s) [55] and is distorted by other contributions to
give staggered chains in HF(s) [56].

Finally, return to the problem of the much greater variation in the energy
involving induced dipoles compared to the variation in the energy contributed
by permanent dipoles alone. It follows from the above discussion of the
symmetry of the water molecule and of the occurrence of rotational disorder
in ice Th that this range should be much smaller when the molecular symmetry
is more satisfactorily represented by the inclusion of higher order induced
multipoles just as the range for the permanent multipole energies is much
smaller when the molecular symmetry is more adequately represented by the

1 This has been established in unpublished calculations for a wide range of plausible
parameters for the point charge models of [35] which reproduce the experimental dipole
vector.



890 E. S. Campbell and M. Mezei

inclusion of higher order permanent multipoles than the range when the
molecular symmetry is replaced by the qualitatively different symmetry of the
permanent dipole approximation. This inference is also supported by the
observation that the field defined by permanent multipoles and cooperatively
by induced dipoles does not always give a vanishing net unit cell induced
dipole even when the net permanent dipole vanishes. Thus, the net induced
dipole vector for a unit cell of 16 molecules varies from 0 to 0-026 au for those
ten orientations in which the net permanent dipole vector vanishes. This
should be compared to an induced dipole vector of ca. 0-5 au per molecule.

3.2, Lattice energtes

The calculations of the lattice energy, U(o), by (1) correspond to the
energy difference,

U( ©0)=AU= U(g) - U(S) + (Uyibration(s) — Uvibration(g))'

Whalley’s [50] careful estimate of AU for ice Ih gives a vibrational correction
of 2-76 kcal mol~! which, when added to the experimental heat of sublimation
at 0 K, 11-315 kcal mol~1, yields 14-08 kcal mol~!. Unfortunately, no similar
estimate was found either for ice II or ice IX. The size of the vibrational
correction, which includes an intermolecular zero point energy correction of
3-95 kcal mol~! which would be expected to be different for different lattices,
precludes a direct comparison with experimental data for II and IX. The
calculated results are shown in table 1 for the three different dispersion energy
corrections defined in the legend.

Since the total lattice energies have been computed using a model that
reproduces the 229 Hartree-Fock energies of dimerization of [3, 4], the cal-
culated values are to be viewed as a test of supplementing Hartree-Fock pair
energies with a dispersion and a particular non-additive contribution. Since
the wave function used in the dimer calculations gives an equilibrium dimeriza-
tion energy of 4-37 kcal mol~' compared with a value of 3:67 kcal mol~! of
pairs from a wave function including f-type harmonics on O and d-type on
the Hs, the calculated lattice energies should be expected to be too large. Even
without taking into consideration the neglect of the angular dependence of the
dispersion contribution, the agreement for ice Ih is at least as good as can be
expected for both the dispersion models @ and b. Whereas our result that AU

for ice IX is somewhat less than for ice Ih is plausible, it seems unlikely that
the zero point vibration correction for ice II should be enough larger than the
3-95 kcal mol-1 for ice Ih to account for the relative values for ice Ih and ice I1.
Since the sum of the permanent multipole and induced dipole contributions are
in the expected order inferred from the compromise in preferred relative
orientations caused by pressure (|U,+ U,|p, > [U, + Ui|1x > U, + Ui|11), and
since the increased near neighbour distances in the more dense forms yields an
angularly averaged dispersion contribution in the order Ih> II~IX, the dis-
crepancy should probably be assigned to the anomalously low repulsive contri-
bution for ice II. It seems to us that this may not be due to any inadequacy
of the particular HF dimer potential, but the particularly simple form of U,
previously chosen to test the model [1], since even the use of three rather than
two terms in U, yielded a decrease in the standard deviation of the fit to the
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Hartree-Fock data from 0-0019 to 0-0012 and in the standard relative deviation
from 0-19 to 0-16. A variation of this order could account for the difference.

Consider next the relative contributions to the lattice energy. The ratio
[(interaction energy involving induced dipoles)/(interaction energy involving
only permanent multipoles)] is (0-39, 0-44) for ices (IX, II) and varies over
the range (0-336, 0-364) in the set of 10 classes for which the net permanent
dipole vector vanishes. These ratios compare with the value 0-31 which
Coulson and Eisenberg [59] obtained by a certain average over relative orienta-
tions consistent with Pauling’s rules for ice Th (cf. (4)). Since they used a
permanent dipole moment of only 1-78 D and very different quadrupole and
octupole moments, the similarity of their and our values for ice Ih suggests
that the effects of differences in multipole moments and even of truncation at
the octupole level are largely cancelled in the ratio.

The energetic importance of cooperativity for the ices was determined by
calculating the contribution involving induced dipoles non-cooperatively,
Unon—coop =the contribution using the dipole vectors which would be induced
at each site by the E defined by only the permanent multipoles ignoring the
cooperative contribution from the induced dipole vectors at other sites. This
reduced |U;| by (2.12, 2.48) kcal mol-! for ices (IX, II) and by amounts over
the range (1-71, 2-19) kcal mol~! for the 10 classes of ice Ih. These give the
ratios |(U;— Uproneoor)/U.| of (0-32,0-29) and (0-25,0-30) and of R=
[(U;— Upon—eoon) (U + U+ U,)| of (0-18, 0-20) and (0-15, 0-19), respectively.
Thus the cooperative interaction through the lattice has enhanced R from
R=0-10 averaged over the frequency of trimer occurrence [5] in Th.

