

1 **Title: Substrate Binding and Inhibition of the Anion Exchanger 1 Transporter**

2 **Author List**

3 Michael J. Capper^{1,7}, Shifan Yang^{2,3,7}, Alexander C. Stone^{2,3,7}, Sezen Vatansever^{2,3},
4 Gregory Zilberg⁴, Yamuna Kalyani Mathiharan^{1,4}, Raul Habib¹, Keino Hutchinson¹,
5 Yihan Zhao^{1,2}, Avner Schlessinger^{1,5}, Mihaly Mezei¹, Roman Osman¹, Bin
6 Zhang^{1,2,3,4,5,6}, and Daniel Wacker^{1,4,*}

7 **Affiliations**

8 ¹Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai,
9 New York, New York 10029

10 ² Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
11 Sinai, One Gustave L. Levy Place, New York, NY 10029, USA

12 ³Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at
13 Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA

14 ⁴Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New
15 York 10029

16 ⁵Windreich Department of Artificial Intelligence and Human Health, Icahn School of
17 Medicine at Mount Sinai, New York, New York 10029

18 ⁶Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New
19 York 10029

20 ⁷These authors contributed equally: Michael J. Capper, Shifan Yang, and Alexander C.
21 Stone

22 *Correspondence: daniel.wacker@mssm.edu

23

24

25 **Abstract:** Anion Exchanger 1 (AE1), a member of the Solute Carrier (SLC) family, is the
26 primary bicarbonate transporter in erythrocytes, regulating pH levels and CO₂ transport
27 between lungs and tissues. Previous studies characterised its role in erythrocyte
28 structure, and provided insight into transport regulation. However, key questions remain
29 regarding substrate binding and transport, mechanisms of drug inhibition, and
30 modulation by membrane components. Here we present seven cryo-EM structures in
31 apo, bicarbonate-, and inhibitor-bound states. These, combined with uptake and
32 computational studies, reveal important molecular features of substrate recognition and
33 transport, and illuminate sterol binding sites, to elucidate distinct inhibitory mechanisms
34 of research chemicals and prescription drugs. We further probe the substrate binding
35 site via structure-based ligand screening, identifying a AE1-inhibitor. Together, our
36 findings provide insight into mechanisms of SLC transport and inhibition..

37

38

39 **Main Text:**

40 **Introduction**

41 Anion exchanger 1 (AE1), or SLC4A1, is one of nine bicarbonate transporters in the
42 SLC4 family of membrane proteins that help regulate cellular pH in virtually all tissues.

43 AE1 is a critical transporter in erythrocytes where it shuttles CO₂ between lungs and
44 other tissues via bicarbonate transport and contributes to the structural integrity of
45 erythrocytes through interactions with the cytoskeleton¹. AE1's extracellular surface
46 binds antibodies of the Diego antigen system, a blood group of 21 antigens that can
47 cause potentially fatal hemolytic disease of the newborn². Antibodies produced by the
48 mother can bind epitopes on AE1, thereby attacking erythrocytes of the fetus or the
49 newborn³. Other mutations can disrupt AE1 structure and/or transport resulting in red
50 blood cell deformities and kidney diseases such as renal acidosis, due to the
51 transporter's role in renal proton secretion^{4,5}.

52 AE1 consists of an N-terminal cytoplasmic domain (cdAE1), which binds the
53 cytoskeleton, and a C-terminal membrane domain (mdAE1), which mediates substrate
54 transport. AE1 is thought to serve as a hub in the periphery of the erythrocyte plasma
55 membrane, forming complexes with enzymes and effectors involved in a variety of
56 erythrocyte biology^{6,7}. Recent structures of the ankyrin complex have uncovered much
57 of the overall architecture of this complex within the erythrocyte membrane, revealing
58 detailed interactions with rhesus proteins, glycophorins, and even the water channel
59 aquaporin-1^{8,9}. By comparison however, mdAE1, the functional site of electroneutral Cl⁻
60 /HCO₃⁻ exchange, remains poorly understood. mdAE1 contains an anion binding site
61 which can accommodate HCO₃⁻ and Cl⁻, but also other ions such as sulfate or oxalate⁵.
62 The precise nature of the binding site and the molecular details about how different
63 residues coordinate the distinct ions are still unknown⁴. Furthermore, a diverse
64 collection of chemical compounds, including several clinical drugs, has been shown to

65 inhibit AE1, but the distinct mechanisms by which these compounds inhibit AE1 have
66 been limited to early NMR studies of substrate binding^{5,10-13}.

67 Although several studies have provided insight into the roles of specific residues
68 in the transport and inhibition of the transporter, key questions regarding inhibitory
69 modes and their molecular mechanisms remain. Answers have been elusive due to the
70 absence of high-resolution structural insight into AE1, which has been limited to a low-
71 resolution crystal structure of mdAE1 bound to a stilbene inhibitor¹⁴, as well as several
72 ankyrin complex structures in the apo state^{8,9}.. Herein, we report seven AE1 cryo-EM
73 structures at resolutions ranging between 2.95-3.37 Å. Our studies not only allow for the
74 unambiguous characterization of how lipids, sterols, substrates, and inhibitors bind to
75 the ion-transporting AE1 membrane domain, but lead to the generation of a AE1
76 inhibitor series using structure-based ligand discovery.

77

78 **Results**

79 ***Structure Determination of full-length human AE1***

80 Cryo-EM studies were carried out using the full length human AE1 purified from Sf9
81 insect cells, and complexed with inhibitors, substrate, or in the “apo” state (Extended
82 Data Figure 1-4, Table 1) (see methods for details). Core areas of the structures reach
83 local resolutions as high as 2.5 Å, as calculated by local resolution estimation in
84 cryoSPARC, and reveal distinct lipid and sterol binding sites (Figure 1, Extended Data
85 Figure 1A-B).

86 Our structures conform with known SLC4 architecture; two AE1 protomers form a
87 homodimeric complex, with each protomer made up of 14 transmembrane helices that
88 can be divided into a gate and a core domain (Figure 1B). We observe the AE1
89 outward-facing state as has previously been observed for this and related
90 transporters^{8,9,14-16}. The overall structural conformation of AE1 from Sf9 cells generated
91 protein is near indistinguishable from that isolated from erythrocytes (Extended Data
92 Figure 1B), and just like previous structures from native purification now reveal the
93 complete extracellular surface of the transporter. As seen before, we observe ordered
94 extracellular loop regions, particularly extracellular loop 3, which is not stabilized by
95 either disulfides or secondary structure elements (Figure 1). We also observe
96 glycosylation of N642, which, in agreement with previous studies¹⁷, does not appear to
97 play an architectural or functional role in AE1 or the AE1-Glycophorin complex⁸. While
98 we do observe density for the cytosolic N-terminal domain (Figure 1A), the resolution is
99 too low to unambiguously fit previous structural data into our map¹⁸. The complete
100 structure of the extracellular surface presented here allows us to map the position and
101 architecture of all Diego blood group antigens located on AE1 (Extended Data Figure
102 1C, Extended Data Table 1)¹⁹, detailing the molecular architecture of the epitopes
103 targeted in various hemolytic diseases^{2,3,20}.

104 We also observe density for multiple lipids and sterols in our structures. Two
105 phospholipids appear bound within the dimer interface between mdAE1 protomers, with
106 the head groups interacting with the extracellular side of AE1 (Figure 1B, Extended
107 Data Figure 1B). This configuration is well in line with lipids bound to similar sites in the
108 AE1-Glycophorin complex and demonstrates their tight binding, being present in

109 multiple detergent solubilized structures. We were also able to unambiguously identify
110 up to four cholesterol molecules per protomer in our AE1 structures. These findings are
111 noticeably different from the AE1-Glycophorin complex structure, which only appears to
112 contain two cholesterol molecules bound to each protomer. What's perhaps most striking is that a
113 cholesterol molecule only observed in our structure is located at the interface of the gate
114 and core domain between TM1 and TM7 (Figure 1B, Extended Data Figure 1B). Since
115 substrate translocation relies on relative movements of these domains, cholesterol
116 binding to this site could allosterically modulate the conformational changes required for
117 transport and explain the inhibitory effect of cholesterol on AE1 reported by multiple
118 groups²¹⁻²³.

119 ***Elucidation of the AE1 Bicarbonate Binding Site***

120 To better understand the substrate binding mechanism and how ions are coordinated in
121 the binding site, we determined structures of “apo” and bicarbonate-bound AE1 (Figure
122 2, Extended Data Figure 2). “Apo” refers to AE1 purified in the presence of 100 mM
123 chloride, the structure of which does not show any density for chloride near the
124 presumed anion binding site or elsewhere. We suspect that the chloride concentration is
125 insufficient to saturate the binding site. In contrast, AE1 purified in the presence of 100
126 mM sodium bicarbonate in a chloride-free buffer (see methods) showed strong electron
127 density attributed to bicarbonate (Extended Data Figure 5A). To our knowledge, our
128 near-atomic resolution structure is the first structure of any human SLC4 transporter to
129 reveal the precise binding site of a substrate. In both “apo” and bicarbonate-bound
130 structures, AE1 appears in the outward-facing state as observed in all previous SLC4
131 structures, with a channel-like cavity that connects the extracellular site to a positively

132 charged cation selectivity filter/anion binding site near the ends of TM3 and TM10
133 (Figure 2)^{4,24}. Density for bicarbonate is located near R730, which has previously been
134 implicated in transport^{4,14,24}, and the coordination of bicarbonate in AE1's binding pocket
135 is reminiscent of that of uracil bound to the SLC26 UraA transporter (Extended Data
136 Figure 5B)²⁵ and distinct from sodium bicarbonate bound to rat NDCBE (SLC4A8)
137 (Extended Data Figure 5C-D)¹⁶. The negatively charged bicarbonate ion is bound in a
138 small 23 Å³ pocket less than 3 Å from the R730's side chain, indicating a strong ionic
139 interaction (Figure 2). We observe weaker interactions between bicarbonate and
140 backbone amide bonds in TM10, which was suggested as a positive dipole that can
141 provide binding sites for anions⁴. Estimating the relative binding energy contributions of
142 nearby residues in AMBER²⁶ suggests that bicarbonate does not interact with residues
143 at the N-terminal end of TM3, the other proposed dipole of the anion binding site
144 (Extended Data Table 2). Moreover, while the R730 sidechain is the key anchor,
145 backbone interactions with T727, T728, and V729 contribute substantially to
146 bicarbonate binding. Using Simulated Annealing of Chemical Potential (SACP)
147 simulations²⁷ (Extended Data Figure 2E), we computationally estimate an apparent
148 bicarbonate K_D of 1.6 mM for this site, which is similar to flux studies in erythrocytes that
149 estimated a K_D of 2 mM²⁸, and NMR studies that estimated a K_D of 5.4 mM¹³.

