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A new method is proposed for the selection of the particle to be perturbed in the single
particle move Metropolis Monte Carlo method which combines many advantages of the
previously used random and cyclic methods. Ergodicity and relative efficiency are discussed.
A numerical comparison is presented on a system of 45 Lennard-Jones particles.

1. INTRODUCTION

The present paper deals with the introduction of a new method-called the shuffled cyclic
method-for selecting the particle to be perturbed in a single particle move Metropolis Monte
Carlo method and its analysis, along with the analysis of the two conventional methods: the
cyclic and random methods [1].

In general, the discussion of a new algorithm requires two points: correctness and compet-
itiveness. For the case of a stochastic algorithm, besides proving that the algorithm gives the
correct answer in some infinite limit, the problem of ergodicity must be dealt with as well.
Yet, the competitive comparison of algorithms is a problem that is in general ill-defined
since: (a) Different criteria usually lead to different ranking-reflecting the fact that their
strong points lie at different aspects of the problem; (b) the comparison depends on the ac-
tual choice of the system’s parameters; (¢) the modification of one algorithm in a system of
algorithms may effect the efficiency of other algorithms in the system not under discussion.

The organization of the paper is as follows. Section 2 presents a general description of the
three methods under discussion, Section 3 contains the analysis of the ergodicity of the cyclic
and shuffled cyclic methods, and Section 4 compares different aspects of the three methods
and presents a numerical comparison. The results of the paper are discussed in Section 5.

Throughout the paper we call the attempted moves perturbations and reserve the term
move for actual (accepted) moves.
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2. THE DESCRIPTION OF THE THREE METHODS

In the Monte Carlo calculations that are in the literature, the particle to be perturbed is
selected either randomly (most of the time, but not always, with uniform distribution) or
cyclicly, that is, repeatedly in a fixed sequence. It has been shown, by Woods, that the cyclic
method leads to the same expectation value as the random method [1]. The question of its
ergodicity will be discussed in the next section.

It should be pointed out first, as a drawback of the cyclic method, that it cannot be used
for grand-canonical ensemble simulations, where the number of particles varies during the
simulation.

An attractive feature of the cyclic method is that it ensures that all particles are perturbed
the same number of times, and, after k cycles, each particle has been perturbed exactly k
times. As a result, near-neighbor tables (an important device to speed up the calculation
on large systems) will be required much less frequently, and averages computed after k
cycles only (another, although less important time-saving device) will be more accurate.
Furthermore, an approximate argument, presented in Section 4.2, and the numerical example
presented in Section 4.3, will demonstrate that the correlation between the successive moves
of the same particle, called cage-effect [2], will be reduced. On the other hand, successive
steps in the Markov chain will necessarily be more correlated as a result of the fixed sequence
of the perturbations.

The compromise solution proposed here is the shuffled cyclic method: for each cycle gen-
erate a random permutation of N elements (N being the number of particles considered)
and use this sequence. Thus, with minimal extra work, much of the correlation between
the successive steps of the Markov chain can be removed while the advantages of the cyclic
method can still be retained.

3. THE ERGODICITY OF THE CYCLIC METHODS

The proposed shuffled cyclic method has the further advantage over the cyclic method that
it is always ergodic on a system where the random procedure is ergodic. We will prove the
following:

THEOREM 1. If the random procedure is ergodic on a given system then the shuffled cyclic
procedure is ergodic as well.

Proof. The ergodicity of the random procedure implies the existence of a sequence of
configurations

Sp = (Xg, X1, .. Xin), Xin = X,, (1)

for any two configurations X, Xj,, where XZ’“ can be obtained from XZ“_‘; by an allowed
move of the i;th particle. In order to prove the theorem, we will construct a sequence Sgqc,



that has SR as a subsequence and is realizable, by a shuffled cyclic procedure. The sequence
Sqc will be of the form

Ssc = (Xo, X7, 51, X5, 52, ... Sp1, X1, (2)
where S; is a sequence of configurations on the empty sequence. The proof is by induction.