Two points should be considered in the interpretation of these calculations.
The first is the validity of the use of a multipole representation of the first
order Coulomb energy. This is dependent upon the particular molecules
since some tests [60, 61] have given useful approximations even at distances
in condensed phases, whereas others [62, 63] yielded good (including HF) to
useless results at van der Waals radii. After we had completed almost all
calculations, Mulder and van Hemert [64] kindly provided us with a pre-
publication comparison of the multipole approximation with the unexpanded
first order Coulomb energy for one of the relative H,0-H,O orientations used
by {14] and their H,O wave function.

We repeated the multipole calculations using our split mode [6] including
terms of order <14. Their and our multipole expansions agreed within
6 per cent at 4 au and 0-6 per cent at ice distances. They found a difference
of the order of 25 per cent at the nearest neighbour distances of ice Ih. The
following arguments (a) and (b) lead us to believe that the difference must be
much smaller. (ai) The preceding discussion has shown that an acceptable
model for water should satisfy the following criterion : in the case of ice Ih,
the values of lattice energy sums for different sets of water molecule orienta-
tions which are consistent with Pauling’s rules (4) should differ by at most a
small fraction of the lattice energy. This has been established for both
permanent multipole sums which are only asymptotically convergent (e.g. the
present work) and sums which are truly convergent (e.g. a wide range of point
charge models for which the charges for different lattice sites are contained in
disjoint spheres [35]). (aii) Let the permanent multipole lattice sum for any
set of orientations, O, for ice Ih be written as the sum of a nearest neighbour
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contribution, Oy, and a sum of contributions from all more distant sites, O,.
Let O and O’ be two different sets of orientations consistent with Pauling’s
rules (4). For many pairs O and O’, |Oy—O0'y|> [(Ox+O04)—(0O'x+ 0y}
(@ iil) The calculations of van Hemert and Mulder lead to the reasonable con-
clusion that the only significant discrepancy between the unexpanded evaluation
of the first order Coulomb integral and the multipole expansion can occur in
the lattice only for near neighbour sites. (aiv) If the difference between the
unexpanded and expanded values at the nearest neighbour distance were ~ 25
per cent, the lattice sums for the first order Coulomb energy could satisfy the
criterion of (@ 1) only if a positive difference for one nearest neighbour orienta-
tion were very nearly cancelled by a negative difference for another. This
seems to us highly unlikely. (bi) Let us use the sequence of differences
between permanent multipole sums of successive orders as a basis for an
estimate of their asymptotic convergence. Let the relative error in the trun-
cated asymptotically convergent series = |(error)/(permanent multipole sum)].
When the contributions of all orders <14 were included, our expansions gave
the following relative errors: a three centre expansion [6], <3x1075; a
single centre expansion, <3 x 1073, The conservatism of our estimates is
shown by the fact that our expansions had a relative difference of 8:4 x 104
(bit) Our results on hundreds of pair interactions have shown that a large
relative error for either type of expansion has always been reflected in a dis-
agreement between their values. Whereas we would not be surprised by a
substantial error in the permanent multipole sum for the first order Coulomb
energy if the successive partial sums varied by a few per cent, we believe that
a 25 per cent error in the multipole value for the nearest neighbour interaction
in ice is unlikely when the relative error of the asymptotically convergent three
centre expansion <3 x 10-%,

The second point is the limitation of the non-additive contribution to terms
involving induced dipoles. Recent results provide a further test of one of the
limitations in this approximation. Calculations of the triple dipole interaction,
the leading non-additive component of the dispersion contribution [65] indicate
that it is about an order of magnitude smaller than the non-additive induced
contribution for the very polar water molecule. Although the authors emphasize
that they have calculated an approximation valid for long-range interactions, and
although test calculations on three H atoms showed that in this case the approxi-
mation gives a useful representation of the non-additivity only at distances
significantly greater than the van der Waals minimum for non-bonded inter-
actions [66], it seems unlikely that for the closed shell water molecule, the

-errors in using the expanded form will be enough greater to alter the qualitative
comparison. Thus, the induced contribution to non-additivity should be the
more important one.

3.3. Compression in condensed phases ’

The minimum in the H,0-H,O dimer potential energy surface occurs at
d,_,=3:00 A for the near Hartree-Fock wave function of [4] and at 2-924 A
for the extended CI wave function of [67]. These values compare with most
probable nearest-neighbour distances in H,0(I) varying from 2-82 A at 4°C
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to 2:94 A at 200°C [68]t. In ice Ih the nearest neighbour distance at 0°C is
given as 2:76 to 2-77 A [25 (a)] and extrapolation of the data of [23] gives
2:762 At.

