

Endocrinology

Modeling TSH Receptor Dimerization at the Transmembrane Domain

--Manuscript Draft--

Manuscript Number:	en.2022-00570R2
Full Title:	Modeling TSH Receptor Dimerization at the Transmembrane Domain
Article Type:	Research Article
Section/Category:	Thyroid
Corresponding Author:	Mihaly Mezei, PhD Icahn School of Medicine at Mount Sinai New York, UNITED STATES
Other Authors:	Rauf Latif Terry F Davies
Additional Information:	
Question	Response
DATA REPOSITORIES AND DATA REGISTRATION	Not Applicable
I have read and agree to take appropriate action to comply with the following Data Repositories and Data Registration guidelines and confirm that I have included the appropriate registration numbers / information in the text of the manuscript being submitted.	
CELL LINE AUTHENTICATION	Not applicable to my manuscript.
I have read and understood the Cell Line Authentication policy and describe my submission as follows:	
STEROID HORMONE MEASUREMENT	Not applicable to my manuscript.
I have read and understood the Steroid Hormone Measurement policy and describe my submission as follows:	

<p>SPECIAL REQUESTS</p> <p>In place of a cover letter, you may enter specific comments or requests to the editors here.</p>					
<p>DATA AVAILABILITY</p> <p>The Endocrine Society requires that authors provide a statement about the availability of data generated or analyzed in the submitted manuscript. This statement will be included in the final version of accepted manuscripts. During the submission process, authors are asked to select a statement that best describes their data availability and to include the selected statement in the manuscript document, just before the reference list. This section of the manuscript should be labelled "Data Availability." For more information, see the Author Guidelines.</p>	<ul style="list-style-type: none"> Original data generated and analyzed during this study are included in this published article or in the data repositories listed in References. 				
<p>Options for these statements are below:</p>					
<p>Funding Information:</p>	<table border="1"> <tr> <td data-bbox="577 1284 1067 1353">National Institute of Health (DK069713)</td><td data-bbox="1067 1284 1509 1353">Terry F Davies</td></tr> <tr> <td data-bbox="577 1353 1067 1396">U.S. Department of Veterans Affairs (BX000800)</td><td data-bbox="1067 1353 1509 1396">Terry F Davies</td></tr> </table>	National Institute of Health (DK069713)	Terry F Davies	U.S. Department of Veterans Affairs (BX000800)	Terry F Davies
National Institute of Health (DK069713)	Terry F Davies				
U.S. Department of Veterans Affairs (BX000800)	Terry F Davies				
<p>Requested Editor:</p>					
<p>Author Comments:</p>	<p>TFD is member of the Board of Kronus Inc, Starr, Idaho; M.M. & R.L. have nothing to disclose.</p>				

Please **Note**: our answers to the reviewers' comments are in *italicized Times New Roman font* while the comments are in Calibri font. In the revised version added or changed text is **colored red**.

Editor Comments

Most of the reviewer comments have been considered in this revised manuscript. However, given the importance of the methods to the understanding of the results, the authors have not responded to several of the comments of reviewer 1 through the addition of some essential detail to the Methods, relying instead on reference to previous publications. The editor concurs with reviewer 1's original comments that additional detail should be added to the Methods, even if only 'in brief' summary form, so that readers are not required to reference external publications in order to understand the methods utilized in the current study.

*The revised version now added further information requested by reviewer1. To be specific, we further addressed comments #1, #4, and #5. In our answers below we kept the original answer and added the description of actions taken in the current revision using **bold italicized Times New Roman font**.*

Reviewer Comments

Reviewer 1:

1. Line 55 states that after equilibrium, 600 ns of simulation were generated; nevertheless, the authors do not specify either the equilibration conditions nor those of the 600 ns of the MD to generate the TSHR-TMD-TRIO.

Original answer:

The details of the simulation leading to the TSHR-TMD-TRIO model have been described in a separate paper, reference #16. While we summarize here the major steps involved in setting up and performing the simulation, we think that it would be redundant to repeat all details of the simulation.

Current answer:

We added details of the equilibration protocol (established by the charm-gui server) and the conditions of the current simulation (ensemble, temperature, pressure, timestep). We also added a sentence each to describe the generic site concept and the TRAJELIX module.

4. Setup of the all-atom simulation was performed automatically with the charm-gui server. Nevertheless, given that the TSHR is a membrane protein, it is important to verify the stability of the membrane through evaluating the bilayer structure, including the area per lipid, the hydration level of the lipids, and the equilibration of the simulation box in x-, y-, and z- directions to verify the stability of its height, area, and other properties.

Original answer:

We have now added to the Result section a paragraph describing our monitoring of the stability of the system.

Current answer:

We added a statement saying that no lipid penetrated the dimer interface.

5. Residues of interaction between the TMD dimers should be verified by analyzing the effects of in silico mutations on dimer formation/stabilization.

