

1
2
3 **FUNCTIONAL WATER CHANNELS WITHIN THE TSH RECEPTOR – a**
4 **new paradigm for TSH action with disease implications**
5

6 **Authors:** Rauf Latif^{1,2}, Terry F. Davies^{1,2} and Mihaly Mezei^{1,3*}

7 ¹Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai;
8 New York, NY

9 ²James J. Peters VA Medical Center; New York, NY.

10 ³Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai;
11 New York, NY
12
13
14
15

16 ***Corresponding author.** Email: Mihaly.Mezei@mssm.edu

17 **ORCID numbers:** 0000-0003-0294-4307 (M. Mezei); 0000-0002-4226-3728 (R. Latif), and
18 0000-0003-3909-2750 (T.F. Davies).
19

20 **Competing interests:** TFD is a member of the Board of Kronus Inc, Starr, Idaho; MM & RL
21 have no competing interest.
22

23 **Funding:** Veterans Administration (VA) Merit Award BX000800 (TFD)
24 Anonymous philanthropic donations (TFD).
25

26 **Keywords:** TSHR, GPCR, DPPC, molecular dynamics, water channel, calcein.
27

28 **Abstract:** The TSH receptor (TSHR) transmembrane domain (TMD) lives in the plasma
29 membrane consisting of lipids and water molecules. To understand the role of TSHR-associated
30 water molecules we used molecular dynamic simulations of the TMD and identified a network of
31 putative receptor associated transmembrane water channels. This result was confirmed with
32 extended simulations of the full length TSHR with and without TSH ligand binding. While the
33 transport time observed in the simulations via the TSHR protein was slower than via the lipid
34 bilayer itself we found that significantly more waters traversed via the TSHR than via the lipid
35 bilayer which more than doubled with the binding of TSH. Using rat thyroid cells (FRTL-5) and
36 a calcein fluorescence technique we measured cell volumes after blockade of aquaporins 1 and 4,
37 the major thyroid cell water transporters. TSH showed a dose-dependent ability to influence water
38 transport and similar effects were observed with stimulating TSHR autoantibodies. Small
39 molecule TSHR agonists, which are allosteric activators of the TMD, also enhanced water
40 transport illustrating the role of the TMD in this phenomenon. Furthermore, the water channel
41 pathway was also mapped across two activation motifs within the TSHR TMD suggesting how
42 water movement may influence activation of the receptor. In pathophysiological conditions such
43 as hypothyroidism and hyperthyroidism where TSH concentrations are highly variable this action
44 of TSH may greatly influence water movement in thyroid cells and many other extrathyroidal sites
45 where the TSHR is expressed thus affecting normal cellular function.

46

47 **INTRODUCTION**

48 The thyroid-stimulating hormone receptor (TSHR) is a membrane-bound glycoprotein sharing a
49 common architecture with other members of the G-protein coupled receptor (GPCR) family with
50 seven transmembrane helices making up the transmembrane domain (TMD). Similar to other
51 GPCRs, the general activation process of the TSHR involves re-arrangement of these
52 transmembrane helices and its association with other membrane protein partners and includes
53 dimeric forms (1,2). Although it is known that a network of intramolecular and water-mediated
54 interactions are important for stabilizing GPCR structures by linking the transmembrane helices
55 (3-5) such associations of water channels within the TSHR nor other glycoprotein hormone
56 receptors have not been examined.

57 Recently, we developed a computational model of the TSHR transmembrane domain
58 (TMD) called TSHR-TMD-TRIO (6) which was based on molecular dynamics simulation. This
59 dynamic model consisted of three representative structures extracted from a 600 ns molecular
60 dynamics (MD) simulation of the TSHR TMD embedded in a dipalmitoyl-phosphatidyl-choline
61 (DPPC) membrane and solvated with water, as well as counterions, to ensure neutrality and
62 physiological ionic strength. The simulation preserved the seven-helix transmembrane bundle. The
63 backbone of the third model of TRIO (that led us to the question whether the TSHR TMD can
64 serve as a water channel) was superimposed on the corresponding atoms of the cryoEM models
65 that were available (7) resulting in RMSDs of 6.3, 5.9 and 5.7 Å for PDB ids 7xw5, 7xw6, 7xw7,
66 respectively. The C-terminal tail was not included but the loops connecting the helices were. In
67 the present work we first examined this model for water that may enter the interior of the TMD.
68 We obtained water positions in the TMD's interior based on the concept of generic water sites (8).
69 Such sites are places whose vicinity most likely contains a water molecule. These calculations

70 revealed a contiguous chain of waters across the TMD. Examination of the same MD simulation
71 that produced the TRIO model for the movements of waters during the simulation showed waters
72 crossing the cell membrane through the TMD and also through the DPPC membrane bilayer.
73 Biological support for these events was then obtained using an intracellular calcein fluorescence
74 technique to detect changes in thyroid cell volume caused by water flux (see **Figure 1** and
75 METHODS section below) which confirmed that in the presence of aquaporin blockade the TSH
76 ligand was able to induce marked changes in cell volume, indicative of water transfer. Together
77 these data indicate the presence of functional water channels within the TSHR-TMD and may
78 reveal important new consequences of TSH action.

79

80 **MATERIALS AND METHODS**

81 **The TSHR-TMD-TRIO model:** The calculations started with our TMD model as
82 described previously (9) which used the Uniprot server (10) to obtain an initial model of the seven
83 transmembrane helices using the rhodopsin model (PDB:1F88) as the template. We generated the
84 loops connecting the helices with a Monte Carlo procedure (11). Water molecules inside the TMD
85 were obtained as generic sites (8) based on a grand-canonical ensemble Monte Carlo simulation
86 (12). Such simulations vary the number of waters using periodic insertion and deletion attempts,
87 and are accepted based on the Boltzmann factor including a target chemical potential that was
88 obtained by tuning to experimental density in the bulk (13); generic sites represent density maxima
89 of the water positions generated by the simulation. We then generated the membrane environment
90 (vide infra), equilibrated the system and first performed a 600 ns molecular dynamics simulation.
91 The TMD conformations generated by the MD run were clustered, using the backbone root mean
92 square deviation (RMSD) method, as the distance measured using Simulaid (14). This indicated

93 the presence of clusters. Since the first cluster had few members it was discarded and additional
94 equilibration and representatives were selected only from the three larger clusters - hence we gave
95 it the name TSHR-TMD-TRIO (6).

96

97 **The membrane model:** As described in our earlier publication, the TSHR protein
98 structure with internal waters was then submitted to the Charmm-Gui server (15). The server
99 immersed the protein into a bilayer of 188 DPPC molecules and added a further water layer,
100 resulting in a total of 15,277 waters, and also added counterions (40 K⁺ and 52 Cl⁻ ions), both to
101 ensure electroneutrality and an ionic strength of 0.15 to represent physiological conditions. The
102 Charmm-36 force field (16) was used. This approach also provided the input for a six-step
103 equilibration of the system that involved the progressive release of constraints on all non-water
104 components in the system (17) to ensure that releasing local strains did not compromise the overall
105 fold of the protein. The simulations were performed with the program NAMD (18).

106

107 **Generic water sites:** The calculation of the generic sites was an iterative process using a
108 well-defined algorithm (8). Starting from the first conformation for each structure in the trajectory
109 this algorithm assigned each water to a site or, if no suitable site was found, assigned it to a new
110 putative site. The process was then repeated until the sites no longer changed and converged. The
111 algorithm assigned to each site a fractional occupancy and RMSD (8). These calculations were
112 performed by the program MMC (19).

113

114 **Membrane transits:** Using the program Simulaid (14) the trajectory was scanned for
115 waters entering and exiting the membrane. Each time a water entered, its position and structure
116 number was noted. Each time a water exited, the program recorded a successful transit if the exit
117 occurred at the membrane side opposite the entry. The entry and exit points were categorized as
118 being within the TSHR protein or the lipid region by calculating the circular variance (CV) of the
119 entry and exit points of the protein since the CV was shown to be capable of determining whether
120 a point is inside/outside/around the boundary of a set of points forming an irregular shape (20).
121 The CV calculation used only the coordinates of the seven-helix bundle, projected onto the
122 membrane plane (2D-CV).

123

124 **Internal waters:** The average number of waters inside the TMD were obtained by
125 calculating the CV of each water of each frame saved in the trajectory w.r.t. the TMD and keeping
126 the ones whose CV were above the threshold.