Consider first the compressive effect of the non-additive contribution [5].
Although the compressive effect of any contribution clearly depends upon how
it varies with distance, the relative contribution of various factors to the equi-
librium lattice energy should provide an approximate ordering of the significance
of their contributions to the compression. For ice Ih, the discussion of lattice
energies gives values of 15-19 per cent for the cooperative contribution. Another
important compressive contribution in condensed phases is a minimization of
the lattice energy by decreasing distances for attractive interactions with sites
outside the nearest neighbour shell with the sacrifice of part of the nearest
neighbour contribution as the distance decreases. The importance of longer
range interactions is shown by the ratio Ry ={U(nearest neighbours)/U(lattice)}.
For ice Ih, Ry for the lead spherically averaged dispersion contribution is 0-78.
The effect of the slower decrease with distance of the permanent multipole
contribution is shown by an even smaller ratio. For one configuration of ice
Ih and one charge model for HyO, Ry=0-63 for all multipole interactions of
order <4 [35 (d)].

3.4. Electric field vectors at the oxygen sites

The values of the electric field vectors, E, are of particular interest because of
the frequent discussion of the local field. Whereas the field components with
respect to a crystal based frame will exhibit no apparent pattern, their essential
simplicity and symmetry should be clear in a local frame fixed with respect to
the molecule at each site. Consider such orthogonal frames with centres at
the oxygen sites and basis vectors :

e,=—(OH,+ OH,)/|OH,+ OH,|,
e,=H, Hﬁ/“ HzHﬂ”’ )
e;=e; x e,

The major component of the electric field at a given site defined by the permanent
multipoles of all other lattice sites lies along the HOH angle bisector and the
variation in the field with configuration in ice Ih and with the site for ices Ih,
IX and II are shown by table 2.

3.5. Dipole vectors in ice

It follows from § 3.4 that the same local systems (9) should be used for the
discussion of the induced dipole vectors. The results are shown in table 3.
Since the induced vectors were obtained from a cooperative calculation which
includes the field contributions from induced dipole vectors at other sites, the
variations with site, configuration of Ih and ice form, are in part due to the
neglect of contributions from the derivatives of the field [7, 8].

+ These diffraction curves have been confirmed by Hajdu, Lengyel and Palinkas [69].
However, the small scale graphs in their article and a later article by Narten [70] cannot be
used to check the exact values reported for the first maximum in the earlier article.

1 Their data for the c-axis length which are more consistent than their data for the
a-axis length have been used and a perfect tetrahedral geometry has been assumed.
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Table 2. Ererm jn jces ITh, IX, II in the local frame (9) (i).

Ice 1Th
configuration |Eperm| x 102 {(E,perm)? 4 (F,perm)2}1/2/{| Eperm |
number (iii) Min (ii)  Max (i) Max (i1) Min (i)

412 4-09 4-10 9-66 x 103 1.22 x 103

329 4.04 4-14 1.24 x 102 1.95x 102

352 4-04 413 1-80 x 102 1.21 x 102

363 4.04 411 8:99 x 102 973 x 10-3

108 4-07 4-10 4-66 x 10-2 1-48 x 102

326 4-04 4.13 2-57x 103 9-76 x 102

22 4-00 414 9-44 x 103 917 x 103

17 4.00 413 1.10 x 10-2 5-45 x 103

338 4-00 4-16 9-04 x 10-3 2-88 x 103

57 4-01 4-11 1-78 x 103 1-03 x 102

Ice 11 (iv) 394 (1)  433(ID) 528 x 102 1.03 x 10!

Ice IX (iv) - 4-03 (1) 415 (1) 0 1-56 x 101

(i) Eperm wag calculated for each oxygen site as the electric field defined by the permanent
multipoles of all other lattice sites. Single centre expansions of order 13 were used at
each oxygen site. 'The values are in units of (electron charge)/(bohr)?2. Multiplication by
5:142 250 x 10 gives E in V. m=1. (ii) |EPer™ |y is the greatest, |EPer™ [lyin is the least
|Eperm| as a function of site in the unit cell. (iii) The ten configurations for ice Th were
chosen as representatives from each of the ten classes with a zero net dipole vector. They
are defined in table 5 of Appendix 2. (iv) (I) and (II) refer to the lattice site types(cf.
§§2.3,2.4). (v) The Ih values are for r,=2.741 A.

Table 3. Dipole vectors (a).