Original answer:

The correctness of the dimer conformation was verified in the paper describing the Brownian dynamics calculations by mutating selected residues to cysteines and demonstrating that the resulting disulfide bonds covalently linked the two monomers.

Current answer:

We added a statement that discusses the crosslinking experiment.

Click here to access/download

Revised Manuscript - Changes Highlighted
TSHR_dim_rev_2.docx

1

2 **Modeling TSH Receptor Dimerization at the Transmembrane Domain**

3

4 Mihaly Mezei¹, Rauf Latif^{2,3} and Terry F Davies^{2,3}.

5

6 ¹Department of Pharmacological Sciences, ²Thyroid Research Unit, Department of Medicine,

7 Icahn School of Medicine at Mount Sinai and

8 ³James J. Peters VA Medical Center, New York, New York9 **ORCiD numbers:** 0000-0003-0294-4307 (M. Mezei); 0000-0002-4226-3728 (R. Latif), 0000-0003-3909-2750 (T.F. Davies).

10

11

Running Title: TSH receptor dimers

12

13 **Address correspondence to:** Mihaly Mezei PhD. E-mail: mihaly.mezei@mssm.edu14 **Keywords:** TSHR, GPCR, DPPC, molecular dynamics, dimerization, docking15 **Disclosure statement**

16 TFD is member of the Board of Kronus Inc, Starr, Idaho; M.M. & R.L. have nothing to disclose.

17

18 **Abbreviations:** TSH – thyroid stimulating hormone, TSHR – TSH receptor, GPCR - G protein coupled receptor, Molecular

19 Dynamics – MD

20

21 **Abstract**
22

23 Biophysical studies have established that the TSH receptor (TSHR) undergoes post translational modifications
24 including dimerization. Following our earlier simulation of a TSH receptor – transmembrane domain (TMD) monomer (called
25 TSHR-TMD-TRIO) we have now proceeded with a molecular dynamics simulation (MD) of TSHR-TMD dimerization using
26 this improved membrane embedded model. The starting structure was the TMD protein with all extracellular and
27 intracellular loops and internal waters, which was placed in the relative orientation of the model originally generated with
28 Brownian dynamics. Furthermore, this model was embedded in a DPPC lipid bilayer, further solvated with water and added
29 salt. Data from the molecular dynamic simulation studies showed that the dimeric subunits stayed in the same relative
30 orientation and distance during the 1000 ns of study. Comparison of representative conformations of the individual
31 monomers when dimerized with the conformations from the monomer simulation showed subtle differences as represented
32 by the backbone RMSDs. Differences in the conformations of the ligand binding sites, suggesting variable affinities for
33 these “hot spots”, were also revealed by comparing the docking scores of 46 small molecule ligands that included known
34 TSHR agonists and antagonists as well as their derivatives. These data add further insight into the tendency of the TSHR-
35 TMD to form dimeric and oligomeric structures and show that the differing conformations influence small molecule binding
36 sites within the TMD.

37
38

39

40 **INTRODUCTION**

41 The TSH receptor (TSHR) is a class A GPCR with particular importance because of its involvement in autoimmune
42 thyroid disease, particularly Graves' disease in which it is the primary antigen (1). The TSHR is a 764 amino acid protein
43 comprising a large, heavily glycosylated, ectodomain (ECD) connected to a seven-helix transmembrane domain (TMD) via
44 a hinge region (2,3). We have previously shown, by biochemical and biophysical methods that TSHRs in native, as well as
45 transfected cells, exist as both dimeric and oligomeric units and that oligomerization may be regulated by exposure to the
46 TSH ligand (3-5). Studies have also shown that TSHR dimerization may have physiological consequences including a
47 role in receptor negative cooperativity (6) and G-protein selection and activation favoring G_{aq} (7). We have also shown
48 previously that dimerization involves contact between the TSHR ECDs (8) and experimental data with truncated TSHRs
49 have indicated that the TMD alone continues to dimerize and must also have a major role in TSHR dimerization and
50 oligomerization (9).

51 Using a Brownian Dynamics approach (10) we previously generated a computer model for a TSHR dimer of the
52 transmembrane domain (TMD) using our homology model (11). In this study the dimer model obtained was verified by
53 mutating three pairs of residues forming contacts between the monomers to cysteines and verifying that this resulted in
54 disulfide links between the monomers. Since then the TSHR-TMD monomer model has been further enhanced by
55 generating its extracellular loops (12) by the Monte Carlo technique (13) and more recently, we used the same technique

56 to generate the intracellular loops. A grand-canonical ensemble (GCE) Monte Carlo (MC) simulation (14,15) was then used
57 to add internal waters. This enhanced TSHR monomer model was subsequently embedded in a DPPC membrane including
58 a water layer with counterions to neutralize the system and provide an environment with an ionic strength of 0.3 m/L. After
59 equilibration, the membrane-embedded system was subjected to a 600 ns molecular dynamics (MD) simulation resulting
60 in three representative structures of the TMD which we named TSHR-TMD-TRIO (16).