Since it is possible to select i1 as the first particle of the first cycle, the sequence (Xj, le)
is realizable with the shuffled cyclic method. Assume that we have constructed the sequence

SgC - <X07Xil751,--'5k_1,X2’“>. (3)

The following possibilities can occur: (a) It is possible to choose iy, as the next particle
to be perturbed in the cycle (the previous cycle was just completed or i;,q has not been

perturbed yet in the current cycle). In that case Sj, is the empty sequence and SIS%r Lis
realizable by the shuffled cyclic method. (b) ix 1, has already been perturbed in the present
cycle, but it is possible to find perturbations for the remaining particles that can be rejected
with finite probability. In this case S} is again the empty sequence and S]S%_ 1 is realizable
by the shuffled cyclic method. (c) g1 has already been perturbed in the present cycle and
for some of the remaining particles there is no perturbation that can be rejected. In this
case, however, these particles can also be selected as the first particles to be perturbed in
the next cycle and their move can be chosen to cancel the previous “forced” move. After the
restoration of the configuration X;j, one can select 7,11 as the next particle to be perturbed.

Thus Slgé 1 was found realizable by the shuffled cyclic method in this case too, with S} the
sequence of the “forced” moves and their reversals.

The case of the cyclic method is more involved since the analogous theorem is not true. A
simple counterexample is a spin-lattice at infinite temperature [3]. Another counterexample,
at finite temperatures, is presented by Friedberg and Cameron [4]. The analogous theorem
can be proved, however, for systems in the (continuous) configuration space.

THEOREM 2. [f the random procedure is ergodic for a system of N particles in the
configuration space, then the cyclic method will be ergodic too, provided that arbitrary small
displacements are allowed in the procedure.

Proof. If the random procedure is ergodic, then for every pair of orientations X, X, there
is a sequence of orientations

Sr = (Xo, X}, ... Xln), Xin =X, (4)

such that Xz‘ can be obtained from XZ’“_’i by moving. the i;th particle. Furthermore, there

is a neighborhood e (X}*) of X} within which any point can substitute Xj* — otherwise
the path between X and X, can be realized only with zero probability. Again, we will show
the existence of an alternative sequence connecting X and X,, that can be realized by the
cyclic method.



A configuration X will be called non-maximal with respect to particle ¢ if the probability
of rejecting a perturbation of ¢ is greater than zero. This requires that there should be
another configuration X’ (in a countable space) or a set of measures greater than zero (in
the continuous configuration space) that can be reached from X by a single move of particle
i and U(X)/kT < U(X")/kT. Here U(X) is the internal energy of the configuration X, T is
the absolute temperature, and & is the Boltzmann constant.

Any sequence (sz:i , XZ“> can be realized by a full cycle if the configuration Xi:—l is non-

maximal with respect to the particles 1,... 4 — 1,7, + 1,..., N. If, however, X;@Zf_ll is not
non-maximal with respect to particles my,...,mg, then these particles have to be moved in
the cycle. Since a move can be arbitrarily small, we can choose these moves small enough
that for each i < ¢, the subsequent points of the sequence <X§<;k’ . ,X;l__ 11>, i = mi,/ will
be changed only with an amount small enough that the modified sequence <X;§’C ey Xlzi_ll)
will still be realizable by the random procedure. Then, when the particle m; is to be moved
again, the move that was made by the random procedure is to be modified so that the

coordinates of the m;th particle coincide with the original configuration X%l in the sequence.

Following this procedure, the modified sequence either ends a X, or at a point in €, (Xy,).
In the latter case, two cycles can move this sequence to X,. In the first cycle thus all
particles are to be moved. These moves are now chosen to produce the final configuration
Xn

For the case of systems with finite or countable infinite states only some restricted state-
ments can be made. It can be immediately seen that in this case: (a) The random method
is ergodic if (but not only if) U/kT is finite at all states; (b) the ergodicity of the random
method implies the ergodicity of the cyclic method if all states are nonmaximal with respect
to all particles.

It can also be shown that

THEOREM 3. If for any two states Séf, Sf of the particle k that can be connected by a

single move there is a state S¥ such that the transitions Sk — S¥ and SF — S{f are both
allowed, then the ergodicity of the random method implies the ergodicity of the cyclic method.

Proof. The theorem is proved when it is shown that any transition Séf — S{f that can be
realized with the move of a single particle, say k, can also be realized by complete cycle(s).
Actually, at most two cycles are needed.

If both the initial and the final states are non-maximal with respect to all of the particles,
then it is possible to reject the perturbation of all but the kth particle, thus achieving the
transition SZf — S{f in one full cycle. If not, all particles that can be moved at all are to be
moved in the first cycle. Particle k is to be moved to state S¥ whose existence is ensured
by the condition of Theorem 3 and the others are moved arbitrarily. In the second cycle
particle k is to be moved to S{f and the other moved particles are to be returned to their
original state. This achieves the required move in two full cycles.



4. COMPARISON OF THE THREE PROCEDURES

This section presents three different analyses. First the Markov chain will be considered
as a sequence of independent random configurations. Second, the extent of cage-effect will
be examined for the three methods. Third, a numerical example will be presented.