Ice Th (f) lieina ] leztot | g (b) [rina |/ llptot |
number (d) Min () Max Min(c) Max Min(c) Max Min(¢) Max
412 0-572  0-572 1-436 1-437  0-357 0-624 0-398  0-398
329 0-534  0-573 1-398 1-437  0-053 1-557  0-382  0-399
352 0-546  0-559 1-410 1-424  0-482  0-810 0-387  0-393
363 0-549  0-556 1-413 1-421 1-:074  1-161 0-388  0-392
108 0-550  0-555 1-414 1-420  0-821 1-419  0-389  0-391
326 0-535 0-556 1-400 1-420  0-470 1-397  0-382  0-392
22 0-513 0-555 1-378 1-420  0-408 1-265 0-373 0-391
17 0-529  0-554  1-394 1-418  0-352 0989 0380  0-390
338 0-523 0-538 1-387 1-402 0419  0-731 0-377  0-383
57 0-529  0-542 1-393 1-407 0-336  0-949  0-380  0-385
Ice IT (e) (I) 0-573 1-435 273 0-40
(IT) 0-620 1-485 0-742 0-42
Tce IX (e) (1) 0-569 1.430 255 0-40
(II) 0-557 1-414 0 0-39

(a) The dipole vectors, ., are in a.u. with conversion factors of 2.541 765 (D/a.u.) and
8:478 418 x 10-3° (C mfa.u.). The permanent, induced and total dipole vectors are
denoted by Mperm, Mind, Htot=~HMperm+Ming. (b) 6=the angle between ot and fiperm In
degrees. (c¢) The columns headed Min (Max) give the least (greatest) value of the specified
variable. (d) The ten configurations, specified by the configuration numbers in column 1,
for Ice Ih were chosen as representatives from each of the ten classes with a zero net dipole
vector. They are defined in table 5 of Appendix 2. (e¢) The superscripts specify the
lattice site type. The symbols I and II are defined in §§2.3,2.4. (f) The Ih values are
for r,=2-741 A.
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The quantitative effect of the error in the wave function is difficult to assess
because of varying quality of the moments it defines. Thus the permanent
quadrupole components for this wave function agree well with both those
defined by the largest gaussian type orbital functions of [71]t+ (PKC[3] Q=
~5716, Q= —4-171, O03=—-7-493; NM[71] Q"= —5-708, O0**= —4-180,
0% = —7-482) and with the experimental values of [72] (PKC[3] 1= —0-028,
022 = +2-506, 633=—-2:478; exp = —-0-13, 0%2=+263, 633=—-2.50)t.
(For this comparison, Buckingham’s convention [7] has been adopted in which

3
gij5<3Qia’_3ij y Qkk)/z’
k=1
and the expansion centre has been translated to the centre of mass.) Conversely,
the calculated dipole moment of 2:197 D shows an 18 per cent error in com-
parison with the experimental value of 1-8546 + 0-0004 D [73]1.

The following argument reduces the average over classes for the total
(induced) dipole moment in Ih from 3-588 (1-390) to 2-:94 (1-089) D after
correction for errors in E arising from the wave function assumed for water :
(i) To a first approximation, one might expect that the contribution of higher
order multipoles to E increases as E increases. (ii) Since by tables 2 and 3 E,
#perm and w4 are approximately collinear, the non-cooperative contribution
(cooperative correction) to pi,q should scale approximately as [E||, and,
therefore, as ||yq ]| of the model assumed (multiplied by (1 —(A{l@ina | )/||#ot]])
where A is the non-cooperative correction). These values can be compared
with Coulson and Eisenberg’s [74] values, 2:60 D and 0-82 D. Although
they also report a ratio |@inquceall/||Etotar]] =0-315, compared with the average
of our data in table 3, 0-388, the averages smooth out important differences.
(Their total dipole moment is the average of values ranging from 1-9 to 3-1 D
whereas the calculations reported here show that the variation is <42 (5-6
per cent) for the set of 10 (55) classes, respectively). Finally, the value for total
moment can be compared with the estimate of 2-3 D obtained from the
Onsager reaction field for the model of a single point dipole at the centre of a
sphere of molecular size in a dielectric continuum [75 (a)].

We express our appreciation to the National Institutes of Health which
supported this work under Grant 1R01 GM20436-02.

AppENDIX 1
Extrapolations for ry (0 K)

Four different extrapolations of the nearest neighbour O-O distance, 7,,
were made. (i) Extrapolation of Barnes’ [22] data gave a value used in earlier
calculations, r, (0 K)=2-72 A [35(b)]. (ii) Integration of Dantl’s [76] data
on thermal expansion gave a better estimate, 7, (0 K)=2-74, A [35 (b)]. How-
ever, others [24] found no evidence of negative coefficients of thermal expansion
at lower temperatures such as he reported and are found in some tetrahedral

+ The units are 102 esu cm?.  The moments in frames (9) were calculated relative to
the O nucleus using the definitions of [9] using the wave functions of the cited references.

T The conversion factors are 3-335 641 x 10~ C m?/esu cm® and 3-335 641 x 10-3°
C m/D.
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lattices [30 ()]. (iii) La Placa and Post’s [23] data on a’,=a’, are anomalous,
non-monotone functions of temperature over [—100°, —130°] and are, there-
fore, not suitable for extrapolation. Moreover, if the O-O-O angles were
tetrahedral, their ratio [|a’|/[|a’,] < (8/3)'2 would imply |O; —>O,| > [|O; =0,
whereas Chamberlain, Moore and Fletcher's [19] best estimate is that
|0, >0,]| >0, »0,|. However, their values for |a’y]| are monotone and
are in general agreement with the data of [24]. To test the possibility of
combining their values for [a’;]| with the assumption of ideal geometry of
§ 2.2, we extrapolated their data to 77 K to obtain 7° (77 K)=2-744, A in agree-
ment with the best estimate of Chamberlain, Moore and Fletcher [19], 2:744 A.
This agreement is a result of the fact that the increase in the a’y; component of
(O3 =0,) arising from the amount their 0,-0,-O, angle exceeds the ideal
tetrahedral value of (8/3)!/2 almost exactly balances the amount by which
(O, —0y) 1s shorter than (O; >0,). Therefore, La Placa and Post’s data on
|a’s]| were extrapolated to 0 K and the ideal geometry was assumed to obtain
7o (0 K)=2-74,; A. (iv) The extrapolation of Brill and Tippe’s [24] [a’,| at
13K to 0K yields a correction of only 0-0001 A. Assumption of the ideal
geometry of §2.2 then gives r, (0 K)=2-74,, A.