61 The improved membrane-embedded monomer model (TSHR-TMD-TRIO) has now allowed us to examine TSHR
62 TMD dimerization with molecular dynamic simulation to gain better insight into receptor conformations and the interaction
63 of allosteric ligands to the dimeric structure. The starting structure consisted of two copies of the initial TRIO protein with
64 all loops and internal waters placed in the relative orientation of the model generated with Brownian dynamics which was
65 embedded in a DPPC bilayer, further solvated with water, counter ions and added salt, as previously described (16).

66

67 MATERIALS AND METHODS

68 **Initial TSHR TMD monomer model:** The structure with the largest weight from the TSHR-TMD-TRIO structure (16) was
69 used to prepare the initial dimer model. As for the generation of TSHR-TMD-TRIO, the positions of internal waters were
70 obtained as generic sites (17) calculated with the program MMC (18). Generic sites are obtained in an iterative procedure
71 where in each configuration waters are assigned to the current site estimates using a graph-theory based optimization.

72

73 **Setting up for dimerization:** Two copies of the TMD with the internal waters were arranged next to each other in a
74 relative orientation that modeled the contacts established in our original dimer study (11). using a series of translations
75 and rotations guided by the molecular graphics display (19). This dimer model with all loops generated and with internal
76 water molecules in place was then sent to the charmm-gui server (20) to be inserted into a DPPC bilayer which also added
77 the rest of the solvating waters and counterions. Besides the protein, the system contained 458 DPPC molecules, 97 K⁺
78 ions, 121 Cl⁻ ions and 36,093 waters. The system generated used periodic boundary conditions with hexagonal prism as
79 the unit cell. The initial height of the prism was 110 Å and the edge of the hexagon was 80 Å. The system thus generated
80 included inputs for a six-step equilibration protocol and inputs for the production run(21), all using the program NAMD(22).

81 The equilibration protocol started with a 1000-step minimization, followed by MD simulations that imposed constraints on
82 the protein, lipids and ions. Six simulations were performed with progressively weaker force constants; the sixth step
83 released all constraints except for a very week constraint for the protein backbone. The first three runs were 125 ps long
84 and used 1 fs timestep; the last three steps each were 500 ps long and used 2 fs timestep.

85

86 **Dimer simulations:** MD simulation was run using the program NAMD (22) in the (T,P,N) ensemble using 2 ps timestep.
87 The temperature was set to 323.5 K, the pressure to 1 atm. The structures on the trajectory were clustered based on the

88 distances between the monomer backbone conformations represented as RMSD without the C-terminal tail. k-medoid
89 clustering(23) was used separately for each monomer using the program Simulaid (24). This method uses as input the
90 number of clusters requested and performs the clustering in an iterative manner without resorting to cutoffs; the number of
91 clusters requested (three for both monomers) was arrived at observing the respective 2D RMSD matrix shown of Figure
92 3). For each cluster the conformation whose largest RMSD with the rest of the cluster members was the smallest among
93 the members of the cluster was used as the representative structure to be used for docking. The analysis of the helix
94 positions and orientations were performed with the TRAJELIX module (25) of the program Simulaid (24). TRAJELIX obtains
95 the helix axis by fitting a line to the backbone atoms in residue ranges selected by the user; analyses are based on the
96 coordinates of the beginning, middle and of the axes as well as on their direction.

97

98 **Small molecule docking studies:** The docking experiments described here used the program Glide (26,27) with the
99 induced fit option. Before the docking runs the representative structures extracted from the MD run were subjected to
100 minimization using the implicit membrane model GBMV (28). The minimization was set up with charmm-gui (20) and the
101 minimization was run with Charmm (29). A set of 46 ligands were docked to each representative structure (**Supplementary**
102 **Table 1**(30)). Among the ligands docked were active agonists (n=3) and antagonists (n=3) of variable potency, including
103 ones developed in our laboratory (31), and derivatives of known active compounds (n=40). Not all derivatives, however,
104 were found to be active.

105

106 **Statistical evaluations:** The tests for the significance of differences between score averages were performed with the
107 Graphpad server (URL: <https://www.graphpad.com/quickcalcs/ttest2/>) using the two tailed Welch t-test that does not require
108 the two samples to have the same variance.

109

110 **RESULTS:**

111 **The TSHR monomer and initial dimer**

112 **Figure 1a** illustrates a TSHR monomer extracted from the TSHR-TMD-TRIO model previously detailed (16) which
113 was embedded in a lipid membrane. Important points to note include the conformation which was obtained from the MD
114 simulation studies. The starting dimer conformation (**Figures 1b and 1c**) was derived by placing two copies of the
115 monomer in an orientation suggested by our earlier Brownian Dynamic studies (11) and included the internal waters
116 generated by the grand-canonical ensemble (GCE) MC simulation. The dimer interface constructed as described involved
117 helices 1, 2 and 4 on monomer 1 (green) and helices 4 and 5 on monomer 2 (orange). This model conformation was then
118 sent to the charmm-gui server.