127

128 **Measurement of cell volume changes using calcein fluorescence quenching:** Water is
129 transported within eukaryotic cells by passive diffusion and/or active transport when there is an
130 osmotic change. This occurs via water channels known as aquaporins. The concept of cell volume
131 changes due to water flux measured using calcein fluorescence is represented in Figure 1. The
132 assay was performed using a rat thyrocyte line (FRTL5) and CHO cells overexpressing the human
133 TSHR (21). Bovine TSH (Millipore Sigma, MA USA) which binds with high affinity to human
134 and rat TSHR was used for activating the receptors. For the assay, 40,000 thyrocyte cells were
135 seeded per well of clear bottom black 96 well plates and allowed to grow overnight in TSH-
136 containing (6H) medium as described earlier. After attaining 80-90% confluence, the medium was

137 changed to TSH-free (5H) medium for 2 days to remove the effect of TSH. Prior to the assay the
138 cells were first loaded with calcein AM at 5 μ M concentration in the presence of an inhibitor of
139 anion transport (1mM probenecid) for 90 minutes at 37°C. Calcein, which is a non-fluorescent
140 dye, becomes a fluorescent dye by cleavage due to intracellular esterases (44). The loaded cells
141 are then washed twice with 37°C warm medium. To block both AQP1 and AQP4, the cells were
142 further incubated for 30 minutes at 37°C with medium containing AQP1 inhibitor (TC- Tocris Cat
143 # 5412) at 8 μ M and/or AQP4 inhibitor (TGN020 - Tocris Cat # 5425) at 3 μ M. After decanting the
144 medium from the aquaporin blocked cells, the wells were then loaded with 50ul of medium
145 containing either TSH, stimulating TSH receptor antibodies (MS1 at 10 μ g/ml and M22 at 1 μ g/ml)
146 or TSHR small molecule agonists MS437/MS438 at 10 μ M in triplicates and incubated further for
147 20 minutes at 37°C. The plates were shifted immediately to a pre warmed microplate reader and
148 the kinetic preset program started with an initial read of 5 sec followed by the injection of 50 μ l
149 of D-mannitol (400mM) resulting in a hyperosmotic extracellular milieu. An initial read at 5 sec
150 for each well was followed by the 50 μ l injection of mannitol at a speed of 300 μ l/sec followed by
151 a 37 sec continuous read of fluorescence for each well via bottom well optics. The average decrease
152 or increase in fluorescence was calculated from measurements in triplicate wells for each treatment
153 or no treatment using the excitation wavelength of 485 nm and emission wavelength of 525 nm.
154 The data are presented as percentage change over control cells. Control percentage (100%)
155 represented in the data refers to either a) maximum fluorescence of cells not subjected to
156 hypertonic mannitol and not treated with aquaporin inhibitor(s) or b) maximum fluorescence of
157 cells subjected to mannitol and in the presence of both aquaporin inhibitors depending on the
158 experimental situation. The increase or decrease in the average fluorescence measured refers to
159 equivalent changes in cell volume because calcein fluorescence decreases with aggregation of the

160 dye molecules and, in contrast. The fluorescence increases with dispersion of the molecules in this
161 short time scale as illustrated in Figure 1 following their increased exposure to intracellular
162 esterases.

163

164 **Detection of aquaporins by PCR:** FRTL5 cells grown in TSH-free 5H medium for 2
165 days were harvested and total RNA extracted using the RNA Easy kit (Qiagen cat # 74004). The
166 RNA was further subject to column DNAase treatment to remove genomic DNA. 5 μ g of total
167 RNA was converted to cDNA using the reverse transcriptase reaction using a SuperScript IV VILO
168 cDNA kit (Thermo Fisher Inc). The cDNA was further diluted 1:3 and 2 μ l of diluted cDNA was
169 then subjected into a PCR reaction using custom designed primer pairs for AQP1 and AQP4
170 (Supplementary Table S1 (22)). The PCR products were then run on 2% agarose gels for
171 visualization of the amplified products. Primers for the cytoskeleton actin and beta- macroglobulin
172 were used as controls.

173

174 **Immunostaining for aquaporins 1 & 4:** The presence of aquaporin protein expression
175 was ascertained by immunostaining (22) using commercial polyclonal aquaporin antibodies for
176 AQP1 using anti AQP1 (Proteintech Cat# 20333-1-AP, [RRID:AB_10666159](#)) and AQP4 using
177 anti AQP4 (Proteintech Cat# 16473-1-AP, [RRID:AB_2827426](#)). Briefly, FRTL 5 cells grown on
178 8-well chamber slides with a density of 40,000 cells per well were washed twice with 1xPBS and
179 fixed in 4% paraformaldehyde for 20 minutes at room temperature. The washed cells were then
180 stained using a 1:200 dilution of the primary aquaporin antibody followed by 1hr incubation at
181 room temperature. Bound primary antibody was detected using anti rabbit conjugate with Alexa
182 547 (1:500) (Jackson ImmunoResearch Labs Cat# 711-585-152, [RRID:AB_2340621](#)). The cells

183 were mounted using Vectashield containing Dapi for nuclear staining of cells. As controls we used
184 FRTL5 cells stained with normal rabbit IgG followed by secondary antibody. Images of the cells
185 were acquired using a Nikon Ti E wide field microscope using a 100x oil objective plan Apo with
186 NA 1.45 and using Dapi and Texas red filters. Images were processed using the open-source Fuji
187 Image J software. Minor adjustments were made on the images only for brightness and contrast.

188

189 **Data analysis and statistical methods used:** All experimental data were derived from 2-
190 3 biological replicates all experiments. Were repeated 2-3 times. Statistical significance was
191 calculated using the Student t test in Excel.

192

193

194 **RESULTS**

195 **Identification of generic water sites associated with the TSHR TMD: Figure 2 (A-C) shows**
196 the TSHR-TMD models employed and illustrate three sets of generic water sites with occupancy
197 greater than 30% corresponding to the three representative TMD structures in our earlier TRIO
198 model (6). We found that the generic sites, when based on the third structure of the TRIO model
199 (**Figure 2C**) (6), which represented more than half on the trajectory, formed a contiguous path
200 between helices 6 and 7, reaching halfway from the intracellular side and an analogous shorter
201 channel between helices 5 and 3 from the extracellular side. This suggested that waters could
202 transit the membrane by passing through the interior of the TSHR protein as shown. Note, also,
203 that the generic sites showed that there may be a path branching from the main path near the center
204 of the bilayer, leading into the bilayer interior.

205

206 **Simulation assesment of TSHR-TMD water transit:** The appearance of the contiguous chain of
207 water sites suggested we could track individual waters to detect their actual passage through the
208 membrane. The result of tracking showed that during a 600 ns simulation there were 370 water
209 transits observed (the number of waters in the system was 15,371) representing 2.4% of the waters
210 in the system. However, only 188/370 (50.8%) of transits occurred through the receptor protein.
211 Of the remaining transits, 87 occurred entirely through the DPPC bilayer and 95 occurred using a
212 path that used the TSHR protein channel only for exit or entry. The average time required for the
213 transit was extracted from the simulation history. It turned out to be 16.3 ns for the transit through
214 the TSHR protein, 13.5 ns for the transit using partially the protein and lipid bilayer, and only 1.2
215 ns for the transit across the lipid bilayer. While the water channel transport time observed in the
216 simulation via the TSHR protein was longer than via the lipid bilayer itself we found that
217 significantly more waters traversed the bilayer via the TSHR than via the cell membrane. This is
218 illustrated by straight lines connecting the entry and exit points as shown in **Figure 3**. Naturally,
219 this does not imply that the path was a straight line, only to give a general sense of the distribution
220 of the location and direction of transits. Transits that only partially use the TSHR appear to exit
221 the protein into the membrane in the region where the generic water sites form a diverging path.
222 The figure also shows that the transit lines involving the TSHR protein form two distinct bundles
223 while the lines representing membrane bilayer transits are scattered and show significant lateral
224 movements inside the bilayer. The lack of a contiguous water path in the first representative
225 structure from our TRIO model (**Figure 2A**) is a reminder that the starting structure we actually
226 used for the simulation is a homology model, based on proteins that may not always have a defined

227 path for the waters. The number of waters within the TMD of the different systems studied (**Table**
228 **1**) follows a similar pattern.

229
230 **Specificity of transit modelling:** The existence of a water channel raises the question whether that
231 channel can also facilitate the transit of ions. To examine this question, the potassium and chloride
232 ions in the neutral model water system were also tracked. However, no ion transits were observed
233 at all. Tracking just the entries, we found that the ions did indeed enter the membrane but did not
234 transit. **Table 2** shows the number of ions reaching different depths. It was clear that, unlike for
235 water, the ion entries were significantly shallower within the TSHR protein than within the
236 membrane bilayer. Potassium penetrated both the bilayer and the protein deeper than chloride and
237 for entries into the protein potassium favored the extracellular side and chloride the intracellular
238 side. Also, given that three potassium ions were seen within 4 angstrom of the bilayer center during
239 the 600 ns molecular dynamic run it is was likely that longer simulations of microseconds in length
240 may have seen actual transits of some potassium ions.