APPENDIX- 2
Possible orientations for water molecules in ice Ih

Let O¢ be any oxygen site of the lattice at the geometric centre of four
nearest neighbour sites, O, n=1,...,4. The possible orientations for the
central H,O consistent with Pauling’s rules given by (4) are defined by speci-
fying for each of the two H of the central molecule the particular O", such that
Oc¢—H lies approximately along O°—O". Define an orthogonal system :

e;=a'yf|[a’s], e =a"}/[a’)], e;=e;xe,. (AZ.1)
Let:
& : the sole O¢—O" which has zero e; and e, components ; « : the
O¢—Om which has a negative e, component; B: the O°c—-O"
which has a positive e, component; y: the O°—=0" which
has a zero e; and a non-zero e, component. (A2.2)

Table 4. Possible dipole directions, s, and orientations for water molecules in ice Ih.

Positions (i)

(@) (&) (c) (d) s
VPGi)DIG) VP DI VP DI VP DI 5 5 s, (iii)
a1 ¥6 12 af 13 5 24 0 -3 (3
ay 2 ad 11 ay 14 of 23 —(1/2)V2  +(1/6)V2  +(1/3)2
ad 3 ay 10 a8 15 ay 22 (1202 —(1J6)Vr  +(1/3)2
By 4 B5 9 By 16 B8 21  +(1/2)2  4(1/6)V2 £ (1/3)12
B8 5 By 8 gs 17 By 20 +(1/2)v2 —(1/6)12 + (1/3)1/2
v6 6 a@ 7 y6 18  aof 19 0 +QBVE (132

(i) The positions are defined by (3). (ii) VP, vector pair; DI, dipole index. (iii)
The upper sign applies to (a) and (b) positions. Thus, s, is negative for indices 1 and 12
and positive for indices 13 and 24.
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Table 5. Orientations for a representative from each energy class for which the net dipole
vector vanishes.

Dipole indices (c)

Ng Ne Zg00 (d) 2100 Zo10 Z110
(a) b)) a b ¢ d a b ¢ d a b ¢ d a b ¢ d
1 412 3 7 16 24 4 12 15 19 4 12 15 19 3 7 16 24
2 329 6 7 13 24 5 9 14 22 2 17 24 4 12 15 19
4 352 6 7 13 24 5 8 14 23 2 11 17 20 1 12 18 19
7 363 6 7 13 24 4 9 15 22 4 15 22 6 7 13 24
8 108 2 7 18 23 S 12 13 20 2 7 18 23 5 12 13 20
1 326 6 7 13 24 4 9 15 22 2 7 17 24 6 11 13 20
16 22 3 7 14 23 4 12 15 22 4 8 18 23 5 9 13 20
24 17 3 7 14 23 4 12 15 22 6 10 16 21 1 9 17 20
30 338 6 7 13 24 4 9 15 22 6 7 13 24 4 9 15 22
32 57 6 7 14 23 5 8 13 24 2 11 18 19 1 12 17 20

(a) The energy classes Ng are defined in equation (30 6), p. 2698 of [35]. (b) The
configuration numbers N are given for reference to the thesis of Gelernter (1965, Ph.D.
Thesis, New York University). (c¢) The dipole indices are defined by table 4. (d) The
unit cells 2k are defined by (5).

The possible dipole directions and the indexing which simplifies the discussion
results is given by table 4. Table 5 gives the dipole indices of table 4 for one
representative from each of ten energy classes whose members have zero net
dipole vectors for the unit cells.

APPENDIX 3
Sites and orientations in ice [X

The coordinates given in table 6 for the twelve water molecules were derived
as follows. The fractional unit cell coordinates for the O atom of each type
have been reported from both neutron diffraction [17] and from X-ray diffrac-
tion experiments [41]. Since slightly smaller error limits were assigned to the
values from neutron diffraction, the latter were adopted. The O site coordinates
were then calculated using the unit cell constants given by (6), the general
transformations for eight equivalent sites of no point symmetry for O(I) type
sites and the transformations for four equivalent sites on a twofold axis for
O(II) type sites. Whereas the two deuterium sites for O(I) type O atoms
were determined in the same way as the O(I) positions, the values for O(II)
type positions were derived as follows. The O(II) is on a symmetry axis
such that the coordinates given for one D atom {a, b, ¢) yield the coordinates
(b, a, —¢) for the other. Since the D atoms are not themselves on the two-
fold axis, the coordinates for the remaining three molecules were generated by
applying the general transformations for sites of no point symmetry.