119

120 **MD simulation**

121 The six-step equilibration protocol provided by the charmm-gui server was followed by a 1,000 nanosecond (ns) MD
122 run using 2fs time step. The animation of the trajectory showed that the monomers stayed in contact throughout the
123 simulation and no lipid molecules entered the interface. **Figure 2** shows the history of the many residue pairs in contact for
124 more than 40% of the simulation time and making up the dimeric structure. Note that two atoms were considered to be in
125 contact if they were mutually proximal (32). These data showed that the contact between monomers was maintained at all
126 times throughout the simulation. There was no breakup of the dimeric conformation during the entire period of simulation.

127 The simulation box size during the simulation was monitored and was found stable. The simulation trajectory was
128 also animated on a graphical display and no anomaly was observed in the bilayer; the counterions were found to sample
129 well the solvent region and no significant water penetration was observed into the lipid bilayer nor was any lipid seen
130 penetrating the dimer interface.

131

132 **Dimer clustering**

133 We then analyzed the structures by examining the clustering of the monomers in the dimer simulations. Clustering
134 of similar monomer structures was found to be best represented by three dominant conformations for both monomers.
135 These clusters were based on the backbone root mean square deviation (RMSD) calculated without the C-terminal tail.

136 The RMSD matrix of the conformations rearranged by clusters is shown in **Figures 3a and 3b** for monomers 1 and 2,
137 respectively. The black lines delineate the different clusters. The cluster memberships are shown in **Figures 4a and 4b**
138 for monomers 1 and 2, respectively showing that the monomer conformations were not totally consistent with time indicating
139 movement between the clusters. Such movements are indicators of extensive sampling.

140 The overall conformations of the representative structures from the earlier TRIO model and the two simulated
141 monomers were then compared by calculating the backbone RMSDs (with three representative structures from the
142 clustering) for both of the newly simulated monomers (1 and 2) and the TRIO monomer making nine structures to analyze.
143 The larger the RMSD the more flexible the structure is within the model. The matrix of the RMSDs is given in **Table 1** and
144 shows that this type of analysis illustrates differences between the model structures; for example monomer 2 appears more
145 flexible than monomer 1 and both show subtle differences between each other and from the TRIO monomer.

146

147 **Intramolecular hydrogen bonding**

148 The formation and breakup of the hydrogen bonds within the TMD monomers were compared for the 600 ns TRIO
149 simulation and the two monomers within the 1000 ns dimer simulation by tracking the presence and absence of hydrogen
150 bonds among all pairs of residues. **Figure 5** shows a typical graph for the second monomer of the dimer; residue pairs
151 should be hydrogen bonded at least 20% of the time. Also, residues in the pair have to be at least five residues apart – this

152 eliminates the trivially present hydrogen bonds forming the transmembrane helices. **Supplementary Table 2**(30) lists the
153 residue pairs that are hydrogen bonded according to the criteria above in at least one of the three models, the % of time
154 they are hydrogen bonded and their multiplicity (1/2/3). Eleven residue pairs were hydrogen bonded in all three systems
155 (**Table 2**) and their conservation indicated they likely represented important bonding sites.

156

157 **Helix changes**

158 As all GPCRs, the TMD of the TSHR consists of seven transmembrane helices. It also has an 8th helix on the
159 intracellular side and a long C-terminal tail. Helices 6 contains one proline and helix 7 contains two. Since prolines introduce
160 kinks in helices, for the purpose of these analyses these two helices are broken into two (the short helix between the two
161 prolines in helix 7 is ignored). The analyses described below for each property calculated its average over the three
162 representative structure of one of the monomers and compared it with the corresponding value from the third structure in
163 the TRIO model. If the value of the TRIO model fell outside the range of the monomer values then the change was
164 considered significant (marked with 'S' in the respective table). The changes in the lengths (end-to end distance) of the
165 transmembrane helices and the changes in the radii of the circle fitted to the helix axes (a measuring the degree of bent)
166 are shown in **Table 3** for both monomers. Interestingly, most of the changes, while small, occur in a different direction for
167 the two monomers. **Supplementary Table 3**(30) shows the changes in the helix-helix distances using two different

168 measures: the distance between the helix centers and the distance (closest approach) of the helix axes for monomers 1
169 and 2. For monomer 1, Helix 7 shows large changes while for Monomer 2 Helices 5 and 6 is seen the most variable and
170 **Supplementary Table 4**(30) contains the changes in the helix-helix angles. They display similar behavior as the distances:
171 for monomer 1 Helix 7 shows the largest changes while for monomer 2 Helices 6 and 7 are the most variable.