241
242 **Simulation with the full length TSHR bound to TSH:** Analysis of our simulations of the full-
243 length TSHR model with and without the TSH, rather than just the TMD, showed that the inclusion
244 of TSH resulted in an increase by a factor of ~2.2 in the number of water transits via the TMD (**Table**
245 **3**). Furthermore, constitutive transit through the lipid bilayer was nearly 10-fold lower than the via
246 the TSHR protein itself (**Table 3**) suggesting active transport of water through the TSHR channel in
247 the presence of TSH.

248 **Aquaporin expression:** In order to study actual TSHR water transport we used a well-established
249 rat thyrocyte cell line (FRTL5). Since aquaporins are the major water transporters in all eukaryotic

250 cells, we first researched RNA seq data derived from the Human Protein Atlas ([https://www.](https://www.proteinatlas.org/)
251 [proteinatlas.org/](https://www.proteinatlas.org/)) and Rat Genome Database (<https://rgd.mcw.edu/>) to evaluate the expression of
252 the different aquaporin's that are distributed in human and rat thyroid tissue. Analysis and
253 representation of normalized transcripts per million (nTPM) levels from these datasets are shown in
254 **Figure 4A** and suggested that aquaporin 1 (AQP1) and aquaporin 4 (AQP4) messages were the
255 predominant isoforms expressed in both rat and human thyroid tissue. We then confirmed the
256 expression of these two aquaporins in FRTL5 cells by qPCR and immunostaining of fixed cells
257 (**Figure 4B upper**). Amplified PCR products of ~150 bases were observed using two different
258 primer sets for each aquaporin and on immunostaining we identified both peripheral and cytoplasmic
259 distribution of these aquaporin proteins (**Figure 4B lower**).

260

261 **Aquaporin blockade:** To establish if these aquaporin water transporters could be chemically
262 inhibited we used a calcein fluorescence assay as detailed in Materials and Methods and as explained
263 in **Figure 1**. We first observed a significant decrease in cell volume (~60%) as a result of the
264 hypertonic change in the external milieu of the cells (**Figures 5A & 5B**). In contrast, in the presence
265 of specific aquaporin inhibitors in concentrations greater than their IC₅₀ and under the same
266 hypertonic conditions there was no decrease in cell volume (**Figures 5A & 5B**) during the 37 sec
267 measurement window. This occurred with blockade of either aquaporin suggesting that the inhibitors
268 were not highly specific in the conditions used.

269

270 **TSH effects on receptor water transport:** We confirmed the influence of TSH on water flow by
271 *in-vitro* analyses carried out on FRTL5 cells in the presence of combined AQP1 and AQP4
272 inhibitors. These data showed a clear TSH dose-response induced change in cell volume under

273 hypertonic conditions causing more than a 50% reduction in cell volumes (**Figure 6A**). The
274 specificity of this regulation by TSH was verified by blocking the binding of TSH to its receptor
275 using human blocking antibody K1-70 (23) which restored some of the cell volume towards its initial
276 state (**Figure 6B**). This action of TSH was also evaluated in a non-thyroid cell using heterologous
277 CHO cells transfected with the human TSHR and control CHO cells lacking the receptor. CHO cells
278 retained the same aquaporin effects and their chemical inhibition was observed as in thyrocytes
279 (**Supplementary Figures S1A and S1B** (22)). In the presence of TSH an even more exaggerated
280 effect than seen with FRTL5 cells was observed in this overexpressed model with up to 80% volume
281 reduction illustrating TSHR specific water channels are likely to be effective conduits of water
282 transit in all TSHR expressing cells.

283

284 **TSHR antibodies and agonists also affect water transit:** Since the TSH ligand binds to the
285 ectodomain of TSHR and induced an alteration in water transport, we also tested if other modes of
286 TSHR activation would have a similar effect. We examined two well-characterized stimulating
287 monoclonal antibodies to the TSHR using the calcein assay. MS1, a in-house hamster TSHR
288 stimulating monoclonal antibody (24) was tested at a dose of up to 10 μ g/ml and M22 (23) a human
289 stimulating TSHR monoclonal antibody was tested at a dose up to 1 μ g/ml. The results indicated that
290 both these antibodies, like TSH itself, were able to cause significant decreases in cell volume of
291 FRTL5 cells (**Figure 6C**). Hence, perturbation of the receptor ectodomain resulted in water transit
292 from the cells most likely by affecting the TSHR TMD. This conclusion was confirmed by direct
293 stimulation of the TMD by using the TSHR small molecule agonists MS437 and MS438 which we
294 had identified earlier (25). These allosteric activators also induced a significant decrease in cell
295 volume in the calcein assay when tested at their maximum activation dose of 10 μ M (**Figure 6C**).

296 Therefore, changes in the transmembrane either by direct stimulation as seen by the allosteric
297 activators or via the ectodomian due to TSH or stimulating TSHR antibodies resulted in changes in
298 water transit via the receptor.

299

300 **Receptor activation motifs on the TSHR water channel:** To examine if water transit via the water
301 channel could be affected by published TMD activation motifs we mapped the two most well defined
302 activation motifs - the CMxP on TM6 and NLxxD motif on TM2 (26) using our TSHR TMD model
303 from the molecular dynamic simulation (**Figure 7**). Overlaying these motifs with the water transit
304 path, we noted that the path of the water transit through the helices fell within these activation motifs
305 that may indeed affect activation of the receptor.

306

307 **DISCUSSION**

308 The TSH receptor (TSHR), which is central to G protein signaling in thyrocytes, resides as
309 an integral membrane protein in a hydrated lipid bilayer environment in the plasma membrane.
310 Crystallographic structures of the TSHR, both active and inactive (7,27-29) forms including the
311 recent full-length cryo-EM (30) structure, have expanded our understanding of how the TSH
312 ligand and TSHR autoantibodies bind to the receptor. However, these studies have not addressed
313 the behavior of water molecules associated with the receptor because of the static 3D images
314 obtained in such studies. In our attempt to further understand the behavior of the TSHR in a lipid
315 embedded and hydrated environment, we further analyzed the molecular dynamic (MD)
316 simulation studies which resulted in our previously reported transmembrane domain (TMD) model
317 named TRIO (31) and an improved version of our recently reported full length TSHR structure
318 (32). Using our previous experience in modeling and the MD simulations of the TSHR-TMD, we

319 identified a network of putative transmembrane water channels within the TSHR protein. In this
320 report, we have examined the role of the receptor associated water molecules in-silico as well as
321 in-vitro to begin to understand their physiological relevance to the receptor protein.

322 On further analyzing our molecular dynamics simulation, we identified the potential
323 trajectory of water molecules crossing a model of the TSHR embedded in a plasma membrane,
324 which provided evidence that water molecules could indeed cross the membrane via these well-
325 defined putative receptor channels in the TMD (**Figure 2**). These receptor water channels were
326 confined mostly within H6 and H7 which are the sites of reported activation motifs among other
327 GPCRs (26) including the TSHR (33). Furthermore, the transit lines constructed from the
328 trajectories of water molecules in this model identified a bifurcated channel associated with the
329 TSHR indicating the presence of both a complete channel through the receptor protein and a partial
330 protein- membrane channel suggesting novel routes for these receptor waters.

331 The presence of receptor water networks is common in GPCRs (34,35) although they have
332 not been characterized in the TSHR. It has been reported, however, that water molecules may
333 form a network with receptor residues and hydrophobic amino acid side chains and may be
334 intimately involved in activation of a receptor (35). To confirm the physiologic relevance of these
335 receptor water channels in thyrocytes and possibly other extra thyroidal TSHRs, we used changes
336 in cell volume as a measure of water transport using a calcein quenching fluorescence assay (36).
337 Furthermore, we found that TSH and other TSHR agonists enhanced the water flow from
338 thyrocytes.