150 Located just below the bicarbonate binding site within mdAE1, we observe a
151 cavity formed by TM5, TM8, TM10, and TM12 between the core and gate domains of
152 AE1 (Extended Data Figure 2F). This cavity is lined with two serines and constrained by
153 R694 at the cytoplasmic side. These properties and the proximity to bicarbonate
154 suggest that this cavity could expand to become part of a putative substrate exit tunnel

155 in an inward-facing state. In fact, our SACP simulations identify a second bicarbonate
156 binding site in which the anion binds to R694 and S525 (Extended Data Figure 2E),
157 providing further evidence for this proposed exit path.

158 ***Molecular mechanisms of transport inhibition***

159 To investigate the structural basis of how different compounds inhibit SLC4-mediated
160 substrate transport, we next determined several structures of AE1 bound to different
161 inhibitors including two clinical drugs (Figure 3, Extended Data Figure 6).

162 *Inhibition through competition for substrate binding*

163 The stilbene compound H₂DIDS (4,4'-Diisothiocyanato-2,2'-
164 dihydrostilbenedisulfonic Acid) was used to obtain the previously published mdAE1
165 structure and appears to be covalently linked to both K539 in TM5 and K851 in TM13¹⁴.
166 According to previous studies, both lysines are covalently bound at 37°C and pH 9.5,
167 while lower pH prevented linkage of K851²⁹. Due to some poorly defined electron
168 density in the lower resolution mdAE1-H₂DIDS crystal structure¹⁴, there indeed remains
169 some ambiguity regarding the bond with K851. We thus investigated transporter binding
170 by stilbene inhibitors and determined sub-3 Å structures of AE1-DIDS and AE1-H₂DIDS
171 formed under lesser alkaline conditions (pH 9, 22°C)(Extended Data Figure 1A, 3A).
172 DIDS and H₂DIDS differ only by reduction of the central double bond, thus allowing us
173 to examine whether steric hindrance would affect AE1 crosslinking. Structures of both
174 AE1-DIDS and AE1-H₂DIDS show covalent binding to K539 only, while K851 appears to
175 form ionic interactions with the stilbene's sulfonic acid group (Figure 3A-B, Extended
176 Data Figures 6B-D). These findings indicate that the previously reported rapid and

177 reversible inhibition of SLC4 transporters by DIDS/H₂DIDS³⁰ could be due to ionic
178 interactions with both lysines as observed here for K851. We further reason that harsher
179 conditions than we used are required to weaken these interactions and facilitate
180 covalent binding to K851, indicating a higher pKa value for K851 as suggested⁴.

181 When compared with apo and bicarbonate-bound AE1, DIDS and H₂DIDS are
182 located in the access channel leading from the extracellular space to the buried anion
183 binding site. We further observe that one of the stilbene's sulfonic acid groups is located
184 less than 4 Å from the bicarbonate ion (Figure 3F). These findings indicate that DIDS
185 and H₂DIDS likely compete with bicarbonate binding through charge repulsion, as there
186 remains sufficient space to bind ions. Our findings thereby provide a structural
187 explanation for NMR studies that showed that DIDS reduces substrate affinity¹⁰. It
188 should be noted that previous studies investigated the substrate Cl⁻, not bicarbonate,
189 but competition of both anions for the same site indicates a common or similar binding
190 site¹³.

191 We next determined a 3.07 Å structure of AE1 treated with diethyl pyrocarbonate
192 (DEPC) (Extended Data Figure 3B), which has been reported to inhibit transport and
193 stilbene binding by stabilizing an inward-facing conformation via covalent modification of
194 H834^{31,32}. Surprisingly, our AE1-DEPC structure shows an outward-facing state, with no
195 electron density accounting for a modified H834 side chain. Compared to apo, we
196 instead observe that DEPC covalently modifies K539 and K851 (Extended Data Figure
197 6E-H), indicating that modification of K851, rather than H834, might be an alternative
198 explanation for the increased mass of an AE1 fragment observed in previous work³¹.
199 Our observations, therefore, suggest that DEPC-mediated modification of K539 and

200 K851 sidechains sterically precludes H₂DIDS binding rather than stabilizing an inward-
201 facing state³². It should be noted, however, that previous work was done by treating
202 ghost membranes for 30 minutes, compared to our use treatment of detergent-
203 solubilized AE1 overnight. We are thus unable to rule out whether this discrepancy
204 could be due to the exposure of different AE1 states, or different reactivities of the side
205 chains involved.

206 *Inhibition through substrate channel blocking*

207 While DIDS reduces anion affinity¹⁰, other inhibitors have been described to only block
208 access to the transport site¹¹. One such inhibitor is the FDA-approved antiplatelet
209 medicine Dipyridamole, which has been shown to block AE1 substrate channels whilst
210 not competing for anion binding¹¹. To elucidate the different mechanisms by which
211 stilbenes and Dipyridamole inhibit transport, we determined a 3.13 Å structure of AE1-
212 Dipyridamole (Figure 3C, Extended Data Figure 4A, 6I). This structure reveals that the
213 drug occupies a similar site as DIDS and H₂DIDS in the outward-facing transporter
214 conformation. Specifically, Dipyridamole stretches between the core and gate domain,
215 where it forms hydrogen bonds with a backbone carbonyl in TM5 and S856 of TM3.
216 One of the piperidine rings appears to stack in the dipole region between TM3 and
217 TM10 towards E681 and closer to TM3. However, Dipyridamole binding lacks the
218 charge repulsion provided by the sulfonic acid group of the stilbene compounds, which
219 likely explains why the compound does not compete for anion binding¹¹ (Figure 3G).

220 *Inhibition of translocation*

221 Niflumic Acid (NIF), an analgesic and anti-inflammatory drug used in the treatment of
222 rheumatoid arthritis, is a voltage-gated chloride channel inhibitor³³ that has previously
223 been shown to inhibit AE1 substrate transport through a mechanism distinct from DIDS,
224 H₂DIDS, or Dipyridamole¹². Specifically, studies have shown that NIF does not affect
225 substrate affinity or access to the binding site, but instead inhibits transport by
226 preventing transition between outward- and inward-facing states¹². To investigate the
227 molecular basis for this distinct pharmacology, we determined a 3.18 Å cryo-EM
228 structure of AE1-NIF (Extended Data Figure 4B). Consistent with a different mechanism
229 of action, we observe NIF bound to a different site than H₂DIDS, DIDS, and
230 Dipyridamole (Figure 3D, Extended Data Figure 7). NIF appears to be accommodated
231 in a 138 Å³-sized pocket between the core and gate domains formed by TM3, TM8,
232 TM13, and TM14 (Extended Data Figure 7E), which overlaps only partially with
233 Dipyridamole's binding pose and the non-attached isothiocyanate groups of
234 DIDS/H₂DIDS (Figure 3). We also performed molecular docking, which provides further
235 support for NIF's unexpected binding pose and location (Extended Data Figure 7B). NIF
236 appears to be anchored by a salt bridge between its carboxylate group and K851,
237 potentially explaining the mutually exclusive inhibition of AE1 by NIF and SITS³⁴, a
238 DIDS analog. In addition, the compound is wedged tightly between P467 in TM3 and
239 L859 in TM14 causing structural rearrangements to accommodate the compound. We
240 note subtle outward movements of the solvent-exposed tips of TM13 and TM14, as well
241 as changes in F524, L859, and K851 (Extended Data Figure 7D). Despite inhibiting
242 transport akin to DIDS/H₂DIDS, NIF does not seem to obstruct access to the
243 bicarbonate binding pocket (Figure 3H). Our structure thus suggests that NIF binding

244 between the AE1 gate and core domains prevent translocation-related changes, while
245 not interfering with substrate binding¹². This mechanism is related to our proposal that
246 cholesterol binding between gate and core domains similarly inhibits relative
247 movements required for AE1-mediated transport.

248 ***Structure-based discovery of a AE1 inhibitor series***

249 To further probe AE1's molecular mechanisms and explore therapeutic avenues for AE1
250 related pathologies such as renal acidosis or several morphological erythrocyte
251 disorders^{4,5}, better tool compounds are a necessity. Towards this goal, we sought to
252 harness our structural data in proof-of-principle studies to generate chemicalAE1
253 modulators using structure-based ligand discovery. Accordingly, we docked a virtual
254 library of 2.4 million molecules from the ZINC "Lead-Like" subset
255 (<http://zinc15.docking.org>) against the substrate binding site in our Apo AE1 and DIDS-
256 bound structures (Figure 4A-B) (see methods for details). We used Maestro of the
257 Schrödinger package to perform a three-step virtual screening³⁵, and visually inspected
258 the 1,000 top scoring molecules for docking artefacts to select compounds for
259 experimental testing³⁶. A curated subset of 22 compounds was then experimentally
260 tested in a cellular bicarbonate uptake assay validated with H₂DIDS, DIDS, and NIF
261 (Figure 4A). Using NIF as a positive control, we found that one of the tested leads,
262 compound 22, exhibited strong inhibition of transport at 50 µM (Figure 4C). We next
263 performed concentration response experiments to determine apparent inhibitory
264 potencies of compound 22 and NIF in bicarbonate uptake. Accordingly, compound 22
265 exhibits an apparent IC₅₀ of 18 µM (pIC₅₀=4.746±0.049) similar to NIF's apparent IC₅₀ of
266 15 µM (pIC₅₀=4.823±0.064) (Figure 4D). To our knowledge, this is the first report of

267 NIF's apparent inhibitory potency in AE1-mediated bicarbonate transport, and it directly
268 validates our approach that this comparatively shallow and solvent accessible site is
269 indeed tractable using structure-based drug discovery methodology. Moreover, we
270 expand into previously untapped chemical space for AE1, as compound 22 is
271 chemically dissimilar to the other herein characterized AE1 inhibitors with the highest
272 Tanimoto coefficient of 0.34 compared to NIF.