172 .

173 **Small molecule docking**

174 In order to examine the preference of allosteric ligands that are targeting the TSHR-TMD in either the dimeric or
175 monomeric conformation, we examined the docking of a series of small molecules (n=46) some of which we have described
176 earlier (33). Docking was performed as described earlier using the cluster sizes for monomer #1 [1141,289,570] and
177 monomer #2 [791,923,346] to weight the docking scores of each ligand on the cluster representatives to give an overall
178 docking score for each ligand; docking scores represent the free energy of binding to the receptor. **Supplementary Table**
179 **1**(30) shows the docking scores and the weighted averages of the scores for all 46 ligands. The weighted score averages
180 over agonists and antagonists for the three targets (TRIO, Monomer #1 and Monomer#2) are shown in **Table 4**. This table
181 also gives the separate averages for the agonist and antagonist groups of compounds found earlier to be biologically active
182 or inactive. As there was very little difference between the respective active and inactive sets the table only shows the
183 standard deviations for the whole agonist and antagonist sets. **Table 5** gives the results of the t-test comparing the agonist

184 and antagonist averages of docking scores against the three targets; statistically significant differences are shown in bold.
185 These data show that certain small molecules have a significant preference for binding to one of the monomers compared
186 to the other indicating that the difference between conformations is likely to be biologically significant.

187 The secondary structure elements (helices or loops) that formed contacts with ligands were also examined. **Table**
188 **6** shows the number of contacts between agonist and antagonist ligands for each helix and loop, separately for each
189 monomer. As there are only 11 antagonists vs 35 agonists, the number of antagonists scaled by three is also shown to
190 make the comparison fair. While there were significant differences between the agonist and antagonist docking scores,
191 there was very little difference in the number of contacts. One exception would be Helix 5 that seems to be favored by
192 agonists in both monomers. Also, Helix 4 was only contacted by a few ligands in monomer #2 – another indication of
193 structural differences between the monomers in the dimer simulation.

194

195 **DISCUSSION:**

196 Dimerization is the normal state rather than the exception in many Class A and Class C G-protein coupled receptors
197 (GPCR) (34,35). Homo or hetero dimerization in GPCRs appears to not only provide molecular mechanisms for agonist-
198 induced activation but also increase specificity of ligand recognition and versatility of downstream signaling (36). Our
199 earliest studies using native porcine thyroid membranes showed that TSHRs exist as higher order forms including

200 oligomeric and dimeric structures (5). Since then studies from our laboratory, and others (4,6,11,37), using biophysical
201 techniques, including FRET and BRET, have developed important clarification of the existence of constitutive TSHR
202 dimers and oligomeric forms in heterologous systems as well as native thyrocytes (6,8,38). Constitutive homodimeric and
203 oligomeric TSHR forms have been shown to have a role in negative co-operativity (6,39), in regulating early events during
204 receptor maturation and intracellular trafficking (9,40) and in $G_{\alpha q/11}$ signaling (37). We have previously also shown that these
205 monomeric and higher order complexes are compartmentalized within lipid rafts in the plasma membrane and furthermore
206 that these forms can bind TSH and TSHR autoantibodies (41) and may be regulated within lipid rafts (42,43). However,
207 for understanding their exact roles under physiological or pathological conditions it is important to obtain better insight into
208 the interaction caused by individual protomers that result in these higher order forms and conformations that may result
209 due to these interactions. Although we have previous physical evidence of dimerization at the ectodomain and the TMD
210 (8,11) the present in-silico study was designed to first examine just TMD dimerization using a membrane embedded model
211 TMD which we developed earlier (16) and which mimics the native state of the TMD of the TSHR.

212 The DPPC membrane embedded monomeric TSHR-TMD model (**Figure 1a**) closely resembles the native receptor
213 and was an ideal starting point for examining a dimeric structure. We obtained evidence for the tendency of the monomers
214 to be held together as constitutive dimeric units (**Figures 1b & 1c**) seen in the animation of the 1000ns MD simulation
215 trajectory as well as from the persistence of the contact residues in the dimeric interface which showed residue pairs in
216 contact for more than 40% of the simulation time (**Figure 2**). Furthermore, the interface predicted by the Brownian