339 We first examined water transit across the protein and lipid bilayer in our simulation.
340 Transit of water through the lipid bilayer plasma membrane model was expected since it has been
341 well shown that water passes through cell membranes by passive diffusion or facilitated diffusion

342 in live cells. The speed and, especially the quantity, of such membrane transits are known to be
343 influenced by a variety of factors such as temperature, pH, fatty acid composition of the membrane,
344 level of hydration, cholesterol in the membrane and including the osmotic pressures on each side
345 of the membranea (37,38). To obtain an estimate of the speed of waters passing through the
346 membrane in our simulation we first observed that there were about 600 waters in a single layer
347 of the ~4 nm membrane. In the 600 ns simulation we observed that over 80 waters would cross
348 the membrane, so it would take $600 * (600/80) = 4500$ ns to move across all 600 waters, resulting in
349 a speed of $4/4500$ nm/ns, or about 10^{-4} nm/ns. We then found that this time spent by waters in
350 membrane transit was an order of magnitude less than for transfers involving the TSHR protein.
351 The difference in the frequency of transits via the protein and via the membrane reflects the high
352 activation barrier that the membrane headgroups form. The difference in the transit times reflects
353 the fact that the membrane interior is purely hydrophobic and thus creates a largely flat energy
354 surface while the inside is at least partially polar and, as a result, it has several local minima that
355 the water needs time to proceed through. Recent experiments mirror this result (39) where waters
356 moved orders of magnitude faster through a hydrophobic channel lined with fluorine than through
357 water transporting protein channels like aquaporin channels. It seems that the hydrophobic
358 environment, by lacking the option to form hydrogen bonds with waters, is more ‘slippery’ than
359 the interior of the protein. Nevertheless, it is not transit time alone that determines water flow but
360 also the quantity of transits. While the transport time observed in the simulation via the TSHR
361 protein was longer than via the membrane itself we found that significantly more waters traversed
362 the bilayer via the TSHR protein than exclusively via the lipid bilayer (see Table 2). To understand
363 the effects of ligand TSH on this water transit, we then examined 2000 ns long simulations of the
364 full length TSHR (32), with and without TSH. We saw a significant increase over constitutive

365 water transport through the receptor, indicating that the capacity of the receptor channels to move
366 water more than doubled with the binding of TSH in our simulation.

367 Using the calcein assay we were then able to confirm that such simulations reflected the
368 physiological activity of TSH where we found large changes in cell volume under TSH stimulation
369 of both thyroid cells as well as control non-thyroid cells expressing the TSHR. These in vitro
370 studies in thyrocytes and heterologous cells were performed after chemical blockade of the two
371 major aquaporins found in thyrocytes. Aquaporins are major water transporting proteins in all
372 eukaryotic cells and distribution of these aquaporins isoforms is heterogeneous (40). This effect
373 was not only mirrored when TSH or a stimulating TSHR antibody bound to the ectodomain of the
374 full-length TSHR but was also seen upon binding of allosteric activators to the receptor TMD.

375 Water passes non-specifically and with ease in membrane models as well as in actual
376 physiologic assessments (41). This suggests that passage of water molecules in any other way,
377 such as via the TSHR protein, may have a physiological relevance. Since water paths appear to
378 be possible through a variety of GPCRs (42) what advantage would this have? Since such
379 receptors are thought to have evolved for G protein signaling, we can assume that water passage
380 through the TSHR must have signaling significance and could maintain, enhance or inhibit such
381 TSH signaling. In addition, receptor activation, which follows TSH or stimulating TSHR
382 autoantibody binding to the large extracellular domain, likely leads to a rearrangement of the
383 transmembrane helices and possibly an extension or alteration of the water network from the
384 ligand-binding extracellular surface to the cytoplasmic surface (42). However, the model
385 presented here of the TSHR is one of a constitutively active GPCR (43). In fact, the TSHR is never
386 quiescent and it is known that this constitutive activity resides within the TMD and is thought to
387 be kept in check by the ectodomain (44). The activation mechanism of the TSHR TMD has been

388 examined by comparative modelling of the TSHR model with active and inactive structures of
389 three other GPCRs (33). The rearrangement of helices and distortion of the conserved motifs
390 leading to activation of the TSHR is similar to other GPCRs but the role of water has not been
391 evaluated before. Hydrophilic contacts in the TMD are complimented by conserved water
392 molecules localized close to highly conserved residues and constitute a network of intramolecular
393 and water-mediated interactions that could indeed be important for stabilizing the GPCR structure
394 by linking the transmembrane helices (34). Studies have shown that GPCRs have highly
395 conserved motifs in their TMD and one such motif is the “ionic lock” (26). Additionally, the motif
396 NLxxD in TM2 and CWxP in TM6 are important in maintaining the inactive state of some
397 receptors (33) and any perturbation of these motifs by movement of water during activation could
398 lead to changes in hydrogen bonding of the network and receptor activation or stabilization of the
399 helices (35). On mapping these well characterized activation motifs we found close proximity of
400 these motifs with the TSHR water channel which suggested that they may play an active or
401 surrogate role in TSHR signaling.

402 In conclusion, these observations evidence the integral role of water molecules in TSHR
403 action and illustrate a new role for the TSH ligand itself. Although TSH action has been extensively
404 characterized both by its interaction with the TSHR and its use of multiple G protein signaling
405 molecules and pathways (45,46) its importance in fluid regulation has not been well described.
406 Although one major characteristic of high TSH levels in hypothyroidism is one of fluid retention
407 and effusion formation, especially pleural and pericardial effusions, these disease consequences
408 have characteristically been blamed on lack of thyroid hormone (47). Yet there is a dearth of
409 evidence exploring fluid transfer under different levels of TSH in the setting of widespread
410 expression of the TSHR. Our description of TSHR water channels opens an entirely new way of

411 looking at fluid balance in hypothyroidism. This offers a new paradigm for TSH action as
412 supported by the evidence that TSH can influence waters crossing into and out of the many cells
413 expressing the receptor which would also include fibroblasts, osteoblasts and specialized brain
414 cells such as tanycytes which express significant numbers of TSHR (48) and have a major
415 contribution in hypothalamic hormone regulation (49).

416

417 **Acknowledgments:**

418 We thank Dr. Roman Osman for pointing out experimental information and for helpful
419 discussions. This work was also supported in part through the computational resources and staff
420 expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at
421 Mount Sinai.

422

423 **Author contributions:**

424 MM conceived the work, interpreted the simulation data and wrote the first draft of the manuscript.
425 RL designed and executed the in vitro experiments and helped interpret the data, write and edit the
426 figures and manuscript. TFD provided experimental planning, data interpretation and focus, helped
427 prepare the figures and helped write the manuscript.

428

429 **Data and materials availability:** Initial structure coordinates and simulation trajectory
430 are available from the authors upon e-mailed request. The programs MMC and Simulaid are
431 available at the URL <https://mezeim01.dmz.hpc.mssm.edu/software.html>

432

433 **References and Notes:**

434

435 1. Worth CL, Kleinau G, Krause G. Comparative sequence and structural analyses of G-
436 protein-coupled receptor crystal structures and implications for molecular models. *PLoS*
437 *One*. 2009;4:e7011.

438 2. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae
439 PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH,
440 Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK. Crystal structure of the $\beta 2$
441 adrenergic receptor-Gs protein complex. *Nature*. 2011;477:549-555.

442 3. T.E. Angel SG, B. Jastrzebska, K. Palczewski, and M.R. Chance. Structural waters define
443 a functional channel mediating activation of the GPCR, rhodopsin. *PNAS*.
444 2009;106:14367–14372.

445 4. S. Yuan SF, K. Palczewski, and H. Vogel. Activation of G-protein-coupled receptors
446 correlates with the formation of a continuous internal water pathway. *Nature*
447 *Communications*. 2014;5.

448 5. A. J. Venkatakrishnan, Anthony K. Ma, Rasmus Fonseca, Dror RO. Diverse GPCRs
449 exhibit conserved water networks for stabilization and activation. *Proc Natl Acad Sci U S*
450 A. 2019;116(8):3288-3293.

451 6. Mezei M, Latif R, Das B, Davies TF. Implications of an improved model of the TSH
452 receptor transmembrane domain (TSHR-TMD -TRIO). *Endocrinology*. 2021;162:bqab051

453 7. Faust B, Billesbølle CB, Suomivuori C-M, Singh I, Zhang K, Hoppe N, Pinto AFM,
454 Diedrich JK, Muftuoglu Y, Szkudlinski MW, Saghatelian A, Dror RO, Cheng Y, Manglik
455 A. Autoantibody mimicry of hormone action at the thyrotropin receptor. *Nature*.
456 2022;609:846-860.

457 8. Mezei M, Beveridge DL. Generic solvation sites in a crystal. *J Comp Chem.* 1984;6:523-
458 527.

459 9. Ali MR, Latif R, Davies TF, Mezei M. Monte Carlo loop refinement and virtual screening
460 of the thyroid-stimulating hormone receptor transmembrane domain. *Journal of*
461 *Biomolecular Structure and Dynamics.* 2014;1-13.

462 10. Consortium TU. Reorganizing the protein space at the universal protein resource (UniProt).
463 *Nucleic Acids Research.* 2012;50:D71-D75.

464 11. Cui M, Mezei M, Osman R. Prediction of protein loop structures using a local move Monte
465 Carlo approach and a grid-based force field. *Protein Eng Des Sel.* 2008;21:729-735.

466 12. Mezei M. Grand-Canonical Ensemble Monte Carlo Simulation of Dense Fluids: Lennard-
467 Jones, Soft Spheres and Water. *Mol Phys.* 1987;61:565-582.