4.1 Considerations under the Independence Assumption

In Section 2 it was pointed out that both the cyclic and the shuffled cyclic methods perturb
each particle the same number of times. Besides the advantages mentioned earlier it can be
shown that under the independence assumption the efficiency of the algorithm is improved
by this property.

The extent to which a given calculation covers the configuration space can be character-
ized by the displacement of the system in the configuration space. If we assume that the

1/2

displacement of a single particle 7 is proportional to n;””, n; being the number of times
particle ¢ was perturbed then it can be immediately seen that

(a) The total system displacement

N

Y = XP - X2 (5)
=1

is the same for all three methods but

(b) the average displacement of a particle

N
(Z = IX?—XQI) /N (6)

1=1

is maximal if ny = no = ... = ny, since the Lagrange multiplicator method yields the
optimal n;’s as the solution of the equations

N N
i chgﬂ%—)\Zni =0 (7)
Ini \;H i=1

that give as a solution for all ¢
N

1=1

1/2

In fact, the function cn;
derivative is negative.

can be replaced by any (continuous) function whose second

The beneficial effect of keeping all n; equal can be further demonstrated by showing that
under the independence assumption it minimizes the variance of the expectation values
computed.



The argument of the theory of group sampling. If a quantity A is the sum of N different
and independent quantities A; with standard deviation D; then the variance of A is minimal
if the number of times A; is sampled is proportional to Di1 /2 [5]. Since in our case the average
of a quantity over the Markov chain can be regarded as a sum of N different quantities, each
being the sum of contributions when particle ¢ was perturbed and each having the same
standard deviations since the particles are identical, under the independence assumption the
above argument applies.

In closing, it should be stressed that the above arguments do not prove the superiority
of the cyclic methods since the effect of correlation between successive steps in the Markov
chain, which tends to increase the variance, was neglected.

4.2. Analysis of the Cage-effect

The cage-effect is due to the fact that in a dense fluid a move of the particle will bring it
to the proximity of another particle; thus the next move of the same particle is most likely
to be in the reverse direction. Define P, as the probability that when particle ¢ made a move
to the proximity of particle j the particle remains at its position until the next perturbation
of particle 7. The conditional probability of particle j remaining unmoved after exactly k
perturbations, P/?, is given by the simple expression

Pk =k r<1 (8)

Here r is the probability that a perturbation is rejected. We then obtain

R, = (PF) = ZPJ“P” ), (9)

where P;;j (k) is the probability that particle j was perturbed k times between two successive

perturbations of . The expressions for P;;j (k) for the three methods can be obtained from
simple combinatorial arguments. For the random method,

P (k) = 27 (k+L), (10)
For the cyclic method,

PU(kK)y=1 for k=1

=0 fork#1
For the shuffled cyclic method,
P (k) = i for k = 0,2,
= % for k =1, (12)

O
S
=
o
V
DO



Substituting Eqgs. (10)-(12) into Eq. (9) we obtain

P.=1/(2—r) for random,
=r for cyclic, (13)
—1/4+7/247r?/4 for shuffled cyclic.

Simple considerations show that for all r < 1,

Py.(random) > P, (shuffled cyclic) > P, (cyclic). (14)

The quantity P, however, is closely related to the magnitude of the cage-effect since the
ability of the particle j to induce a reverse move of-particle ¢ is decreased if it is moved. This
follows from the fact that in a dense fluid both energetic and geometric factors favor a move
of particle j pointing away from particle ¢ over a move pointing toward particle ¢. Thus it
is plausible to assume that the magnitude of the cage-effect, which can be characterized by
(cosy), where 7 is the angle between two successive moves of the same particle, follows the
inequalities analogous to (14):

(cos~y)(random) < (cos ) (shuffled cyclic) < (cos~)(cyclic). (15)

4.3. Numerical Example

The three methods were compared on a system of 45 Lennard-Jones particles at reduced
density £ = 0.9 and at reduced temperature T+« = 2.0, that is, in the super critical re-
gion. Face-centered cubic periodic boundary conditions were used with a spherical cutoff of
2.0670. The maximum displacement in the z, y, z directions was 0.30, resulting in a 33-34%
acceptance rate. Starting from a random configuration, about 100K steps were discarded.
From that point, 900K were run using the random method. The 600K-th configuration was
the starting point of a 700K run using the shuffled cyclic method. Furthermore, both runs
were divided into 100K segments and the first configuration of each segment was used as
the starting configuration of a 100K run using the respective other two methods. Further
examination of the data led us to exclude the first two segments of the random run from the
averaging.