217 dynamics simulation approach was correct and the simulation showed subtle differences between the two monomers as
218 well as between the conformations in the monomer and dimer simulations. These differences manifested themselves in
219 the RMDSS of the superimposed structures and the hydrogen-bond patterns within the monomers (after excluding the
220 hydrogen bonds within the helices). It is notable that there were only 11 hydrogen bonds that persisted in all three systems
221 (out of the 87 described in **Supplementary Table 2**(30)). The variability in the dimeric interface further reinforced our earlier
222 biochemical studies using truncated TMD constructs (11) and ECD beheaded constructs (9) suggesting the promiscuous
223 nature of the dimerization interface. The cluster analysis and hydrogen bonding history (**Figures 3, 4 and 5**) within the
224 monomers during the simulation further reveal flexibility of the conformation assumed by the monomers. This flexibility
225 could be the cause of the asymmetric nature of dimerization leading to difficulty in obtaining cells solely expressing dimers
226 to study their function in isolation. However, studies in other GPCRs, especially rhodopsin receptors, have revealed this
227 dynamic intra- and inter- helical interactions which has been proposed from dimensional models obtained from atomic
228 force microscope studies (44) and crystallization (45). Our MD simulations support and demonstrate the dynamic nature of
229 the conformations that the monomers undergo as a dimeric unit which likely create novel conformations leading to the
230 asymmetric interaction seen in TSHR-TMD dimerization.

231 In pursuit of developing novel therapeutics against the TSHR, our laboratory and others, have identified several
232 agonists (7,31) and antagonists (46-48) for the TSHR. These are allosteric small molecules ligands (SMLs) targeted to
233 binding pockets within the TSHR-TMD (49) and we used them as a tool to characterize the differences between the

234 conformations of the monomer during the MD simulation. Although there was little difference in the number of ligands
235 contacting each helix and loop, statistical analysis of the docking scores (**Tables 5 & 6**) showed a clear difference between
236 agonists and antagonists suggesting that small molecules which are structurally different but which go to similar binding
237 pockets in the TSHR TMD can be influenced by the conformations of the monomers in the dimeric unit and may show
238 preferential binding. Understanding the preference of the small molecules targeted to the receptor TMD will assist future
239 SAR studies with the small molecules. It is known that small molecule ligands can enhance or disrupt
240 dimerization/oligomerization of rhodopsin receptors (50) which also suggests that understanding TSHR dimerization will
241 further our understanding of TSHR physiology

242 In conclusion this in silico study using a novel model of the TSHR TMD has provided further insight into our current
243 understanding of TSH TMD dimerization and shown the dynamic nature of each monomeric unit that may lead to
244 preferential binding of allosteric ligands.

245

246

247

248 **Acknowledgments**

249

250 This work was supported in part by NIH grant DK069713 & the VA Merit Award BX000800 (to TD), the Segal Family
251 Fund and other generous anonymous donors and was also supported in part through the computational resources and
252 staff expertise provided by the Department of Scientific Computing at the Icahn School of Medicine at Mount Sinai.

253

254

255

256 **Table 1.** Backbone RMSD between the cluster representatives of the two monomers and the TRIO model
257

258

259

	M1.1	M1.2	M1.3	M2.1	M2.2	M2.3	TRIO.1	TRIO.2	TRIO.3
M1.1	0.00	3.24	3.71	3.96	5.00	5.76	5.34	6.00	5.73 ²⁶⁰
M1.2	3.24	0.00	2.67	4.82	5.56	6.30	5.46	5.96	5.76 ²⁶¹
M1.3	3.71	2.67	0.00	4.96	5.65	6.60	5.40	5.93	6.05 ²⁶²
									6.05 ²⁶³
M2.1	3.96	4.82	4.96	0.00	3.49	4.90	4.49	5.25	5.16 ²⁶⁴
M2.2	5.00	5.56	5.65	3.49	0.00	2.87	4.50	5.06	4.66 ²⁶⁵
M2.3	5.76	6.30	6.60	4.90	2.87	0.00	5.39	5.86	5.16 ²⁶⁶
									268
TRIO.1	5.34	5.46	5.40	4.49	4.50	5.39	0.00	3.01	3.57 ²⁶⁷
TRIO.2	6.00	5.96	5.93	5.25	5.06	5.86	3.01	0.00	3.21 ²⁶⁸
TRIO.3	5.73	5.72	6.05	5.13	4.66	5.16	3.57	3.21	0.00 ²⁶⁹

272

273 RMSDs are in Å. M1, M2 and TRIO indicate Monomer 1, Monomer 2 and TRIO (the monomer simulation), resp. The
274 number after the period is the cluster number whose representative was used to calculate the RMSD.

275 **Table 2.** Significant hydrogen bonded residue pairs.

276

Res M1		Res M2				T %	M1 %	M2 %
ASP	3	LYS	8	H_1	H_1	35.6	23.0	387
SER	35	ASP	281	H_1	H_8	72.3	70.4	3298
ASN	48	TRP	139	H_2	H_4	92.2	40.5	2809
ASP	53	SER	264	H_2	H_7	83.0	95.6	3518
MET	56	LEU	61	H_2	H_2	79.7	66.9	7523
GLY	57	LEU	62	H_2	H_2	97.7	93.8	488
ASN	76	GLN	82	L_2-3	L_2-3	70.1	41.3	79.8
ALA	272	GLN	279	H_7	H_8	81.3	76.2	69.5
LEU	286	ILE	291	H_8	CTR	82.4	80.6	3854
LEU	286	CYS	292	H_8	CTR	48.9	59.7	2867
TYR	103	ILE	134	H_3	H_4	96.7	23.6	2473

288

289 Residue pairs being hydrogen bonded more than 20% of the time in all three systems and being at least five residues
 290 apart are shown. Columns headed with T %, M1 % and M2 % give the percent of the time each residue pair was
 291 hydrogen bonded in the TRIO, Monomer 1 and Monomer 2, resp.