468 13. Speidel JA, Banfelder JR, Mezei M. Automatic Control of Solvent Density in Grand
469 Canonical Ensemble Monte Carlo Simulations. *J Chem Theory and Comp.* 2006;2:1429-
470 1434.

471 14. Mezei M. Simulaid: a simulation facilitator and analysis program. *J Comput Chem.*
472 2010;31(14):2658-2668.

473 15. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for
474 CHARMM. *J Comput Chem.* 2008;29(11):1859-1865.

475 16. Jing Huang, Jr ADM. CHARMM36 all-atom additive protein force field: validation based
476 on comparison to NMR data *J Comput Chem.* 2013;34:2135-2145.

477 17. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan
478 V, Venable RM, Klauda JB, Im W. CHARMM-GUI Membrane Builder Toward Realistic
479 Biological Membrane Simulations. *J Comput Chem.* 2014;35:1997-2004.

480 18. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD,
481 Kale L, Schulten K. Scalable molecular dynamics with NAMD. *J Comput Chem.*
482 2005;26(16):1781-1802.

483 19. Mezei M. MMC: Monte Carlo program for molecular assemblies. URL:
484 <https://mezeim01.u.hpc.mssm.edu/mmc>.

485 20. Mezei M. A new method for mapping macromolecular topography. *J Mol Graph Model.*
486 2003;21(5):463-472.

487 21. Solenov E, Watanabe H, Manley GT, Verkman AS. Sevenfold-reduced osmotic water
488 permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a
489 fluorescence quenching method. *Am J Physiol Cell Physiol.* 2004;286(2):C426-432.

490 22. Latif R. Supplementary Material. 2023.

491 23. Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, Wilmot J, Hu X, Kabelis
492 K, Clark J, Holl S, Richards T, Collyer A, Furmaniak J, Smith BR. Monoclonal
493 autoantibodies to the TSH receptor, one with stimulating activity and one with blocking
494 activity, obtained from the same blood sample. *Clin Endocrinol (Oxf).* 2010;73(3):404-
495 412.

496 24. Ando T, Latif R, Pritsker A, Moran T, Nagayama Y, Davies TF. A monoclonal thyroid-
497 stimulating antibody. *J Clin Invest.* 2002;110(11):1667-1674.

498 25. Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei
499 M, Davies TF. New small molecule agonists to the thyrotropin receptor. *Thyroid.*
500 2015;25(1):51-62.

501 26. Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP. Role of the conserved
502 NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. *Proc Natl Acad
503 Sci U S A.* 2003;100(5):2290-2295.

504 27. J. Miller-Gallacher PS, S. Young, A. Sullivan, S. Baker, S.C Reddington, M. Clue, K.
505 Kabelis, J. Clark, J. Wilmot, D. Thomas, M. Chlebowska, F. Cole, E. Pearson, E. Roberts,
506 M. Holly, M. Evans, R. Núñez Miguel, M. Powell, J. Sanders, J. Furmaniak, B. Rees Smith.
507 Crystal structure of a ligand-free stable TSH receptor leucine-rich repeat domain. *Journal
508 of Molecular Endocrinology* 2019;62:117–128

509 28. Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark J, Wilmot
510 J, Hu X, Roberts E, Powell M, Nunez Miguel R, Furmaniak J, Rees Smith B. Crystal
511 structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. *J Mol
512 Endocrinol.* 2011;46(2):81-99.

513 29. J.Sanders, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve
514 M, Nakatake N, Evans M, Richards T, Powell M, Miguel RN, Blundell TL, Furmaniak J,
515 Smith BR. Crystal structure of the TSH receptor in complex with a thyroid-stimulating
516 autoantibody. *Thyroid.* 2007;15(5):395-410.

517 30. Nunez Miguel R, Sanders P, Allen L, Evans M, Holly M, Johnson W, Sullivan A, Sanders
518 J, Furmaniak J, Rees Smith B. Structure of full-length TSH receptor in complex with
519 antibody K1-70. *J Mol Endocrinol.* 2023;70(1).

520 31. M. Mezei RL, B. Das, T.F. Davies. Implications of an improved model of the TSH receptor
521 transmembrane domain (TSHR-TMD -TRIO). *Endocrinology.* 2021;162:bqab051

522 32. Mezei M, Latif R, Davies TF. Computational model of the full-length TSH receptor. *Elife.*
523 2022;11.

524 33. Nunez Miguel R, Sanders J, Furmaniak J, Smith BR. Structure and activation of the TSH
525 receptor transmembrane domain. *Auto Immun Highlights*. 2017;8(1):2.

526 34. Louet M, Casiraghi M, Damian M, Costa MG, Renault P, Gomes AA, Batista PR, M'Kadmi
527 C, Mary S, Cantel S, Denoyelle S, Ben Haj Salah K, Perahia D, Bisch PM, Fehrentz JA,
528 Catoire LJ, Floquet N, Baneres JL. Concerted conformational dynamics and water
529 movements in the ghrelin G protein-coupled receptor. *Elife*. 2021;10.

530 35. Tomobe K, Yamamoto E, Kholmurodov K, Yasuoka K. Water permeation through the
531 internal water pathway in activated GPCR rhodopsin. *PLoS One*. 2017;12(5):e0176876.

532 36. Kitchen P, Salman MM, Abir-Awan M, Al-Jubair T, Tornroth-Horsefield S, Conner AC,
533 Bill RM. Calcein Fluorescence Quenching to Measure Plasma Membrane Water Flux in
534 Live Mammalian Cells. *STAR Protoc*. 2020;1(3):100157.

535 37. Haines TH. Water transport across biological membranes. *FEBS Letters*. 1994;346:115-
536 122.

537 38. Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK,
538 Farinas J. Water transport across mammalian cell membranes. *Am J Physiol*. 1996;270(1
539 Pt 1):C12-30.

540 39. Itoh Y, Chen S, Ryota H, Konda T, Aoki T, Ueda T, Shimada I, Cannon JJ, Shao C, Shiomi
541 J, Tabata KV, Noji H, Sato K, Aida T. Ultrafast water permeation through nanochannels
542 with a densely fluorous interior surface. 2022.

543 40. Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins:
544 Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. *Front
545 Genet*. 2021;12:654865.

546 41. Blankenship E, Lodowski AV-FDT. The high-resolution structure of activated opsin
547 reveals a conserved solvent network in the transmembrane region essential for activation.
548 *Structure*. 2015;23:2358-2364.

549 42. Angel TE, Chance MR, Palczewski K. Conserved waters mediate structural and functional
550 activation of family A (rhodopsin-like) G protein-coupled receptors. *Proc Natl Acad Sci U*
551 *S A*. 2009;106:8555–8560.

552 43. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. Allosteric sodium in
553 class A GPCR signaling. *Trends Biochem Sci*. 2014;39:233–244.

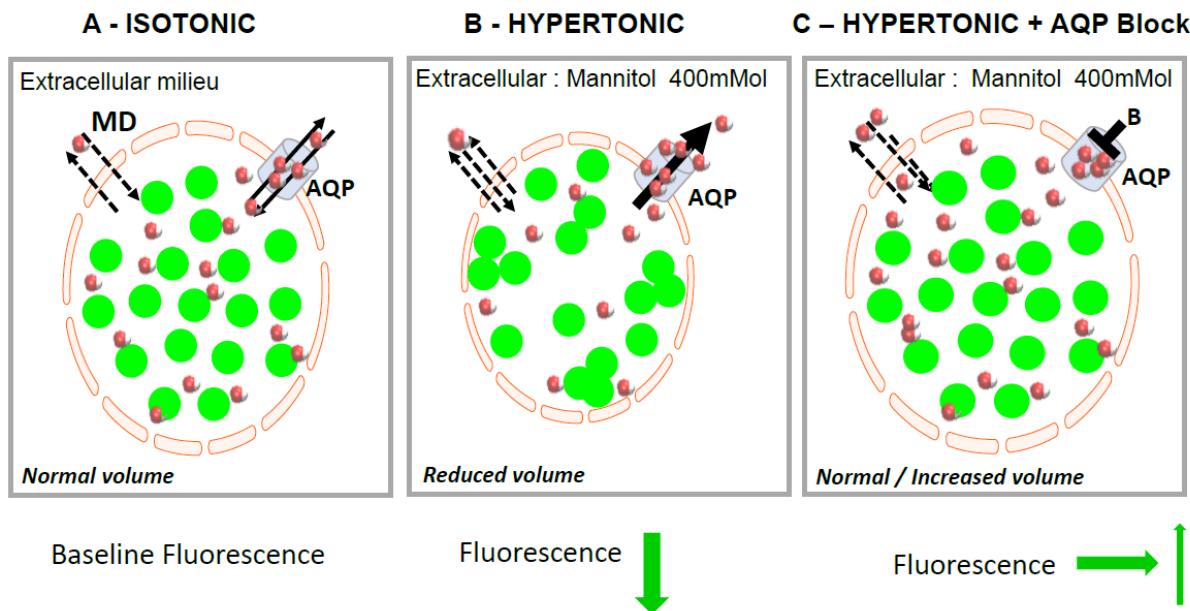
554 44. Neumann S, Claus M, Paschke R. Interactions between the extracellular domain and the
555 extracellular loops as well as the 6th transmembrane domain are necessary for TSH
556 receptor activation. *Eur J Endocrinol*. 2005;152(4):625-634.