273 Compound 22 contains a trifluoromethyl benzene group, as found in NIF, and a
274 benzenesulfonamide, which is reminiscent of the benzenesulfonic acid groups in DIDS
275 and H₂DIDS (Figure 4D). The docking pose, however, indicates that these groups do
276 not form the same interactions with AE1 that are observed for NIF and the stilbene
277 inhibitors (Figure 3, 4D). Given the comparable potency relative to known AE1 inhibitors
278 such as NIF, we reasoned that compound 22 has potential for subsequent development
279 into AE1 probes. To further validate this scaffold as a bona fide AE1 inhibitor and test its
280 potential for optimization, we tested 24 commercially available analogs at 20 μ M
281 compound concentration - the approximate apparent IC₅₀ of compound 22 (Extended
282 Data Figure 8). To our surprise, we observe that the majority, 18 of the 24 compounds
283 tested, reduce AE1-mediated bicarbonate transport at 20 μ M (Extended Data Figure
284 5A), validating the potential of this scaffold for future optimization. For instance,
285 concentration response experiments show that replacing the trifluoromethyl benzene
286 with aliphatic trifluoromethyl groups entirely disrupts inhibition, which was also observed
287 when the sulfonamide and ethyl substituents were exchanged for a methylacetate
288 (Extended Data Figures 8B, 8D). In contrast, adding a branching methyl group to the
289 aliphatic chain (IC₅₀=14 μ M, pIC₅₀=4.857±0.063), as well as removing the trifluoromethyl

290 substituent ($IC_{50}=25\text{ }\mu\text{M}$, $pIC_{50}=4.598\pm0.090$) or replacing it with a methylacetate
291 ($IC_{50}=14\text{ }\mu\text{M}$, $pIC_{50}=4.851\pm0.078$), resulted in apparent potencies comparable to that of
292 compound 22 (Extended Data Figures 8B, 8C). Together, our studies not only identify a
293 chemical AE1 inhibitor with comparable potency to the clinically used drug NIF, but
294 further validate the potential of this scaffold for future optimization using rational and
295 targeted medicinal chemistry. This work thus serves as a foundation for the generation
296 of potent and transporter selective probes to explore both fundamental AE1
297 mechanisms and therapeutic applications.

298

299 **Discussion**

300 We herein report seven high-resolution cryo-EM structures of the human AE1
301 transporter bound to substrate and multiple different drugs, and discover and analyze a
302 AE1 inhibitor series. We elucidate the Diego blood group antigens associated with
303 severe hemolytic diseases, and identify several bound lipids and sterols, whose effects
304 on AE1 structure and function have not been fully known^{22,37,38}. Contrasting previous
305 studies, we only observe cholesterol bound on membrane-facing surfaces²². Similar to
306 previous work⁸, we also observe lipids bound to the dimer interface which has been
307 proposed to stabilize and regulate the structure-function of the transporter²². While our
308 findings are in line with previous work extracting AE1 from human erythrocytes⁸, it
309 should be noted that we obtained protein heterologously expressed in *Sf9* insect cells.

310 At global resolutions ranging from 2.95 to 3.37 Å, we also show how the
311 substrate bicarbonate binds to AE1, and structurally characterize how chemically and

312 pharmacologically distinct inhibitors differentially affect both substrate binding and
313 transport (Figure 5). Based on structures, uptake assays, and computational studies, we
314 propose that R730 forms the center of the anion binding site and holds the anion in
315 place with low millimolar affinity before conformational transition and substrate
316 translocation. This conclusion is supported by the drastic physiological effects of R730
317 mutations on anion transport, such as R730C, which causes overhydrated cation leak
318 stomatocytosis in humans³⁹. We do, however, further suggest that interactions with
319 nearby backbone atoms in TM8 are critical for efficient binding of the substrate, and we
320 suspect that other substrates such as oxalate, sulfate and other anions may form
321 distinct interactions in the vicinity of R730. For instance, we observe that E681 is
322 located approximately 5-6 Å from the bicarbonate ion, but its protonation is critical for
323 efficient transport of divalent sulfate⁴⁰. Sulfate could thus conceivably be bound closer to
324 E681 in the outward-facing state, or conformational transitions between different states
325 bring the anions in closer proximity to E681. Both cases would require protonation of
326 this residue to prevent prohibitory repulsive forces. This residue was further suggested
327 to form an anomalous interaction with S725R, a mutation causing anemia and renal
328 acidosis through loss of AE1 transport function⁴¹. Our structure provides further
329 evidence for this suggestion, since S725 is located more than 9 Å from the bicarbonate
330 ion, making a direct effect on anion binding in the outward facing state unlikely. Our
331 observed bicarbonate binding site is distinct from that of a related but mechanistically
332 different sodium-dependent bicarbonate transporter NDCBE (SLC4A8)¹⁶ (Extended
333 Data Figure 6C-D), but is similar to that predicted computationally using MD
334 simulations⁴².

335 Analysis of our structures in the context of other transporter structures provides
336 intriguing insights into AE1's transport mechanisms, which have remained largely
337 elusive. When compared to a previous SLC4 borate transporter structure from *A.*
338 *thaliana* (AtBor1)⁴³, our findings strongly suggest that AE1 transports bicarbonate via an
339 elevator mechanism (Figure 5), as proposed in previous studies^{44,45}. The well-ordered
340 EL3 and lipids facilitating dimerization²² argue for a stationary gate domain that is
341 consistent with an elevator mechanism, but not e.g. a rocker-switch model⁴⁶, and has
342 been described as a common feature of oligomeric elevator transporters⁴⁷.
343 Superposition of AE1 with the AtBor1 structure shows that the gate domains align well,
344 while the AtBor1 core domain appears shifted downward (Figure 5A-B). TM3 and TM10,
345 which form the AE1 bicarbonate binding site, move downwards by about 5-7 Å, and
346 TM10 bends away from the gate domain, thus likely releasing bound substrate towards
347 the intracellular site. This is further supported by a cytoplasmic exit channel in AtBor1
348 that connects to the AE1 bicarbonate binding site even before translocation of AE1's
349 core domain. A cavity we observe in our AE1 structures (Extended Data Figures 5E-F)
350 overlaps well with this channel, and likely expands into a substrate exit channel during
351 substrate translocation. In fact, our studies suggest that R694 located at the cytoplasmic
352 exit could form a second bicarbonate binding site. Our studies suggest that this site is
353 accessible from the cytoplasm in the outward facing state (Extended Data Figures 5E-
354 F), and could explain the auto-inhibitory role of bicarbonate at high concentrations,
355 where anions bind to an intracellular site and prevent outward-to-inward translocation⁴⁸.
356 Further evidence for our transport model comes from a cholesterol bound
357 between the core and gate domain at the interface of TM1 and TM7 (Figure 1B), which

358 conceivably prevents translocation-related conformational changes and thereby
359 explains the inhibitory effects of cholesterol^{21,23}. Indeed, structural studies of the
360 elevator transporter ASCT2 noted relocation of bound cholesterol molecules could be
361 exploited to develop allosteric binders with inhibitory activity⁴⁹.

362 Similarly, the binding sites of NIF, Dipyridamole, as well as DIDS and H₂DIDS are
363 all located between the core and gate domain and thus likely also share the prevention
364 of relative domain movements necessary for AE1 transport. However, our structures
365 also uncover drug-specific binding locations and residue interactions that explain their
366 distinct effects on substrate binding and diffusion between the extracellular space and
367 the anion binding site. Overall, our studies suggest a general ‘ping-pong’ exchange
368 mechanism in which bicarbonate or chloride share a binding site¹³ and one ion is
369 transported one way, before the counterion is transported the opposite way and AE1 is
370 returned to its resting state⁵⁰.

371 To initiate the development of selective and potent AE1 inhibitor compounds, we
372 performed high throughput docking experiments against the newly characterized
373 bicarbonate binding site, leading to the discovery of a AE1 inhibitor series (Figure 4,
374 Extended Data Figure 8). These experiments not only confirm the druggability of this
375 particular binding site, but also provide conceptual proof that our structures can be
376 utilized to discover lead molecules against AE1 binding sites. In the future, we aim to
377 develop AE1-selective molecules with different modalities, targeting different binding
378 surfaces. These tools will be invaluable towards a further dissection of AE1’s molecular
379 mechanisms, such as investigating distinct conformational states. Such probes will also

380 enable inquiries into AE1's tractability as a drug target in the treatment of e.g.
381 stomatocytosis, renal acidosis, and other AE1-linked disorders.

382 The herein presented work not only reveals mechanisms of AE1-mediated substrate
383 binding and transport, but also likely translates to the similar SLC23 and SLC26 anion
384 transporter families. Going beyond basic AE1 function, we also illuminate the different
385 pharmacological mechanisms by which distinct research compounds and clinically used
386 drugs such as Niflumic acid and Dipyridamole inhibit transport. In fact, the antiplatelet
387 medication Dipyridamole binds to AE1 under physiological conditions⁵¹⁻⁵³, which
388 facilitates healthy red blood cell circulation⁵⁴ likely via AE1's role in shaping erythrocyte
389 structure⁵⁵.

390 Given AE1's physiological importance in erythrocytes structure and pH regulation, CO₂
391 transport, and acid secretion in the kidney, our structural insights thus have potential
392 implications for human health and disease. Moreover, our molecular insights have
393 already enabled the generation of a AE1 inhibitor, which showcases a path towards
394 generating pharmacological tools to study distal renal tubular acidosis, hemolytic
395 anemias, and other AE1-associated pathologies.