292

293 **Table 3.** Changes in helix length and radius.

294

295

296

	Helix #:	1		2		3		4		5		6.1		6.1		7.1		7.2		8.96	
M #1	Length	0.4	n	-1.8	S	0.6	n	-1.9	n	-0.8	S	-0.9	S	1.0	S	0.0	n	1.4	S	-0.1297	
	Radius	0.3	n	0.5	S	1.0	S	-1.3	n	-0.5	S	-0.4	S	0.4	S	0.4	S	0.4	S	0.2298	
M #2	Length	0.2	n	2.5	S	0.7	S	1.5	S	-0.6	n	-0.1	n	0.6	S	-0.3	n	1.8	S	-0.1299	
	Radius	0.3	n	1.3	S	0.5	n	0.3	n	-0.4	n	0.2	n	0.3	S	0.2	n	0.5	S	0.5308	

301

302 Changes were defined as the difference between the average of values from the representative structures and from the
303 starting model structure.

304

305 A positive number indicates an increase with respect to the starting structure. The labels of the proline-separated
306 segments of helices 6 and 7 have .1 and .2 added. The characters 'S' and 'n' indicate that the reference value is within or
307 outside the range of the representative structure values, respectively

308

309

310

311

312

Table 4 - Docking scores for the small molecules initially designed as agonists and antagonists

SAMPLE	CALCULATED PARAMETER	TRIO	M1	313 M 2 314
Agonists (A) (#35):	Average (active)	-7.81	-8.44	-6.87
	Average (inactive)	-7.70	-8.41	-6.82
	Combined Average	-7.77	-8.43	-6.85
	SD	0.76	0.51	0.44
				317
Antagonists (AA) (#11):	Average (active)	-7.62	-7.97	-6.82
	Average (inactive)	-8.44	-7.93	-6.68
	Combined Average	-7.62	-7.97	-6.82
	SD	1.20	0.65	0.76
				321
All (#46):	Average	-7.84	-8.32	-6.92
	SD	0.88	0.58	0.52
				324

325

326

The averages shown are averages over the weighted averages of the scores on the three representative structures.

327 **Table 5** - Two tailed Welch t-test results score averages
328
329
330

	A-TRIO	A-M1	A-M2	AA-TRIO	AA-M1	AA-M2	ALL-TRIO	ALL-M1	ALL-M2
A-TRIO									
A-M1	<0.0001								
A-M2	<0.0001	<0.0001							
AA-TRIO	0.7029	0.0521	0.0637						
AA-M1	0.4040	0.0497	0.0001	0.4084					
AA-M2	0.0023	<0.0001	0.9030	0.0802	0.0012				
ALL-TRIO	0.7025	0.0003	<0.0001	0.5776	0.5866	0.0012			
ALL-M1	0.0007	0.3678	<0.0001	0.0884	0.3500	<0.0001	0.0028		
ALL-M2	<0.0001	<0.0001	0.5142	0.0877	0.0002	0.6863	<0.0001	<0.0001	

331
332 Averages were calculated for agonists (A-) and antagonists (AA-) docked to the TMD models TRIO, Monomer #1 (M1)
333 and Monomer #2 (M2), resp.
334
335

336

337

338 **Table 6** – Number of contacts between the secondary structure elements of the TMD and the agonistagonist (A) and
 339 antagonist (AA) ligands.

340

341

342

343

	Monomer #1			Monomer #2		
	AA	AA*3	A	AA	3*AA	A
Helix 2	3	9	26	0	0	2
Loop 2-3	102	306	301	14	42	57
Helix 3	49	147	153	13	39	19
Loop 4-5	167	501	586	279	837	985
Helix 4				23	69	85
Helix 5	1	3	12	17	41	72
Helix 6	18	54	52	5	15	12
Loop 6-7	49	147	122	44	132	91
Helix 7	49	147	180	3	9	15

344

345

346

347

348 **Figure Legends**

349

350 **Figure 1:** Cartoon representations of the initial monomer and dimer. a: Initial structure of TMD monomer, b: side view of
351 the correctly oriented monomers protomers resulting in dimeric subunits. c: top view of b.
352 In the dimers, monomer 1 is tan and monomer 2 is orange; waters are represented as sticks.

353

354

355 **Figure 2:** History of residue pair contacts which involve atoms that are mutually proximal at the dimer interface more
356 than 40% of the time.