The orientations of the water molecules are such that each O(I, ) has the
four nearest-neighbours, [O(I, 1), O(I, 1), O(II,;itl), O(11,;i)], and each
O(11, 5) the four [O(1,;Y), O(I, i), O(1, i), O(1,i¥)]. Table 7 identifies



Properties of ice 899

Table 6. Coordinates for the sites in the unit cell of ice IX.

¢ Cy g
o(1, 1) 0-734 916 2-029 095 1-952 014
D,(1, 1) ~0-083 452 2-235 033 1-459 571
Dy(1, 1) 0-765 874 1-061 321 2-027 144
o(1, 2) 2:029 095 0734916  —1.952 014
D.(I, 2) 2235033  —0-083452  —1.459 571
D1, 2) 1-061 321 0-765 874  —2.027 144
o1, 3) —0734916  —2-029 095 5.367 014
D.(I, 3) 0-083 452  —2:235033 4-874 571
Dy, 3) —0-765874  —1-061 321 5.442 144
o1, 4) —2:029095  —0-734 916 1-462 986
D1, 4) —2-235033 0-083 452 1-955 429
Dy(1, 4) ~1.061321  —0-765 874 1-387 856
o, 5) 1-335 905 4099 916 3-659 514
D.(I, 5) 1-129 967 3-281 548 3-167 071
Dy, 5) 2:303 679 4130 874 3.734 644
o1, 6) 2-630 084 5394095  —0-244 514
D.(I, 6) 3-448 452 5-600 033 0-247 929
Dy, 6) 2:599 126 4426321  —0-319 644
0q, 7) 5.394 095 2-630 084 7.074 514
D.(1,7) 5-600 033 3-448 452 6-582 071
Dy(1, 7) 4426 321 2-599 126 7-149 644
(I, 8) 4099 916 1-335 905 3-170 486
D.(1, 8) 3-281 548 1-129 967 3.662 929
Dy(1, 8) 4130 874 2-303 679 3-095 356
O(I1, 9) 2:642 198 2-642 198 0-0
D,(11, 9) 2-020 346 2-418 762 0-721 931
Dy(I1, 9) 2-418 762 2-020 346  —0-721 931
0O(11, 10) —2.642198  —2-642 198 3-415 000
D11, 10) —2.020346  —2-418 762 4136 931
Dy(I1, 10) ~2:418 762  —2-040 346 2-693 069
o(11, 11) 0-722 802 6-007 198 1-707 500
D(I1, 11) 0.946 238 5.385 346 2-429 431
Dy(I1, 11) 1-344 654 5.783 762 0-985 569
o(11, 12) 6-007 198 0-722 802 5-122 500
D.(I1, 12) 5.783 762 1-344 654 5-844 431
D,(I1, 12) 5.385 346 0-946 238 4-400 569

3
Each site is at Y, cie; A where e;=ai/|a;| and [|a,] = |a,]=6-73 A, |a,| =683 &,

i=1
and 1A=10"m. 'The types of the oxygen sites I, 1I are defined following (6). In
the notation of [17], D,(«,j) is a D; site for O(«x,j), =1, and Dy(x, ) is a Dy site for
«=1. For k=1II, both « and B are Dj sites.

for each water molecule in the unit cell the two nearest neighbours to which
it donates a proton to form an H-bond and the two from which it accepts a
proton.
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Table 7. Sets of nearest neighbours for all O-sites and the hydrogen bonding in the unit cell <0, 0, 0>
of ice IX.
Unit cell {J, 1y, My, 130
sites Z, Z, o, g

o1, 1) <7, -1, 0,-1> (1, 0, -1, 0> <5 0, 0, 0O 9, 0 0, 0
01, 2) <6, 0, -1, 0> <12, -1, 0,~1> <8, 0, 0, -1 9, 0, 0, 0O
0(1, 3) 45, 0,-1, 0> <12,-1, 0, 0> <7,-1,—-1, 0> <0, 0, 0, 0>
O(1, 4) S,-1, 0 0> <11, 0, -1, 0> <6,—-1, -1, 0> <o, 0, 0, O
O(1, 5) 1, o, 0, 0> <10, 1, 1, 0> 3, o0, 1, 0> A1, 0o 0, 0>
O(1, 6) 4, 1, 1, 0O <9, 0, 0, 0> <2, 0, 1, 0> <1, 0, 0, 0>
oI, 7 a3, 1, 1, 0 9, 0, 0, 1> «, t, 0, 1> <12, 0, ¢, O
O(I, 8) 2, o0, 0 1> <10, 1,-1, 0> <4, 1, 0, 0> 12, 0, 0, 0>
O(11, 9) <1, 0, 0, 0> 2, 0, 0, 0> <6, 0, 0, 0O <, 0, 0, -1>
O(11, 10) 3, 0 0, O 4, 0, 0, 0> 5,-1,-1, O 8, -1, 1, 0>
O(11, 11) &Sy 0, 0, 0O 6, 0, 0, 0> a, 0, 1, 0> 4, 0, 1, O
O(11, 12) a, 0, 0, 0O 8, 0, 0, 0> <2 1, 0, D> 3, 1, 0, 0>

In each ordered 4-tuple, the first index j selects a particular O(I, j) when 1<7 <8 and an O(11,j)
when 9<7<12. The last three indices select the unit cell so that the nearest neighbour is located
3

r[O(x, )]+ 2 nmia;, «=1, 11, and the a; are the unit cell axis vectors.