396

397 **Acknowledgements**

398 This work was supported by NIH grant GM133504, a Sloan Research Fellowship in
399 Neuroscience, an Edward Mallinckrodt, Jr. Foundation Grant, a McKnight Foundation
400 Scholars Award (all to D.W.), NIH T32 Training Grant GM062754 and DA053558 (G.Z.),
401 R01 GM108911 (A.Sch. and K.H.), NIH Grant U01AG046170 (B.Z.), NIH Grant

402 RF1AG057440 (B.Z.), NIH Grant R01AG068030 (B.Z.). NIH Grants R01DK073681,
403 R01DK067555, R01DK061659 (R.O). Some of this work was performed at the National
404 Center for cryo-EM Access and Training (NCCAT) and the Simons Electron Microscopy
405 Center located at the New York Structural Biology Center, supported by the NIH
406 Common Fund Transformative High Resolution Cryo-Electron Microscopy program
407 (U24 GM129539,) and by grants from the Simons Foundation (SF349247) and NY State
408 Assembly. We further acknowledge cryo-EM resources at the National Resource for
409 Automated Molecular Microscopy located at the New York Structural Biology Center,
410 supported by grants from the Simons Foundation (SF349247), NYSTAR, and the NIH
411 National Institute of General Medical Sciences (GM103310) with additional support from
412 Agouron Institute (F00316) and NIH (OD019994). For additional data collection we are
413 also grateful to staff at the Laboratory for BioMolecular Structure (LBMS), which is
414 supported by the DOE Office of Biological and Environmental Research (KP160711).
415 This work was supported in part through the computational resources and staff
416 expertise provided by Scientific Computing at the Icahn School of Medicine at Mount
417 Sinai. We would also like to thank J. F. Fay for help with initial data processing.

418

419 **Author Contributions**

420 M.J.C. designed experiments, expressed and purified protein for grid freezing, collected
421 data, refined structures, and edited the manuscript. S.Y. and A.S. purified protein,
422 prepared samples for grid freezing, established and performed functional assays, and
423 edited the manuscript. S.V. performed molecular docking calculations with help from
424 Y.Z., and helped analyze the structures. G.Z. prepared grids for structure determination

425 and assisted with data collection, processing, and refinement. Y.K.M. helped with data
426 processing and structure refinement. R.H. helped establish protein expression and
427 purification. K.H. performed volume calculations. A.Sch. supervised docking and volume
428 calculation experiments and helped write the paper. R.O. performed molecular
429 simulations and SACP analysis of substrate binding with help from M.M. B.Z.
430 contributed to the study design and supervised computational studies. D.W. designed
431 experiments, analysed the data, supervised the overall project and management, and
432 wrote the manuscript.

433

434

435 **Competing Interests**

436 The authors declare no competing interests

437

438 **Table 1 | Cryo-EM data collection, refinement and validation statistics.**

	AE1- Apo (EMD-26165) (PDB 7TY4)	AE1- Bicarbonate (EMD-26168) (PDB 7TY7)	AE1- DIDS (EMD-41082) (PDB 8T6V)	AE1- H₂DIDS (EMD-26167) (PDB 7TY6)	AE1- DEPC (EMD-26171) (PDB 7TYA)	AE1- Dipyridamole (EMD-41081) (PDB 8T6U)	AE1- NIF (EMD-26169) (PDB 7TY8)
Data collection and processing							
Magnification	64,000	64,000	81,000	64,000	81,000	64,000	64,000
Voltage (kV)	300	300	300	300	300	300	300
Electron exposure (e ⁻ /Å ²)	51.85	59.99	52.09	51.85	51.18	51.69	59.99
Defocus range (μm)	-0.5 to -1.8	-0.5 to -1.8	-0.5 to -1.8	-0.5 to -1.8	-0.5 to -1.8	-0.5 to -1.8	-0.5 to -1.8
Pixel size (Å)	1.076	1.076	1.083	1.076	1.083	1.076	1.076
Symmetry imposed	C2	C2	C2	C2	C2	C2	C2
Initial particle images (no.)	4357888	2660401	9728456	2460255	3156841	4488247	2977492
Final particle images (no.)	238474	173471	914784	267008	191625	270791	79981
Map resolution (Å)	2.99	3.37	2.95	2.98	3.07	3.13	3.18
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143	0.143
Map sharpening B-factor (Å ²)	-150.0	-150.4	-187.0	-121.2	-128.7	-115.3	-107.4
Local resolution range (Å)	2.5-45.6	3.0-50.5	2.5-10.1	2.5-40.9	2.7-36.2	2.7-28.2	2.7-51.5
Refinement							
Model composition							
Non-hydrogen atoms	8665	8584	8686	8728	8674	8647	8578
Protein residues	1032	1034	1032	1032	1028	1032	1032
Ligands	14	15	16	16	16	16	16
R.m.s. deviations							
Bond lengths (Å)	0.014	0.013	0.025	0.013	0.027	0.010	0.013
Bond angles (°)	1.644	1.637	1.731	1.644	1.966	1.370	1.649
Validation							
Clashscore	3.32	2.71	2.36	3.03	3.28	5.69	3.10
Poor rotamers (%)	0.49	1	0.33	1.44	0.22	0	1.89
Ramachandran plot							
Favored (%)	95.02	94.43	97.07	94.82	96.05	97.07	95.8
Allowed (%)	4.98	5.57	2.93	5.18	3.95	2.73	4.20
Disallowed (%)	0	0	0	0	0	0.2	0

440 **Figure Legends**

441 **Fig. 1 | Cryo-EM structure of full length human AE1/SLC4A1. A**, Cryo-EM density of
442 overall AE1 homodimer and detergent micelle (grey), overlaid with density of the
443 membrane domain of AE1 (mdAE1, light blue). Glycosylation sites are highlighted in
444 green, and the crystal structure of cytoplasmic domain (cdAE1, PDB ID: 1HYN)¹⁸
445 homodimer (yellow/orange) is loosely fit into density. Dotted lines highlight that the loop
446 connecting cdAE1 and mdAE1 termini is in a different position from non-covalent
447 contacts observed between the domains. **B**, mdAE1 structure (light blue) including
448 bound phospholipids (purple) and cholesterol (yellow), glycosylation sites (green), and
449 water molecules (red spheres). Gate and core domains of one of the protomers has
450 been highlighted in tv blue and palecyan, respectively. Presumed inhibitory cholesterol
451 located between domains is encircled in red.

452

453 **Fig. 2 | Structural insight into bicarbonate binding at AE1. A**, Extracellular view of
454 mdAE1 homodimer (top) and cut site view of monomer (bottom). Gate and core
455 domains are shown in tv blue and palecyan, and bound bicarbonate is shown in green.
456 **B-C**, Close-up of anion binding site in apo and bicarbonate bound AE1 structures with
457 highlighted key residues. **D**, Calculation of bicarbonate binding site volume and surface
458 using POVME3⁵⁶. **E**, Extracellular view of mdAE1 colored by charge distribution
459 highlighting positively (blue) and negatively charged surfaces (red).

460

461 **Fig. 3 | Structure of AE1 bound to chemically and pharmacologically diverse
462 inhibitors. A**, Previous mdAE1-H₂DIDS crystal structure (PDB ID: 4YZF)¹⁴ showing
463 likely covalent binding of H₂DIDS (magenta) to K539 and K851. Cryo-EM structures of
464 AE1 bound to DIDS (**B**), Dipyridamole (**C**), NIF (**D**), or Apo state (**E**) reveal the binding
465 location and pose of inhibitors (magenta). Overlay with bicarbonate (green) bound AE1
466 structure shows that DIDS (**F**) and Dipyridamole (**G**) restrict access to anion binding
467 site, while NIF (**H**) binds in a different location and leaves access to anion binding site

468 unobstructed. Ionic interactions and hydrogen bonds are shown as dotted lines. Gate
469 and core domains are shown in tv blue and palecyan.

470

471 **Fig. 4 | Structure-based discovery of a chemical AE1 inhibitor.** **A**, Measurement of
472 cellular bicarbonate uptake in an inducible Flp-In T-REx 293 Cell Line, via cellular pH
473 increase in response to AE1-mediated bicarbonate transport. AE1-specific activity was
474 determined as pH differences measured after 1 min of uptake between uninduced and
475 induced cells. H₂DIDS (20 μ M followed by washout), DIDS (20 μ M followed by
476 washout), and NIF (50 μ M) show statistically significant AE1 inhibition. Uptake
477 experiments were performed with 2-6 technical repeats and are averaged from 3
478 independent experiments (n=3). Data are represented as mean \pm s.e.m. Statistical
479 significance was determined via one-way ANOVA (Dunnett's Multiple Comparison);
480 ***P<0.0001, ****P<0.0001; P=0.0002400 (H₂DIDS), P= 0.0000070 (DIDS), P=
481 0.0000005 (NIF). **B**, 3.7 million purchasable compounds from the ZINC library were
482 docked against the herein defined substrate binding site (orange mesh) of the apo and
483 DIDS-bound AE1 structures. **C**, 22 compounds were experimentally tested for inhibitory
484 activity, and compound 22 shows inhibitory activity at 50 μ M in a single dose
485 experiment. Uptake experiments were performed with 2-6 technical repeats and are
486 averaged from 3 independent experiments (n=3). Data are represented as mean \pm s.e.m.
487 Statistical significance was determined via one-way ANOVA (Dunnett's Multiple
488 Comparison); ****P<10⁻¹⁴. **D**, Chemical structure and docking pose of compound 22
489 from virtual screening. Compound and transporter are shown in violet and grey,
490 respectively, and hydrogen bonds, salt bridges and pi-cation interactions are indicated
491 as yellow dashes. Concentration response experiments reveal comparable inhibitory
492 potencies of compound 22 (IC₅₀=18 μ M, pIC₅₀=4.746 \pm 0.049) and NIF (IC₅₀=15 μ M,
493 pIC₅₀=4.823 \pm 0.064). Apparent potencies are calculated as IC₅₀ (mean) and pIC₅₀
494 (mean \pm s.e.m). Uptake experiments were performed in triplicates and are averaged from
495 4 independent experiments (n=4), and data are represented as mean \pm s.e.m.