557 45. Laugwitz KL, Allgeier A, Offermanns S, Spicher K, Van Sande J, Dumont JE, Schultz G.
558 The human thyrotropin receptor: a heptahelical receptor capable of stimulating members
559 of all four G protein families. *Proc Natl Acad Sci U S A*. 1996;93(1):116-120.

560 46. Morshed SA, Latif R, Davies TF. Characterization of thyrotropin receptor antibody-
561 induced signaling cascades. *Endocrinology*. 2009;150(1):519-529.

562 47. Kinoshita H, Ishii A, Hayakawa A, Yasuda M, Inoshita S, Yakushiji F. Severe
563 hypothyroidism associated with the degree of edema in a patient with nephrosis. *Clin Pract*.
564 2011;1(3):e78.

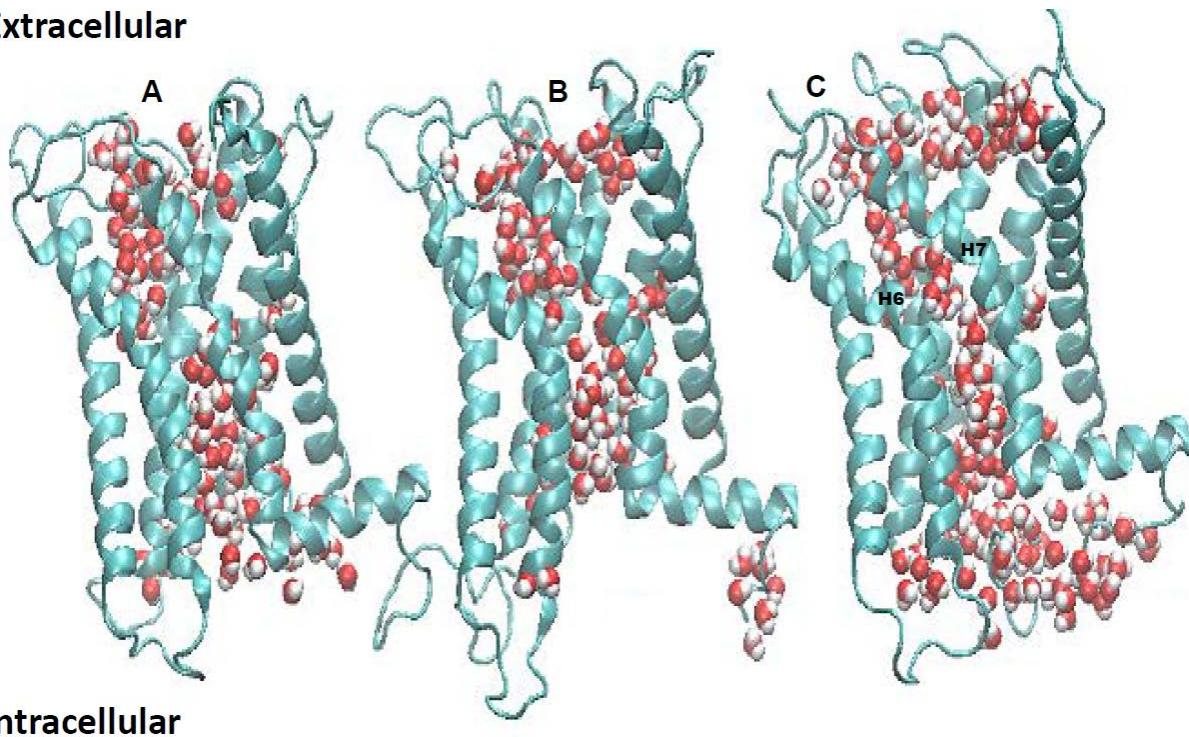
565 48. Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum
566 R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens
567 K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating
568 blood-hypothalamus barrier plasticity and energy homeostasis. *Ann N Y Acad Sci*. 2023.


569 49. Langlet F. Tanycytes: a gateway to the metabolic hypothalamus. *J Neuroendocrinol.*
570 2014;26(11):753-760.

571

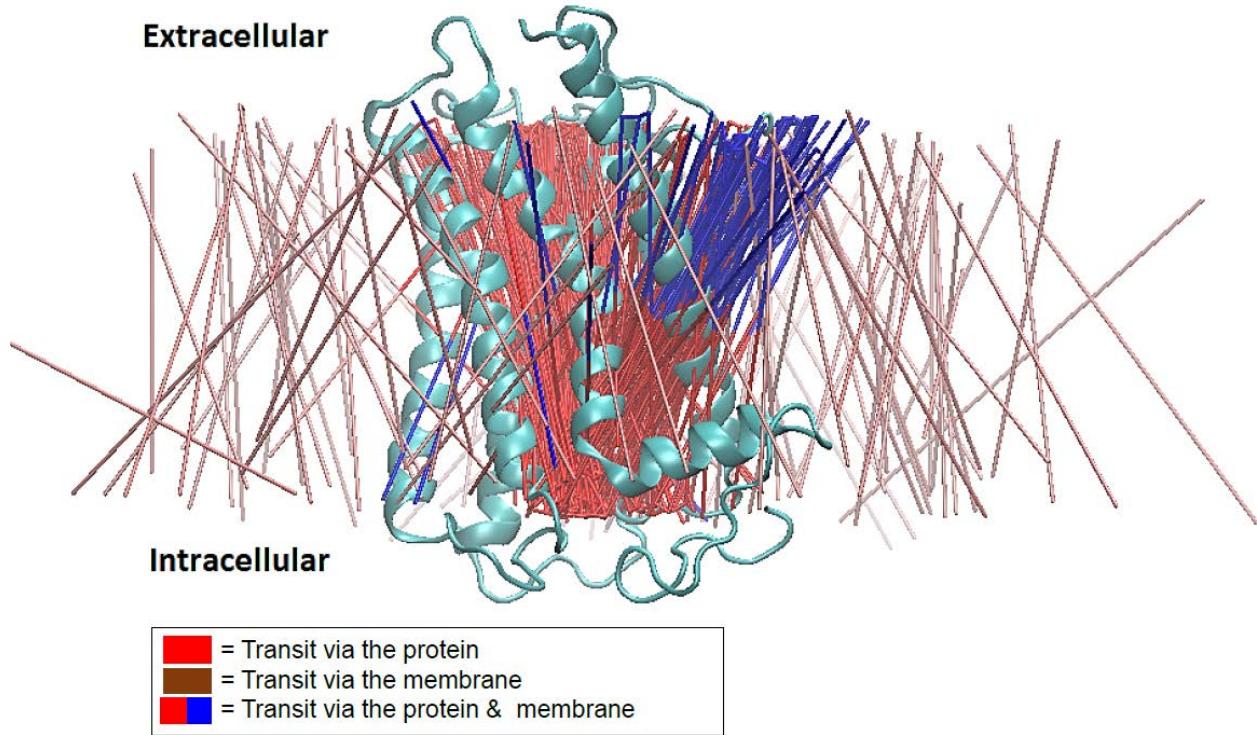
572 .