The columns headed by

i=

2, and Z; give the two nearest neighbours to which the unit cell water donates hydrogens « and g.
In the notation of [17]: for O(1,j), Z, is a D; type site and %, is a Dy type site ; for O(I1, j), both
are D; types sites. The columns headed &/, and &/, give the nearest neighbours from which it accepts
a hydrogen. In the notation of [17]: for O(1,j), o7, accepts a D; type site hydrogen and ./, a D,
type site hydrogen ; for O(11,j), both &/, and %/ accept Dy type site hydrogens.

APPENDIX 4

Sites and orientations in ice 11

Since only approximate H atom coordinates could be inferred from single

crystal X-ray diffraction of H,yO(s) [43], the coordinates from neutron diffrac-
tion of D,O(s) [16] were adopted in these calculations. Comparison of the
trial (cf. p. 1937) with the refined coordinates (cf. p. 1938) for oxygen sites
indicated a printing error for those of the O(II) site that also occurred in the
earlier paper. This was verified by comparing the computed with published
atom-atom distances. The correct fractional unit cell coordinates for the
O(II) site are the following permutation of those given: <0-7571, 0-3389,
0-4798>. The computational algorithm assumes an orthogonal system which
was defined as follows. Let: {e;}, {eR}, {e,!'} : the sets of unit basis vectors

for the new orthogonal system, the rhombohedral unit cell of Rj, and the

alternative hexagonal system. Then, e,=e,", e;=e;" and e,=e;xe,. Thus
the counterclockwise angle from e, to e, is +x/6. Let the transformation
matrix between the rhombohedral and orthogonal systems be defined as
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Table 8. Orthogonal coordinates for the sites in the rhombohedral unit cell.

€ Cy C3
Oo(L, 1) 1.594 931 2-217 572 . 0-313 484
Dy(I1, 1) 0-700 420 2.229 565 —0-025 012
D1, 1) 1-478 736 2-441 316 1:255 185
O(L, 2) —2:717 939 0-272 465 0-313-484
Dy(1, 2) —-2:281 070 —0-508 201 —0-025 012
D,(1, 2) —2-853 609 0-059 965 1-255 185
o(I, 3) 1.123 008 —2-490 037 0-313 484
Dy(I, 3) 1.580 650 —1.721 364 —0-025 012
D,(I, 3) 1.374 874 —2-501 280 1.255 185
o1, 4) —1-594 931 —2:217 572 —0-313 484
Dy(1,4) —0-700 420 —-2:229 565 0-025 012
D,(1, 4) —1.478 736 —2-441 316 —1-255 185
(1, 5) 2.717 939 —0-272 465 —0-313 484
Dy(1, 5) 2:281 070 0-508 201 0-025 012
DL, 5) 2-853 609 —0-059 965 —1.255 185
(1, 6) —1-123 008 2-490 037 —0-313484
Dy(1, 6) —1-580 650 1.721 364 0-025 012
D,(, 6) —1-347 874 2-501 280 —1-255 185
(11, 7) 2-714 694 0-511 200 3-284 491
Dy(I1, 7) 2:107 101 1.219 533 3-200 701
Dy(11, 7) 3-532 607 0-742 814 2-731 726
O(I1, 8) —1-800 059 2-095 394 3-284 491
D11, 8) —2:109 697 1:215 036 3-200 701
Dy(I1, 8) —2:409 599 2-687 921 2-731 726
O(11, 9) —0-914 635 —2-606 593 3:284 491
D(11,9) 0:002 597 —2-434 570 3.200 701
D,(11,9) —1.123 008 —3-430 734 2-731 726
O(I1, 10) —2:714 694 —0-511 200 —3-284 491
D11, 10) —2-107 10t —1.219 533 —3.200 701
Dy(11, 10) —-3-532 607 —0-742 814 —2-731726
O(I1, 11) 1-800 059 —2-095 394 —3.284 491
D,(I1, 11) 2-109 697 —1-215 036 —3-200 701
Dy(11, 11) 2-409 599 —2-687 921 —2-731 726
O(11, 12) 0-914 635 2-606 593 —3-284 491
D(I1, 12) —0-002 597 2-434 570 —3-200 701
Dg(I1, 12) 1-123 008 3430734 —2.731 726

3
Each site is at Y, c¢;e; where the basis vectors are defined above, and the distances are

iz
in A, The types of the oxygen sites I, I are defined following (7). The subscripts on
D identify the O sites following the convention of [16].
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Table 9. Sets of nearest-neighbours for all O-sites and the hydrogen bonding in the unit cell <0, 0, 0)>

of ice I1.
Unit cell {J, ny, ng, 3>
sites , Zg o, )