496

497 **Fig. 5 | Model of AE1-mediated bicarbonate transport and diverse mechanisms of**
498 **AE1 transport inhibition by pharmacologically different drugs. A**, Overlay of
499 membrane domains of human AE1 and AtBor1 from *A. thaliana* (purple) showing similar
500 gate conformations, while the core domains appear in different states. Cytoplasmic view
501 of the overlay reveals a channel in AtBor1 that overlaps with the putative anion exit
502 channel in AE1 ending near R694, and connecting the AE1 bicarbonate binding site and
503 the cytosol. **B**, Overlay of AE1 and AtBor1 anion binding sites suggests an elevator
504 mechanism where the core domain moves towards the cytoplasmic site (black arrows)
505 and TM10 kinks away from the gate domain (black arrow) to release substrates towards
506 the cytoplasm (dashed arrows). **C**, Schematic illustrating AE1-mediated bicarbonate
507 (orange) transport, as well as pharmacological differences between the inhibitors
508 DIDS/H₂DIDS, Dipyridamole, and Niflumic Acid (magenta). Note, all tested inhibitors
509 prevent translocation-related relative movements of gate and core domains, which are
510 shown in tv blue and palecyan.

511

512 **References**

513 1 Elgsaeter, A., Stokke, B. T., Mikkelsen, A. & Branton, D. The molecular basis of erythrocyte
514 shape. *Science* **234**, 1217-1223, doi:10.1126/science.3775380 (1986).

515 2 Poole, J. The Diego blood group system-an update. *Immunohematology* **15**, 135-143 (1999).

516 3 Levine, P., Robinson, E. A., Layrisse, M., Arends, T. & Domingues Sisco, R. The Diego blood factor. *Nature* **177**, 40-41, doi:10.1038/177040b0 (1956).

517 4 Reithmeier, R. A. *et al.* Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. *Biochim Biophys Acta* **1858**, 1507-1532, doi:10.1016/j.bbamem.2016.03.030 (2016).

518 5 Jennings, M. L. Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. *Am J Physiol Cell Physiol* **321**, C1028-C1059, doi:10.1152/ajpcell.00275.2021 (2021).

519 6 Kodippili, G. C. *et al.* Analysis of the mobilities of band 3 populations associated with ankyrin protein and junctional complexes in intact murine erythrocytes. *J Biol Chem* **287**, 4129-4138, doi:10.1074/jbc.M111.294439 (2012).

520 7 Thornell, I. M. & Bevensee, M. O. Regulators of Slc4 bicarbonate transporter activity. *Front Physiol* **6**, 166, doi:10.3389/fphys.2015.00166 (2015).

521 8 Vallese, F. *et al.* Architecture of the human erythrocyte ankyrin-1 complex. *Nat Struct Mol Biol* **29**, 706-718, doi:10.1038/s41594-022-00792-w (2022).

522 9 Xia, X., Liu, S. & Zhou, Z. H. Structure, dynamics and assembly of the ankyrin complex on human red blood cell membrane. *Nat Struct Mol Biol* **29**, 698-705, doi:10.1038/s41594-022-00779-7 (2022).

533 10 Falke, J. J. & Chan, S. I. Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. *Biochemistry* **25**, 7888-7894, doi:10.1021/bi00372a015 (1986).

534 11 Falke, J. J. & Chan, S. I. Molecular mechanisms of band 3 inhibitors. 2. Channel blockers. *Biochemistry* **25**, 7895-7898, doi:10.1021/bi00372a016 (1986).

535 12 Falke, J. J. & Chan, S. I. Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. *Biochemistry* **25**, 7899-7906, doi:10.1021/bi00372a017 (1986).

536 13 Galanter, W. L. & Labotka, R. J. The binding of nitrate to the human anion exchange protein (AE1) studied with ¹⁴N nuclear magnetic resonance. *Biochim Biophys Acta* **1079**, 146-151, doi:10.1016/0167-4838(91)90119-k (1991).

537 14 Arakawa, T. *et al.* Crystal structure of the anion exchanger domain of human erythrocyte band 3. *Science* **350**, 680-684, doi:10.1126/science.aaa4335 (2015).

538 15 Huynh, K. W. *et al.* CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. *Nat Commun* **9**, 900, doi:10.1038/s41467-018-03271-3 (2018).

539 16 Wang, W. *et al.* Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. *Nat Commun* **12**, 5690, doi:10.1038/s41467-021-25998-2 (2021).

540 17 Casey, J. R., Pirraglia, C. A. & Reithmeier, R. A. Enzymatic deglycosylation of human Band 3, the anion transport protein of the erythrocyte membrane. Effect on protein structure and transport properties. *J Biol Chem* **267**, 11940-11948 (1992).

541 18 Zhang, D., Kiyatkin, A., Bolin, J. T. & Low, P. S. Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. *Blood* **96**, 2925-2933 (2000).

542 19 Figueroa, D. The Diego blood group system: a review. *Immunohematology* **29**, 73-81 (2013).

543 20 Daniels, G. L. *et al.* Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens. *Vox Sang* **87**, 304-316, doi:DOI 10.1111/j.1423-0410.2004.00564.x (2004).

544 21 Schubert, D. & Boss, K. Band 3 protein-cholesterol interactions in erythrocyte membranes. Possible role in anion transport and dependency on membrane phospholipid. *FEBS Lett* **150**, 4-8, doi:10.1016/0014-5793(82)81295-7 (1982).

545 22 Kalli, A. C. & Reithmeier, R. A. F. Interaction of the human erythrocyte Band 3 anion exchanger 1 (AE1, SLC4A1) with lipids and glycophorin A: Molecular organization of the Wright (Wr) blood group antigen. *PLoS Comput Biol* **14**, e1006284, doi:10.1371/journal.pcbi.1006284 (2018).

546 23 Gregg, V. A. & Reithmeier, R. A. Effect of cholesterol on phosphate uptake by human red blood cells. *FEBS Lett* **157**, 159-164, doi:10.1016/0014-5793(83)81137-5 (1983).

547 24 Zhu, Q. & Casey, J. R. The substrate anion selectivity filter in the human erythrocyte Cl-/HCO₃⁻ exchange protein, AE1. *J Biol Chem* **279**, 23565-23573, doi:10.1074/jbc.M401380200 (2004).

548 25 Lu, F. *et al.* Structure and mechanism of the uracil transporter UraA. *Nature* **472**, 243-246, doi:10.1038/nature09885 (2011).

549 26 AMBER 2020 (University of California, San Francisco, University of California, San Francisco, 2020).

550 27 Guarnieri, F. & Mezei, M. Simulated annealing of chemical potential: A general procedure for locating bound waters. Application to the study of the differential hydration propensities of the major and minor grooves of DNA. *J Am Chem Soc* **118**, 8493-8494, doi:DOI 10.1021/ja961482a (1996).

551 28 Knauf, P. A., Law, F. Y., Leung, T. W., Gehret, A. U. & Perez, M. L. Substrate-dependent reversal of anion transport site orientation in the human red blood cell anion-exchange protein, AE1. *Proc Natl Acad Sci U S A* **99**, 10861-10864, doi:10.1073/pnas.162402399 (2002).

579 29 Okubo, K., Kang, D., Hamasaki, N. & Jennings, M. L. Red blood cell band 3. Lysine 539 and lysine
580 851 react with the same H2DIDS (4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonic acid)
581 molecule. *J Biol Chem* **269**, 1918-1926 (1994).

582 30 Lu, J. & Boron, W. F. Reversible and irreversible interactions of DIDS with the human
583 electrogenic Na/HCO₃ cotransporter NBCe1-A: role of lysines in the KKM_{IK} motif of TM5. *Am J*
584 *Physiol Cell Physiol* **292**, C1787-1798, doi:10.1152/ajpcell.00267.2006 (2007).

585 31 Jin, X. R., Abe, Y., Li, C. Y. & Hamasaki, N. Histidine-834 of human erythrocyte band 3 has an
586 essential role in the conformational changes that occur during the band 3-mediated anion
587 exchange. *Biochemistry* **42**, 12927-12932, doi:10.1021/bi0350809 (2003).

588 32 Izuhara, K., Okubo, K. & Hamasaki, N. Conformational change of band 3 protein induced by
589 diethyl pyrocarbonate modification in human erythrocyte ghosts. *Biochemistry* **28**, 4725-4728,
590 doi:10.1021/bi00437a032 (1989).

591 33 Liantonio, A. *et al.* Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly
592 inhibiting the CLC-1 channel and by increasing intracellular calcium. *Br J Pharmacol* **150**, 235-
593 247, doi:10.1038/sj.bjp.0706954 (2007).

594 34 Cousin, J. L. & Motais, R. Inhibition of anion permeability by amphiphilic compounds in human
595 red cell: evidence for an interaction of niflumic acid with the band 3 protein. *J Membr Biol* **46**,
596 125-153, doi:10.1007/BF01961377 (1979).

597 35 Friesner, R. A. *et al.* Glide: a new approach for rapid, accurate docking and scoring. 1. Method
598 and assessment of docking accuracy. *J Med Chem* **47**, 1739-1749, doi:10.1021/jm0306430
599 (2004).

600 36 Carlsson, J. *et al.* Ligand discovery from a dopamine D3 receptor homology model and crystal
601 structure. *Nature Chemical Biology* **7**, 769-778, doi:10.1038/nchembio.662 (2011).

602 37 Maneri, L. R. & Low, P. S. Structural stability of the erythrocyte anion transporter, band 3, in
603 different lipid environments. A differential scanning calorimetric study. *J Biol Chem* **263**, 16170-
604 16178 (1988).