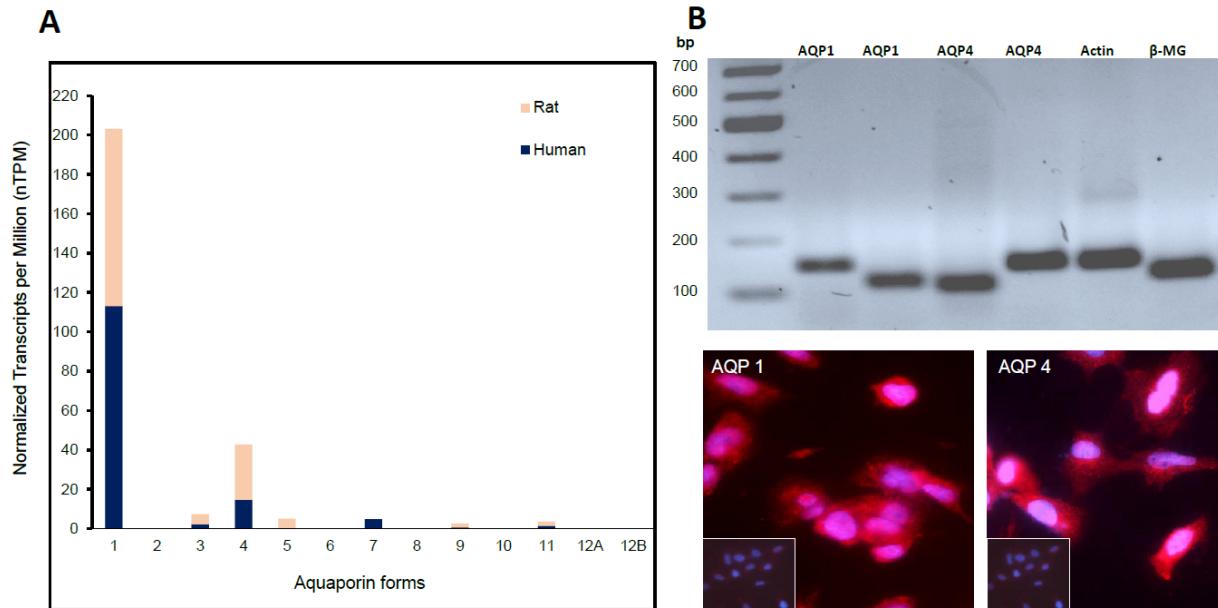
573 **Figures and Legends**


574

575
 576 **Figure 1: Measuring Cell Volume Changes Using the Calcein Quenching Assay**
 577
 578 Calcein becomes a fluorescent molecule within cells and its fluorescence is reduced as the
 579 calcein molecules aggregate together. In a short time scale, the concentration - dependent
 580 fluorescence of calcein can be used as a probe for studying cell volume changes. (A) Under
 581 isotonic conditions the cell maintains a normal volume and a basal calcein fluorescence. (B) Under
 582 induced hypertonic conditions caused by the addition of 400mM of D -mannitol to the extracellular
 583 milieu, water molecules transit out of the cell very actively via aquaporin channels (AQPs) and
 584 more slowly through cell membrane diffusion (MD) leading to a decrease in cell volume reflected
 585 by a decrease in calcein fluorescence as a result of increased aggregation of calcein molecules.
 586 (C) In the presence of chemical blockers of the AQPs, this water transit is stopped, and cells lose
 587 much less water molecules only by diffusing through the plasma membrane and this prevents a
 588 major decrease in volume and little change in fluorescence. MD = membrane diffusion, AQP =
 589 Aquaporins and B = Blocker

590

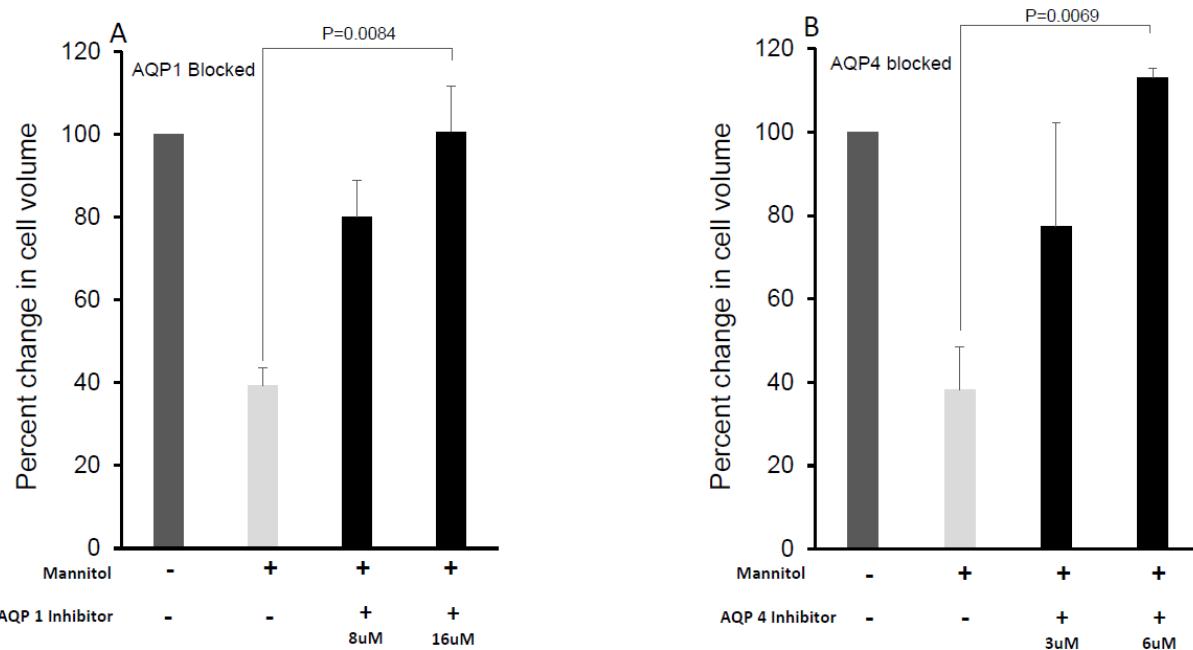

Extracellular



591
592
593
594
595 **Figure 2: Representation of Water Transit through the TSHR TMD**

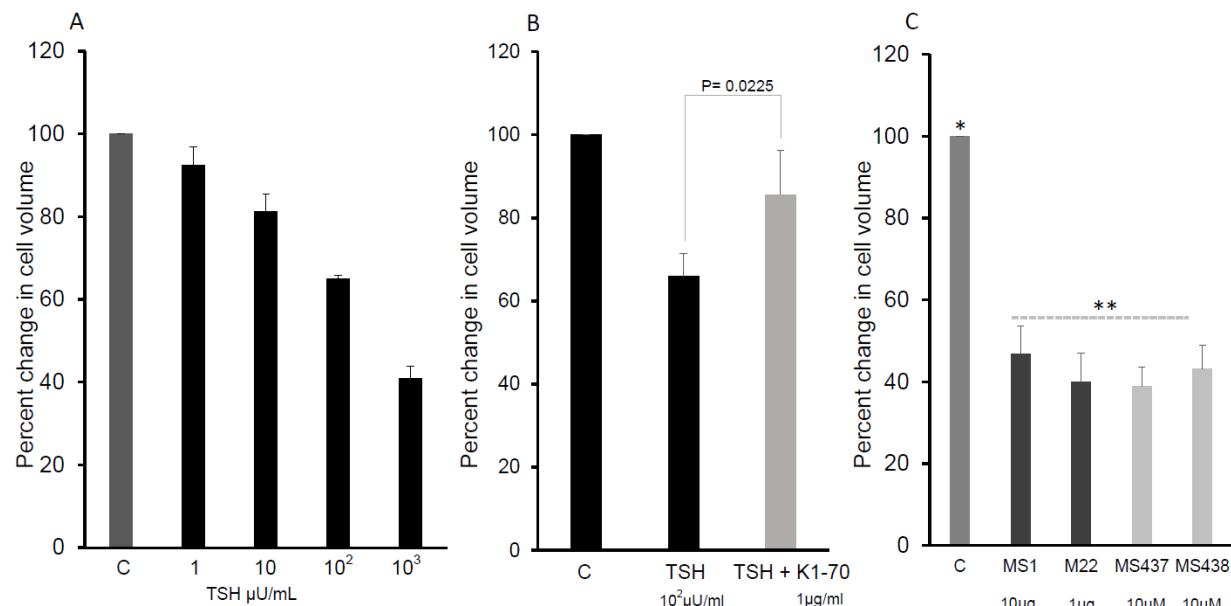
596 Shown are representative structures of the three clusters of the simulated trajectory in the
597 TRIO models (A, B and C) with the site waters shown in red. The waters represent generic sites
598 with occupancy > 0.3 for the three TRIO structures from the 600 ns MD simulation. The helices
599 of the TMD are shown in blue with water molecules represented by red oxygen and white hydrogen
600 atoms which trace a channel through the TSHR-TMD.