O(L, 1) 6, 0, 0, 0> <12, 1, 1, 1> 5, 0, 0, 0> <0, 1, 0, 0>
0o, 2) 4, 0, 0, 0> <0, 1, 1, 1> &6, 0, 0 0> <11, o0 1, 06>
O(1, 3) 45, 0, 0, 0> <11, 1, 1, 1> <4, 0, 0, 0> (12, 0, 0, 1>
O(1, 4) 3, 0, 0, 0> 9, -1, -1, -1> 2, 0, 0, 0> A, -1, 0, 0>
o(1, 5) a1, o, 0o O 7, -1, -1, =1> <3, o0, 0, 0> <8, 0,-1, 0>
(1, 6) 2, 0, 0, 0O <8, -1, -1, —-1> 1, 0, 0, 0> o, 0, 0,-1>
O(11,7) <z, 1, 1, 1> <4, 1, o0, 0> <11, 1, 1, 1> G5, 1, 1, 1)
O(11, 8) aQo, 1, t, 1> 5, 0, 1, 0> (12, 1, 1, 1) 6, 1, 1, 1>
O(11, 9) ar, 1,1, 1 %6, 0, 0, 1> <o, 1, 1, 1> <4, 1, 1, 1)

O(11, 10) 9, -1,-1,-1> <1,-1, 0, 0> <8 -1, -1, -1> <2, -1, -1, 1)
O(11, 11) a,-1,-1,-1> <2, 0,-1, 0> <9, -1,-1,-1> 3, -1, -1, -1
0O(11, 12) 8, -1, -1,-1> 3, 0, 0, -1> <7, -1,-1,-1> <,-1,-1, -1

»

In each ordered 4-tuple, the first index j selects a particular O(l, j) when 1<5<6 and an O(I1,j)
when 7<j<12. The indices n; select the unit cell so that the nearest neighbour is located at
3

r[O(«, )]+ Z nia;, =1, IT and the a; are the rhombohedral unit cell basis vectors. The columns

iz

headed by Z, and £, give the two nearest neighbours to which the unit cell water donates a hydrogen
and the columns headed by #7, and 7, the nearest neighbours from which it accepts a proton. For
7=1,6(a=2, B=4),forj=7,12 (x=1, B=3). These values are in the notation of [16].

follows :
X1 xR
(erF, &, &%) =(ey, €y, €)M | &, | =M | 2,7 | (A4.1)
X, x,R

sin («/2)  (3)2sin (2/2)  [(1+2 cos a)/3]'?
M=| —sin(2/2) (3)'2sin(a/2) [(1+2cosa)3]'2]; (A4.2)

0 —2(3)2sin («/2) [(1+2 cos «)/3]'2

« : the rhombohedral angle given by (7). (A 4.3)

The coordinates for the orthogonal system, which are recorded in table 8 for
the O sites were obtained using the unit cell constants given by (7), the corrected
fractional rhombohedral coordinates (vide supra) and the above transformation.
The coordinates for the H sites were calculated according to the discussion
following (7).

The orientations of the water molecules are such that each O(I, j) and each
O(I1,;) has four nearest neighbours: O(I,7): O(I, i), O(1I,ji1), O(I, jiii),
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O(11, ji*) ; O(1L,j): O(IL, 1), O(I, jif), O(II, jiil), O(1,¥). Table 9 identi-
fies for each water molecule in the rhombohedral unit cell the two nearest
neighbours to which it donates a proton to form an H-bond and the two from
which it accepts a proton.

APPENDIX 5
Some energetic consequences of a polar structure

Consider the potential defined by a set of paralle]l dipoles at the sites of an
orthogonal simple translation lattice. Although it is well known that the
partial sums for those sites contained within an expanding sequence of con-
centric spheres converge, it has been shown that : (i) the partial sums diverge
for the Ewald summation order; (ii) for a union of such simple translation
lattices, the necessary and sufficient condition that the partial sums converge
for the Ewald summation order is that the net unit cell dipole vector vanish
[34 (@)]. This implies that the potentials for such finite polar lattices are
shape dependent. It is plausible to assume that the same conclusions would
be valid for arbitrary non-orthogonal crystal axes. Any such structure for a
real crystal would lead to stabilization by absorption of ions from the atmosphere
and the »—2 dependence of ion—dipole energies should lead to a contribution
to the specific energy of such a crystal ; (iii) the partial sums for the energy of
interaction between a fixed dipole and a set of dipoles at the sites of a simple
translation lattice converge for the summation order defined by growth of the
crystal along its axes (the summation order implicitly assumed by the Ewald
formulae). However, similar arguments to those used in Appendix C in that
article show that the convergence for a crystal whose simple translation lattices
define a unit cell with a vanishing net dipole is considerably more rapid. In
this case, the expected dependence of the limit given by crystal growth defined
by alternative shapes to growth along the crystal axes should be less important.
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