605 38 Maneri, L. R. & Low, P. S. Fatty acid composition of lipids which copurify with band 3. *Biochem
606 Biophys Res Commun* **159**, 1012-1019, doi:10.1016/0006-291x(89)92209-2 (1989).

607 39 Stewart, A. K. *et al.* Functional characterization and modified rescue of novel AE1 mutation
608 R730C associated with overhydrated cation leak stomatocytosis. *Am J Physiol Cell Physiol* **300**,
609 C1034-1046, doi:10.1152/ajpcell.00447.2010 (2011).

610 40 Jennings, M. L. & Smith, J. S. Anion-proton cotransport through the human red blood cell band 3
611 protein. Role of glutamate 681. *J Biol Chem* **267**, 13964-13971 (1992).

612 41 Yang, E. *et al.* A Ser725Arg mutation in Band 3 abolishes transport function and leads to anemia
613 and renal tubular acidosis. *Blood* **131**, 1759-1763, doi:10.1182/blood-2018-01-827725 (2018).

614 42 Zhekova, H. R. *et al.* Identification of multiple substrate binding sites in SLC4 transporters in the
615 outward-facing conformation: Insights into the transport mechanism. *J Biol Chem* **296**, 100724,
616 doi:10.1016/j.jbc.2021.100724 (2021).

617 43 Thrtle-Schmidt, B. H. & Stroud, R. M. Structure of Bor1 supports an elevator transport
618 mechanism for SLC4 anion exchangers. *Proc Natl Acad Sci U S A* **113**, 10542-10546,
619 doi:10.1073/pnas.1612603113 (2016).

620 44 Ficici, E., Faraldo-Gomez, J. D., Jennings, M. L. & Forrest, L. R. Asymmetry of inverted-topology
621 repeats in the AE1 anion exchanger suggests an elevator-like mechanism. *J Gen Physiol* **149**,
622 1149-1164, doi:10.1085/jgp.201711836 (2017).

623 45 Kalli, A. C. & Reithmeier, R. A. F. Organization and Dynamics of the Red Blood Cell Band 3 Anion
624 Exchanger SLC4A1: Insights From Molecular Dynamics Simulations. *Front Physiol* **13**, 817945,
625 doi:10.3389/fphys.2022.817945 (2022).

626 46 Colas, C., Ung, P. M. & Schlessinger, A. SLC Transporters: Structure, Function, and Drug
627 Discovery. *Medchemcomm* **7**, 1069-1081, doi:10.1039/C6MD00005C (2016).

628 47 Garaeva, A. A. & Slotboom, D. J. Elevator-type mechanisms of membrane transport. *Biochem
629 Soc Trans* **48**, 1227-1241, doi:10.1042/BST20200290 (2020).

630 48 Gasbjerg, P. K. & Brahm, J. Kinetics of bicarbonate and chloride transport in human red cell
631 membranes. *J Gen Physiol* **97**, 321-349, doi:10.1085/jgp.97.2.321 (1991).

632 49 Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the
633 human neutral amino acid transporter ASCT2. *Nat Commun* **10**, 3427, doi:10.1038/s41467-019-
634 11363-x (2019).

635 50 Gunn, R. B. & Frohlich, O. Asymmetry in the mechanism for anion exchange in human red blood
636 cell membranes. Evidence for reciprocating sites that react with one transported anion at a
637 time. *J Gen Physiol* **74**, 351-374, doi:10.1085/jgp.74.3.351 (1979).

638 51 Bjornsson, T. D. & Mahony, C. Clinical pharmacokinetics of dipyridamole. *Thromb Res Suppl* **4**,
639 93-104, doi:10.1016/0049-3848(83)90364-x (1983).

640 52 Legrum, B. & Passow, H. Inhibition of inorganic anion transport across the human red blood cell
641 membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate
642 binding site on the band 3 protein. *Biochim Biophys Acta* **979**, 193-207, doi:10.1016/0005-
643 2736(89)90435-5 (1989).

644 53 Offman, E. *et al.* Pharmacokinetics and pharmacodynamics of the antiplatelet combination
645 aspirin (acetylsalicylic acid) plus extended-release dipyridamole are not altered by
646 coadministration with the potent CYP2C19 inhibitor omeprazole. *Am J Cardiovasc Drugs* **13**, 113-
647 120, doi:10.1007/s40256-013-0018-3 (2013).

648 54 Saniabadi, A. R. *et al.* Dipyridamole increases human red blood cell deformability. *Eur J Clin
649 Pharmacol* **42**, 651-654, doi:10.1007/BF00265931 (1992).

650 55 Gimsa, J. & Ried, C. Do band 3 protein conformational changes mediate shape changes of
651 human erythrocytes? *Mol Membr Biol* **12**, 247-254, doi:10.3109/09687689509072424 (1995).

652 56 Wagner, J. R. *et al.* POVME 3.0: Software for Mapping Binding Pocket Flexibility. *J Chem Theory
653 Comput* **13**, 4584-4592, doi:10.1021/acs.jctc.7b00500 (2017).

654 57 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved
655 cryo-electron microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

656 58 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
657 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
658 doi:10.1038/nmeth.4169 (2017).

659 59 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron
660 micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).

661 60 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves
662 single-particle cryo-EM reconstruction. *Nat Methods* **17**, 1214-1221, doi:10.1038/s41592-020-
663 00990-8 (2020).

664 61 Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure
665 refinement and map calculation using Servalcat. *Acta Crystallogr D Struct Biol* **77**, 1282-1291,
666 doi:10.1107/S2059798321009475 (2021).

667 62 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and
668 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877,
669 doi:10.1107/S2059798319011471 (2019).

670 63 The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).

671 64 Sanematsu, K. *et al.* Intracellular acidification is required for full activation of the sweet taste
672 receptor by miraculin. *Sci Rep* **6**, 22807, doi:10.1038/srep22807 (2016).

673 65 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for
674 CHARMM. *J Comput Chem* **29**, 1859-1865, doi:10.1002/jcc.20945 (2008).
675 66 Mezei, M. Simulaid: a simulation facilitator and analysis program. *J Comput Chem* **31**, 2658-
676 2668, doi:10.1002/jcc.21551 (2010).
677 67 Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand
678 preparation: parameters, protocols, and influence on virtual screening enrichments. *J Comput
679 Aided Mol Des* **27**, 221-234, doi:10.1007/s10822-013-9644-8 (2013).
680 68 Lyne, P. D., Lamb, M. L. & Saeh, J. C. Accurate prediction of the relative potencies of members of
681 a series of kinase inhibitors using molecular docking and MM-GBSA scoring. *J Med Chem* **49**,
682 4805-4808, doi:10.1021/jm060522a (2006).
683 69 Sterling, T. & Irwin, J. J. ZINC 15--Ligand Discovery for Everyone. *J Chem Inf Model* **55**, 2324-
684 2337, doi:10.1021/acs.jcim.5b00559 (2015).
685 70 Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and Testing of the OPLS All-
686 Atom Force Field on Conformational Energetics and Properties of Organic Liquids. *J Am Chem
687 Soc* **118**, 11225-11236, doi:10.1021/ja9621760 (1996).
688 71 Friesner, R. A. *et al.* Extra precision glide: docking and scoring incorporating a model of
689 hydrophobic enclosure for protein-ligand complexes. *J Med Chem* **49**, 6177-6196,
690 doi:10.1021/jm051256o (2006).
691 72 Schlessinger, A. *et al.* Structure-based discovery of prescription drugs that interact with the
692 norepinephrine transporter, NET. *Proc Natl Acad Sci U S A* **108**, 15810-15815,
693 doi:10.1073/pnas.1106030108 (2011).
694 73 Adams, D. J. Grand Canonical Ensemble Monte-Carlo for a Lennard-Jones Fluid. *Mol Phys* **29**,
695 307-311, doi:Doi 10.1080/00268977500100221 (1975).
696

697 **Methods**

698 Construct and Expression

699 Structural studies reported herein were performed with the full-length human AE1
700 transporter (UniprotKB-P02730), which was cloned into a modified pFastBac vector to
701 introduce a C-terminal 3C protease cleavage site followed by a 10xHis tag. Bacmid
702 DNA was generated in DH10Bac cells (Invitrogen) and protein was expressed in Sf9
703 cells (Expression Systems, Cat No.: 94-001S) using the Bac-to-Bac Baculovirus
704 expression system (Invitrogen). ~2.5 µg recombinant bacmid DNA and 3 µl FuGENE
705 HD Transfection reagent (Promega) in 100 µl Sf900 II media (Invitrogen) were added to
706 500,000 Sf9 cells plated in 2 ml of SF900 II media in wells of a 12-well plate. After 5

707 days at 27 °C the supernatant was harvested as P0 viral stock, and high-titer
708 recombinant P1 baculovirus ($>10^9$ viral particles per ml) was obtained by adding 200 μ l
709 P0 to 40 ml of 3×10^6 cells/ml and incubating cells for 3 days while shaking at 27 °C.
710 Titers were determined by flow cytometric analysis staining P1 infected cells with gp64-
711 PE antibody (Expression Systems, Cat No: 97-201) using a 1:200 dilution of antibody in
712 phosphate-buffered saline to stain cells. Expression of AE1 for structural studies was
713 carried out by infection of Sf9 cells at a cell density of $2-3 \times 10^6$ cells/ml with P1 virus at
714 MOI (multiplicity of infection) of 5. After 48 hrs of shaking at 27 °C, cells were harvested
715 by centrifugation at 48 h post-infection and stored at -80 °C until use.

716

717 Protein purification and grid preparation

718 Typically, we purified protein from ~ 3 L of expression culture to prepare grids for cryo-
719 EM experiments. Insect cell membranes were disrupted by thawing frozen cell pellets in
720 a hypotonic buffer containing 10 mM HEPES pH 7.5, 10 mM MgCl₂, 20 mM KCl and
721 home-made protease inhibitor cocktail (500 μ M AEBSF, 1 μ M E-64, 1 μ M Leupeptin,
722 150 nM Aprotinin) (Gold Biotechnology). Total cellular membranes were harvested by
723 ultracentrifugation, and extensively washed by repeated (2-4 times) homogenization
724 and centrifugation in a high osmotic buffer containing 1 M NaCl, 10 mM HEPES pH 7.5,
725 10 mM MgCl₂, 20 mM KCl and home-made protease inhibitor cocktail. Purified
726 membranes were directly flash-frozen in liquid nitrogen and stored at -80 °C until further
727 use.