601



612
613
614 **Figure 4: Aquaporins Expressed in Thyrocytes**

615 Aquaporins represent the classical water transporting units found in most cells and which
616 are found in different isoforms. We identified and confirmed the major isoforms that are present
617 in thyrocytes. (A) The stack bars (black) are data extracted from the Human Protein Atlas
618 (<https://www.proteinatlas.org/>) for different aquaporin mRNAs present in thyroid tissue. The
619 beige colored bars represent similar data derived for rat thyroid tissue from the Rat Genome
620 database (<https://rgd.mcw.edu/>) These data demonstrated that AQP 1 and 4 are the major forms to
621 be found in thyroid cells. (B) Confirmation of the expression of AQP1 and AQP 4 was obtained
622 by PCR using two sets of primers for each aquaporin with actin and β microglubulin as positive
623 controls as shown the gel image. A 100base pair ladder is shown on the left. The lower images
624 are of FRTL5 cells grown on glass chamber slides and fixed in paraformaldehyde and then stained
625 with AQP1 and AQP4 rabbit polyclonal antibodies. The primary antibody was detected using anti
626 rabbit IgG conjugated


627

628
629630
631
632
633**Figure 5: Assessment Of Aquaporin Blockade In FRTL5 Cells**

In order to specifically examine TSHR water channel effects in vitro using the calcein assay we had to first assess the chemical blockade of aquaporin using inhibitor molecules. FRTL5 cells grown on clear bottom black 96 well plates were subjected to the calcein assay in the absence and presence of AQP1 and AQP 4 inhibitors. The data shown are the average of two experiments ($n=2$) and are shown as the percentage change in cell volume compared to the baseline control cells (100%) = No mannitol +No AQP Inhibitors. **(A & B)** Cells in the presence of mannitol and no inhibitor showed a 60% decrease in cell volume which was restored to normal levels with concentrations of $>IC_{50}$ of either AQP inhibitors showing good blockade of the primary aquaporins in these rat thyrocytes.

643
644
645

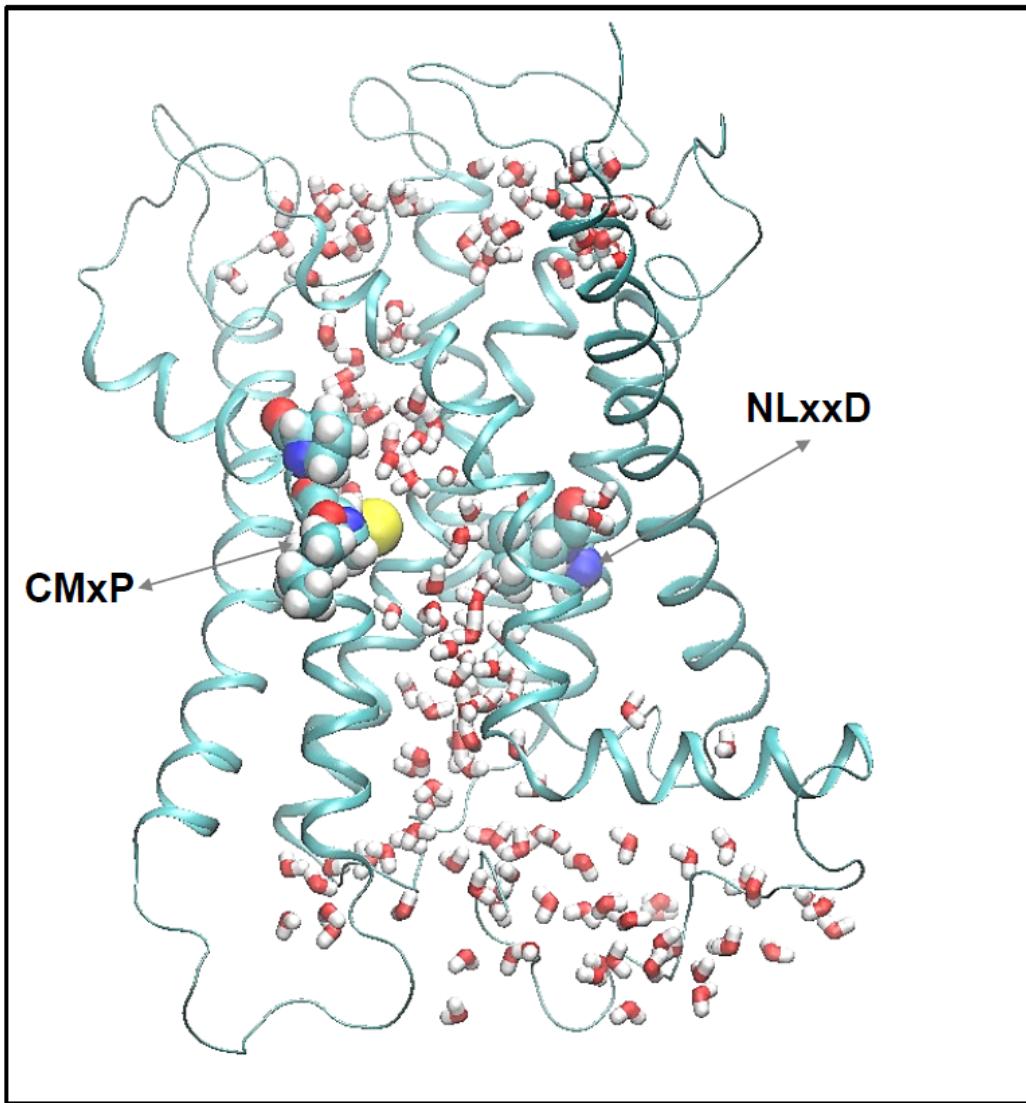
646

C = Control = Mannitol + Both AQP inhibitors = 100%

647

648

649 **Figure 6: Effect Of Ectodomain and Transmembrane Activation On Water Transport**


650 The TSHR can be activated by TSH or stimulating TSHR autoantibodies that bind to its large
 651 extracellular domain (ECD) and also by allosteric small molecule that bind to sites within the
 652 “binding pocket” of the TMD. Using the calcein fluorescence assay after blockade of AQPs 1 & 4,
 653 we tested the effect of increasing concentrations of TSH on water transit in FRTL5 cells deprived of
 654 TSH at different doses (**A**). This effect of TSH could be neutralized by adding a blocking antibody
 655 (**B**). Furthermore, we also tested stimulating monoclonal antibodies at their maximum effective dose
 656 and our previously described novel small molecule agonists (**C**)(25). A dose-response with TSH on
 657 cell volume changes was observed with 10² and 10³ μU/mL of TSH with significant reductions in
 658 cell size of 40-60%. Similar changes were seen with two stimulating TSHR monoclonal antibodies
 659 and with our TSHR agonist molecules MS437 and MS 438.

660

661

662

663

664

665

666

667 Figure 7: TSHR Activation Motif within Water Channel

668

The amino acid sequences of GPCRs are known to show some highly conserved motifs

669

which are involved in receptor activation via the TMD. The NLxxxD motif in TM2 and the CWxP

670

motif in TM6 are such motifs present in the TSHR-TMD structure. On mapping the water channel

671

to these motifs we observed that the route of water transit is in close proximity to both of these

672

motifs as shown in these lateral images of the TSHR TMD with helices in blue and motif residues

673

represented by the enlarged residues in yellow, red and blue.

674
675
676**Table 1: Depth of ion entries into the TSHR-TMD and lipid bilayer**

677

Depth / Å	TSHR-TMD, intra-cellular entry		TSHR-TMD, extra-cellular entry		Lipid bilayer	
	K ⁺	Cl ⁻	K ⁺	Cl ⁻	K ⁺	Cl ⁻
> 0	122	14	265	629	5853	1027
> 2	50	4	74	159	4150	283
> 4	24	0	17	5	2540	72
> 6	8	0	0	0	1342	15
> 8	1	0	0	0	547	4
> 10	0	0	0	0	150	0
> 12	0	0	0	0	26	0
> 14	0	0	0	0	5	0
> 16	0	0	0	0	3	0
> 18	0	0	0	0	0	0

678

679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698

699
700
701
702703 **Table 2: Number of membrane transits of different types**

TRANSIT TYPE	FL TSHR (-TSH)	FL TSHR (+TSH)	TMD	TMD (scaled)
	2000 ns	2000 ns	600 ns	2000 ns
TSHR Protein	4,948±415	11,411±1162*	202±31	673
Lipid bilayer	293±31	632±28	88±15	293
Memb:TSHR	220±40	380±77	41±17	136
TSHR:Memb	205±194	414±68	39±11	129

FL = Full length, TMD= transmembrane domain, * ±TSH – p < 0.0001

704

705

706

707

708

709

710

711

712

713

714

715 **Table 3: Average number of waters actually inside the TMD enhanced by TSH**

716

	TSHR (2000 ns)		TSHR-TSH (2000 ns)		TMD (300 ns)	
CV _{min}	<N _w >	Range	<N _w >	Range	<N _w >	Range
0.85	55.4±12.6	[20,97]	107.1±13.1	[75,158]	55.7±11.7	[15,85]
0.87	43.5±11.9	[16,85]	78.1±18.7	[34,146]	49.4±11.0	[12,75]

717

718 CV_{min} = the circular variance threshold used to filter the waters

719

720 N_w = Number of waters

721

722

723 **List of Supplementary Materials**

724

725 **Supplementary Figure S1:** Cell shrinkage induced by TSH in CHO:TSHR cells

726

727 **Supplementary Table S1:** Premade primer pairs employed

728