The following quantities are used to characterize the runs:

(a) the difference between the average of all the runs, -187.18, and the average over the
segment considered, (AFE);

(b) the error estimate 20, computed from 5K block averages by the prescription of Wood
[1]; the block averages were found to satisfy statistical randomness test;

(c) the average of the cosine of the angle between two accepted moves, (cos~y);
(d) the averages of the above quantities over all the runs, over the segments 3-9 and 10-16.

The results are collected in Table I. Based on these numbers, the following three conclusions
appear to us warranted:



(1) None of the three methods have been found to be consistently more accurate than the
others.

(2) Inequality (15) appears to hold on this system rather consistently, although the differ-
ence is rather small. Also, the difference between the shuffled cyclic and cyclic cage-effect is
less than the difference between the random and shuffled cage effect.

(3) The comparison of the averages over the two types of runs suggests that there are small
but subtle differences between the Markov chain generated by different particle selection
methods.

TABLE I
Numerical Comparison of the Three Methods on LJ Fluid

Random Cyclic Shuffled cyclic

(AE) 20 (cosy) (AE) 20 (cosy) (AE) 20 (cos7y)
1 0.03 1.49 -0.158* -2.69 1.94 -0.152
2 2.51 2.87 -0.157*  1.20 2.35 -0.146 0.89 1.70 -0.148
3 1.78 1.93 -0.155% -0.35 2.49 -0.149  -0.40 2.01 -0.148
4 -0.46 1.70 -0-153*  0.20 2.94 -0.152 1.44 1.93 -0.156
5 0.75 1.68 -0.151% -0.48 2.08 -0.148  -0.50 1.94 -0.147
6 -0.03 2.03 -0.154*  0.13 2.48 -0.150  0.61 2.53 -0.150
7 -0.58 2.17 -0.161%  -2.42 1.81 -0.148  -2.16 2.36 -0.146
8 -0.04 2.17 -0.149* -1.79 2.44 -0.150  0.19 1.94 -0.151
9 1.68 2.61 -0.150 -1.51 1.94 -0.148 1.48 1.84 -0.149
10 0.49 2.59 -0.157  -0.87 1.92 -0.147  0.27 2.41 -0.154*
11 3.55 2.52 -0.154  0.30 2.35 -0.153  -1.73 2.61 -0.149*
12 0.91 2.37 -0.157  -1.47 2.27 -0.146  -0.89 1.88 -0.153*
13 -0.06 2.55 -0.159  0.55 2.38 -0.148  0.77 2.02 -0.148*
14 2.09 2.12 -0.156  -2.43 2.16 -0.147  -0.37 2.39 -0.148*
15 -1.63 2.62 -0.156  -0.70 2.83 -0.152 1.38 1.89 -0.148*
16 1.07 2.10 -0.163  0.34 1.67 -0.143  -0.80 2.79 -0.156*
RN 0.76  2.05 -0.154 098 241 -0.15,0  0.97  2.08 -0.150
SC 1.40 2.41 -0.157  0.95 2.22 -0.148 0.89 2.28 -0.151

ALL 1.08 2.23 -0.156  0.96 2.32 -0.149  0.93 2.18 -0.150

Notes. (a) Segments 1, 2 are excluded from all averaging; (b) the last three lines refer to
averages over segments 3-9, 10-16, and 3-16, respectively; (c) the last configuration of the
run, marked with % was used as the starting configuration for the next run with the three
methods.



5. DISCUSSION

The present paper introduced a new method for the selection of the particle to be moved
in the Metropolis Monte Carlo method. The reason for the introduction of the new method
is that while the cyclic method possesses several advantages over the random method, it
introduces certain unwanted correlations into the Markov chain and in some instances it is
not ergodic, in spite of the fact that the random method is ergodic on the same system. The
suggested shuffled cyclic method removes part of the unwanted correlation and was proven to
be always ergodic whenever the random method is ergodic on the same system. Furthermore,
the extra computational work involved in the implementation of the shuffled cyclic method is
negligible since a random permutation can be generated in ¢/N steps [6]. The accuracy of the
averages obtained using the different methods is difficult to compare since, on the one hand,
the fact that the particles are moved the same number of times is in itself a variance reducing
factor, and on the other, the increased correlations in the cyclic method are working in the
opposite direction. Its effect, however, is difficult to assess quantitatively. The numerical
example examined here has failed to show significant differences in the accuracy of averages.
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