728 Purified membranes were resuspended in buffer containing 10 mM HEPES pH 7.5, 10
729 mM MgCl₂, 20 mM KCl, 150 mM NaCl, home-made protease inhibitor cocktail, and 25
730 μM DIDS or H₂DIDS, or 100 μM Dipyridamole or Niflumic Acid for the different AE1-
731 inhibitor complexes. Complexation was initiated by agitation for 1 hr at room
732 temperature, a step that was skipped for the AE1 “apo”, AE1-bicarbonate and AE1-
733 DEPC samples. Prior to solubilization, membranes were equilibrated at 4 °C and
734 incubated for 30 min in the presence of 2 mg/ml iodoacetamide (Sigma). Membranes
735 were then solubilized in 10 mM HEPES, pH 7.5, 150 mM NaCl, 1% (w/v) n-dodecyl-β-D-
736 maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholestryl hemisuccinate (CHS,
737 Anatrace), inhibitor, and home-made protease inhibitor cocktail for 2 h at 4 °C.
738 Unsolubilized material was removed by centrifugation at 200,000 × g for 30 min, and
739 buffered imidazole was added to the supernatant for a final concentration of 20 mM.
740 Proteins were bound to TALON IMAC resin (Clontech) overnight at 4 °C. Purification of
741 the Dipyridamole and NIF bound complex was carried out in the presence of 50 μM
742 inhibitor and the bicarbonate bound complex was purified in the presence of 100 mM
743 sodium bicarbonate. The resin was then washed with 10 column volumes (cv) of Wash
744 Buffer I (25 mM HEPES, pH 7.5, 500 mM NaCl, 0.1% (w/v) DDM, 0.02% (w/v) CHS, 20
745 mM imidazole, 10% (v/v) glycerol). The detergent was then exchanged for LMNG by
746 successively incubating the resin with the following buffers for 1 hour each: Wash Buffer
747 II (25 mM HEPES, pH 7.5, 500 mM NaCl, 0.05% (w/v) DDM, 0.05% (w/v) LMNG, 0.02%
748 (w/v) CHS), Wash Buffer III (25 mM HEPES, pH 7.5, 500 mM NaCl, 0.025% (w/v) DDM,
749 0.075% (w/v) LMNG, 0.02% (w/v) CHS), Wash Buffer IV (25 mM HEPES, pH 7.5, 500
750 mM NaCl, 0.05% (w/v) LMNG, 0.02% (w/v) CHS), Wash Buffer V (25 mM HEPES, pH

751 7.5, 500 mM NaCl, 0.025% (w/v) LMNG, 0.02% (w/v) CHS). After the final incubation
752 step, the proteins were eluted with 25 mM HEPES, pH 7.5, 500 mM NaCl, 0.025% (w/v)
753 LMNG, 0.02% (w/v) CHS and 250 mM imidazole. Protein purity and monodispersity
754 were tested by SDS-PAGE and analytical size-exclusion chromatography (aSEC).
755 Typically, the protein purity exceeded 95%, and the aSEC profile showed a single peak,
756 indicative of transporter monodispersity. For the AE1-DEPC sample, we then added 5
757 mM DEPC and incubated the sample overnight at 4 °C. All complexes were finally
758 purified over a S200 size exclusion chromatography column equilibrated in 20 mM
759 HEPES, pH 7.5, 150 mM NaCl, 0.0011% (w/v) LMNG, 0.00011% (w/v) CHS, 0.00025%
760 GDN. For AE1 bound to NIF and Dipyridamole, 50 µM of the respective compound was
761 added to the buffer. The bicarbonate complex was purified in 20 mM HEPES, pH 7.5,
762 100 mM NaCHO₃ 0.001% (w/v) LMNG, 0.0001% (w/v) CHS, 0.0001% GDN. Peak
763 fractions were then pooled, concentrated to ~3-7 mg/ml, and immediately used to
764 prepare grids for cryo-EM data collection.

765

766 Grid Preparation, Cryo-EM Data collection and Processing

767 To prepare cryo-EM grids for imaging, 3 µl of purified AE1-Apo at ~6.3 mg/ml, AE1-
768 bicarbonate at 5 mg/ml, AE1-DIDS at ~5 mg/ml, AE1-H₂DIDS at ~4.1 mg/ml, AE1-
769 DEPC at 5 mg/ml, AE1-Dipyridamole at 4.8 mg/ml, or AE1-Niflumic acid at 5 mg/ml
770 were applied to glow-discharged holey carbon EM grids (Quantifoil 300 copper mesh,
771 R1.2/1.3) in an EM-GP2 plunge freezer (Leica). EM-GP2 chamber was set to 95%
772 humidity at 12°C. Sample-coated grids were blotted for 3 to 3.3 seconds before plunge-
773 freezing into liquid ethane and stored in liquid nitrogen for data collection.

774 All automatic data collection was performed on a FEI Titan Krios equipped with a Gatan
775 K3 direct electron detector run and operated by the Simons Electron Microscopy Center
776 in the New York Structural Biology Center (New York, New York) or the Laboratory of
777 BioMolecular Structure at Brookhaven National Laboratory. The microscope was
778 operated at 300 kV accelerating voltage, at a nominal magnification of 64,000-81,000
779 corresponding to a pixel size of 1.08 Å. For each dataset, at least 3,500 movies were
780 obtained at a dose rate of 25-30 electrons per Å² per second with a defocus ranging
781 from -0.5 to -1.8 µm. The total exposure time was 2 s and intermediate frames were
782 recorded in 0.05 s intervals, resulting in an accumulated dose of 50-60 electrons per Å²
783 and a total of 40 frames per micrograph.

784 Movies were motion-corrected using MotionCor2⁵⁷ and imported to cryoSPARC for
785 further processing⁵⁸. For CTF estimation we used patchCTF in cryoSPARC or
786 Ctffind4⁵⁹. An initial model was produced using a subset of micrographs and manual
787 picking. Subsequent models were produced from particles found using templates.
788 Datasets were curated by the removal of micrographs deemed irredeemable by poor
789 CTF estimation. Particles were subject to 2D classification which quickly identified both
790 the mdAE1 and cdAE1. A good initial model of mdAE1 was generated using ab-initio
791 model building in cryoSPARC as were several bad models from rejected particles as
792 decoys for heterogeneous refinement. Multiple rounds of heterogeneous refinement
793 were carried out to select final particle stacks and continuously improve resolution. Final
794 maps were obtained using either NU-refinement^{58,60} or local refinement with a masked
795 mdAE1 domain. We applied C2 symmetry and additionally optimized per-particle
796 defocus and per-group CTF parameters during NU-refinement. Despite several

797 attempts to resolve the structure of the cytoplasmic domain using masks, 3D variability
798 analysis, 3D sorting, local refinement, and varied fulcrum placement, we were
799 unsuccessful. Structures of the membrane domains were further refined in ServalCat⁶¹,
800 and final maps were generated in PHENIX⁶² before import into PyMOL⁶³ for generating
801 figures shown in the manuscript.

802

803 Bicarbonate Transport Assay

804 A polyclonal cell line that stably expresses AE1 upon tetracycline induction was
805 generated based on the Flp-In T-REx 293 Cell Line (Invitrogen, T-REx-293 cells, Cat
806 No.: R71007). Cells were plated in a 96-well plate and incubated overnight with or
807 without 2 µg/ml tetracycline at 37° C. The next day, induced cells were again incubated
808 with tetracycline for 3-4 hours. Cellular bicarbonate uptake was then determined via
809 cellular changes in pH as previously described for other SLC4 transporters¹⁵. Cells were
810 loaded with 5 µM of the pH-sensitive fluorescent dye BCECF-AM (2',7'-Bis-(2-
811 Carboxyethyl)-5-(and-6)-Carboxyfluorescein, Acetoxymethyl Ester) for 30 minutes.
812 Following another short incubation in Hank's balanced salt solution (HBSS) buffered
813 with 50 mM HEPES pH 7.5, intracellular fluorescence ratio (excitation 495±20 nm and
814 435±20 nm; emission 540±30 nm) was measured using a multimode plate reader
815 (Victor NIVO, Perkin Elmer). To initiate uptake, cells were then diluted 1:3 in Cl-free
816 buffer (50 mM HEPES pH 7.5 adjusted with NaOH, 115 mM Na gluconate, 2.5 mM
817 K₂HPO₄, 7 mM Ca gluconate, 1 mM Mg gluconate, 5 mM glucose, 30 µM amiloride),
818 supplemented with 16.7 mM NaHCO₃. Fluorescence was then measured after 1 minute.
819 A calibration experiment using 10 µM nigericin in modified HBSS (1.26 mM CaCl₂,

820 0.493 mM MgCl₂, 0.407 mM MgSO₄, 140 mM KCl, 0.441 mM KH₂PO₄, 4.17 mM
821 NaHCO₃, 0.338 mM Na₂HPO₄, 10 mM HEPES) at a range of pH values between 7 and
822 8 was then performed to convert fluorescence to pH values⁶⁴. Activation of AE1 was
823 determined as the pH difference (Δ pH) between induced (AE1-expressing) and non-
824 induced cells following uptake. To measure AE1 inhibition, this experiment was
825 performed in induced and uninduced cells using NaHCO₃. For DIDS and H₂DIDS, cells
826 were preincubated with 20 μ M inhibitor in HEPES-buffered HBSS for 1 hr, after which
827 DIDS and H₂DIDS were omitted from the experiment. Dipyridamole has spectral overlap
828 with BCECF and could therefore not be included in our measurements. For NIF and the
829 22 new compounds tested in the initial screen, 50 μ M were added throughout the
830 experiment after dye loading. For the 24 analogs of Compound 22 tested in the second
831 round of screening, 20 μ M were added throughout the experiment after dye loading. All
832 experiments were performed in triplicates, and data was averaged from three
833 independent experiments and is shown as mean \pm s.e.m. Statistical significance was
834 determined by one-way ANOVA in Graphpad Prism.

835

836 MD simulations

837 Even though AE1 exist in a dimeric form, it appears that the functional properties of
838 each monomer are independent of the other. Thus only one monomer was selected for
839 the construction. The system was built with CHARMM-GUI⁶⁵ adding two cholesterol
840 molecules and one cholesteryl succinate in the positions identified in the cryo-EM
841 structure. The membrane was constructed from 200 POPC in both layers divided to
842 account for the different surface area of the protein in the upper and lower leaves. The

843 concentration of neutralizing K⁺ and Cl⁻ counterions in the rectangular box was set to
844 ~0.15 mM. The initial apo-AE1 structure was translated using the charmm2lipid routine
845 in AMBER, and the simulations were conducted in AMBER 20²⁶. The system was
846 minimized and equilibrated with the restraints designed in CHARMM-GUI. At the end of
847 the equilibration, the MD simulations were executed at NPT conditions for 1000 ns. The
848 final trajectory included 10,000 structures. A similar design and simulations were
849 performed on the bicarbonate-occupied structure. The analysis of the trajectories were
850 performed with cpptraj in AMBER and the simulaid facility⁶⁶. The RMSD of the protein
851 stabilizes after 100 ns and remains nearly constant for the rest of the simulation.

852 **Molecular Docking**

853 To characterize the binding mode of NIF at AE1 using molecular docking calculations,
854 we first removed the ligand from the cryo-EM structure of the AE1-NIF complex. AE1
855 was then prepared with the Maestro Protein Preparation Wizard of the Schrödinger
856 suite (Schrödinger, 2021) under default parameters⁶⁷. The binding site was defined by
857 generating a grid with the Receptor Grid Generation Panel. The binding site outlining
858 box was defined around the reference NIF ligand in the AE1 template structure.
859 The NIF compound structure was obtained from PubChem (PubChem CID: 4488), and
860 it was prepared for docking using LigPrep with the default parameters, where the
861 possible states were generated at target pH values of 7±2. Docking was performed
862 using Glide from the Schrödinger suite (Schrödinger, 2021). Finally, we used molecular
863 mechanics generalized with born surface area solvation (MM-GBSA) with Prime in the
864 Schrödinger suite to estimate the relative binding affinity between NIF and AE1⁶⁸, where
865 a more negative value of ΔG binding indicates higher binding affinity.

866

867 Virtual Ligand Screening

868 The newly-determined Cryo-EM structures of AE1 in the apo and DIDS-bound forms were
869 used for virtual screening with Glide. Prior to docking, we removed the ligand from the
870 AE1-DIDS complex structure. We used a library of lead-like and in-stock compounds (2.4
871 million compounds) from the ZINC15 database⁶⁹. The protein was prepared for docking
872 using the Protein Preparation Wizard from the Schrödinger Suite, where the structure was
873 first refined by optimization and minimization⁶⁷. The protein structure was energy
874 minimized until RMSD was 0.30 Å for heavy atoms with OPLSe3 force-field⁷⁰. The binding
875 site of both the apo and DIDS-bound structure were defined based on DIDS coordinates
876 for the Receptor Grid Generation.

877 The grid files were used as input for the Virtual Screening Workflow (VSW) tool of Glide,
878 Maestro, which performs a three-step virtual screening processes³⁵. First, high-
879 throughput virtual screening (HTVS) was performed where 10% top scoring compounds
880 were used in standard-precision (SP) docking. 10% top scoring compounds from the SP
881 docking screen were then used in extra-precision (XP) docking⁷¹, and the compounds
882 were then reranked based on the XP Docking Scores. Finally, molecular mechanics
883 generalized with born surface area solvation (MM-GBSA) with Prime in the Schrödinger
884 suite was used to estimate the relative binding affinity of compounds⁶⁸. Since MM-GBSA
885 calculations are computationally expensive, only top ranking ligand-protein complexes
886 (top 2,000) identified in the virtual screening were used as input for MM-GBSA
887 calculations. Ligands were ranked based on the calculated binding energies (MMGBSA
888 DG Bind), where a more negative value indicates higher binding affinity.

889 The 1,000 top-scoring compounds based on MMGBSA from each virtual screen were
890 subjected to visual inspection using PyMOL⁶³, to discard likely false positive predictions.
891 Erroneous docking often occurs in large screens, where typical errors include docking
892 poses with high internal energies or unbound polar groups, as well as molecules with
893 strained conformations^{36,72}. 22 compounds were ultimately purchased and tested.

894

895 Calculation of Bicarbonate Binding Energies

896 To compute the binding energy of bicarbonate we took the approach of Simulated
897 Annealing of Chemical Potential (SACP)²⁷. Briefly, the system is placed in a periodic
898 box, which is divided into an inner box whose dimensions are 10 Å beyond the
899 boundaries of the molecule and an outer (“bulk”) box of additional 5Å thickness. Using a
900 Grand Canonical Ensemble/Monte Carlo (GC/MC) approach the entire system is
901 equilibrated with inserting/deleting bicarbonate to reach a density of 0.15 g/L. The B
902 parameter⁷³, which reflects the excess chemical potential ($B = \mu_{\text{ex}} + \ln\langle N \rangle$) in the “bulk”
903 box is then decreased progressively. The change in the B parameter increases the
904 probability of deletion of bicarbonate until the system equilibrates. The value of the B
905 parameter at the point where the last bicarbonate is deleted equals the most negative
906 energy of bicarbonate to the protein. An analysis of the B value at which bicarbonate is
907 most proximal to a specific site (e.g., R730) yields the affinity of bicarbonate to this site.
908 To enhance the statistical significance of the computed values, the MD trajectory was
909 divided into 10 clusters and the center of the cluster was extracted to perform the SACP
910 on each of them. The final result is the population weighted average of all the clusters
911 for a specific location of the bicarbonate.

912 **Pocket Volume Analysis**

913 POVME3⁵⁶ (Pocket Volume Measurer 3) was used to calculate binding site volumes.

914 We used default parameters for ligand-defined inclusion region, using the recently

915 resolved structures as input PDBs. Pocket volume was visualized using PyMOL⁶³.

916

917 **Data availability:** Density maps and structure coordinates have been deposited in the

918 Electron Microscopy Data Bank (EMDB) and the PDB: AE1-Apo (EMD-26165 and PDB

919 7TY4), AE1-Bicarbonate (EMD-26168 and PDB 7TY7), AE1-DIDS (EMD-41082 and

920 PDB 8T6V), AE1-H₂DIDS (EMD-26167 and PDB 7TY6), AE1-DEPC (EMD-26171 and

921 PDB 7TYA), AE1-Dipyridamole (EMD-41081 and PDB 8T6U), AE1-NIF (EMD-26169

922 and PDB 7TY8). All source data is available with the manuscript.

923 **Methods-only References**

924
925 56 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved
926 cryo-electron microscopy. *Nat Methods* **14**, 331-332, doi:10.1038/nmeth.4193 (2017).

927 57 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
928 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
929 doi:10.1038/nmeth.4169 (2017).

930 58 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron
931 micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).

932 59 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves
933 single-particle cryo-EM reconstruction. *Nat Methods* **17**, 1214-1221, doi:10.1038/s41592-020-
934 00990-8 (2020).

935 60 Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure
936 refinement and map calculation using Servalcat. *Acta Crystallogr D Struct Biol* **77**, 1282-1291,
937 doi:10.1107/S2059798321009475 (2021).

938 61 Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons and
939 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877,
940 doi:10.1107/S2059798319011471 (2019).

941 62 The PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC).

942 63 Sanematsu, K. *et al.* Intracellular acidification is required for full activation of the sweet taste
943 receptor by miraculin. *Sci Rep* **6**, 22807, doi:10.1038/srep22807 (2016).

944 64 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for
945 CHARMM. *J Comput Chem* **29**, 1859-1865, doi:10.1002/jcc.20945 (2008).

946 65 Mezei, M. Simulaid: a simulation facilitator and analysis program. *J Comput Chem* **31**, 2658-
947 2668, doi:10.1002/jcc.21551 (2010).

948 66 Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand
949 preparation: parameters, protocols, and influence on virtual screening enrichments. *J Comput
950 Aided Mol Des* **27**, 221-234, doi:10.1007/s10822-013-9644-8 (2013).

951 67 Lyne, P. D., Lamb, M. L. & Saeh, J. C. Accurate prediction of the relative potencies of members of
952 a series of kinase inhibitors using molecular docking and MM-GBSA scoring. *J Med Chem* **49**,
953 4805-4808, doi:10.1021/jm060522a (2006).

954 68 Sterling, T. & Irwin, J. J. ZINC 15--Ligand Discovery for Everyone. *J Chem Inf Model* **55**, 2324-
955 2337, doi:10.1021/acs.jcim.5b00559 (2015).

956 69 Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and Testing of the OPLS All-
957 Atom Force Field on Conformational Energetics and Properties of Organic Liquids. *J Am Chem
958 Soc* **118**, 11225-11236, doi:10.1021/ja9621760 (1996).

959 70 Friesner, R. A. *et al.* Extra precision glide: docking and scoring incorporating a model of
960 hydrophobic enclosure for protein-ligand complexes. *J Med Chem* **49**, 6177-6196,
961 doi:10.1021/jm051256o (2006).

962 71 Schlessinger, A. *et al.* Structure-based discovery of prescription drugs that interact with the
963 norepinephrine transporter, NET. *Proc Natl Acad Sci U S A* **108**, 15810-15815,
964 doi:10.1073/pnas.1106030108 (2011).

965 72 Adams, D. J. Grand Canonical Ensemble Monte-Carlo for a Lennard-Jones Fluid. *Mol Phys* **29**,
966 307-311, doi:Doi 10.1080/00268977500100221 (1975).

967