357

358

359

360 **Figure 3:** 2D RMSD matrices for monomer 1 (panel a) and monomer 2 (panel b), sorted into clusters. The black lines
361 delineate the clusters. The RMSD ranges for each color are specified under both matrices.

362

363

364

365 **Figure 4:** Cluster memberships for monomer 1 (panel a) and monomer 2 (panel b).

366

367

368

369 **Figure 5:** Hydrogen-bond history for monomer 2. Each line represents a residue pair; a line was broken for the time
370 period when the residue pair was not hydrogen bonded. Residue numbers refer to the full TSHR.

371 **Data availability:** Original data generated and analyzed during this study are included in this published article or in the
372 data repositories listed in References.

373 **References**

374

375 1. Davies TF, Andersen S, Latif R, Nagayama Y, Barbesino G, Brito M, Eckstein AK, Kahaly AS-GGJ. Graves' disease.
376 *Nat Rev Dis Primers.* 2020;6:53.

377 2. Mizutori Y, Chen CR, McLachlan SM, Rapoport B. The thyrotropin receptor hinge region is not simply a scaffold for
378 the leucine-rich domain but contributes to ligand binding and signal transduction. *Mol Endocrinol.* 2008;22:1171-
379 1182.

380 3. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves
381 disease. *J Clin Invest.* 2005;115(8):1972-1983.

382 4. Latif R, Graves P, Davies TF. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor *J*
383 *Biol Chem.* 2002;47:45059-45067.

384 5. Latif R, Graves P, Davies TF. Oligomerization of the human thyrotropin receptor: fluorescent protein-tagged hTSHR
385 reveals post-translational complexes *J Biol Chem.* 2001;48:45217-45224.

386 6. Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C, Bouvier M, Smits G, Vassart G, Costagliola S.
387 Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. *EMBO J.*
388 2005;24(11):1954-1964.

389 7. Latif R, Morshed SA, Ma R, Tokat B, Mezei M, Davies TF. A Gq Biased Small Molecule Active at the TSH Receptor.
390 *Front Endocrinol.* 2020;11:372.

391 8. Latif R, Michalek K, Morshed SA, Davies TF. A tyrosine residue on the TSH receptor stabilizes multimer formation.
392 *PLoS One.* 2010;26:e9449.

393 9. Latif R, Michalek K, Davies TF. Subunit interactions influence TSHR multimerization. *Mol Endocrinol.*
394 2010;24(10):2009-2018.

395 10. Cui M, Mezei M, Osman R. Modeling Dimerizations of Transmembrane Proteins using Brownian Dynamics
396 Simulations. *Journal of Computer-Aided Molecular Design.* 2008;22:553-561.

397 11. Latif R, Ali MR, Mezei M, Davies TF. Transmembrane Domains of Attraction in the TSH Receptor. *Endocrinology.*
398 2014;156:488-489.

399 12. Ali MR, Latif R, Davies TF, Mezei M. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating
400 hormone receptor transmembrane domain. *Journal of Biomolecular Structure and Dynamics.* 2014;1-13.

401 13. Cui M, Mezei M, Osman R. Prediction of protein loop structures using a local move Monte Carlo approach and a
402 grid-based force field. *Protein Eng Des Sel.* 2008;21:729-735.

403 14. Mezei M. Grand-Canonical Ensemble Monte Carlo Simulation of Dense Fluids: Lennard-Jones, Soft Spheres and
404 Water. *Mol Phys.* 1987;61:565-582.

405 15. Mezei M. Erratum: Grand-canonical ensemble Monte Carlo study of dense liquid Lennard-Jones, soft spheres and
406 water. *Molecular Physics.* 1989;67:1207-1208.

407 16. Mezei M, Latif R, Das B, Davies TF. Implications of an improved model of the TSH receptor transmembrane domain
408 (TSHR-TMD -TRIO). *Endocrinology.* 2021;162:bqab051

409 17. Mezei M, Beveridge DL. Generic solvation sites in a crystal. *J Comp Chem.* 1984;6:523-527.

410 18. Mezei M. MMC: Monte Carlo program for molecular assemblies. URL: <https://mezeim01.u.hpc.mssm.edu/mmc>.

411 19. Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics. *J Molec Graphics.* 1996;14:33-38.

412 20. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. *J Comput Chem.*
413 2008;29(11):1859-1865.

414 21. Emilia L. Wu, § Xi Cheng,1,§ Sunhwan Jo,1,§ Huan Rui,1,§ Kevin C. Song,1,§ Eder M. Dávila-Contreras,1 Yifei Qi,1
415 Jumin Lee,1 Viviana Monje-Galvan,2 Richard M. Venable,3 Jeffery B. Klauda,2,* and Wonpil Im. CHARMM-GUI
416 Membrane Builder Toward Realistic Biological Membrane Simulations. *J Comput Chem.* 2014;35:1997–2004.

417 22. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K. Scalable
418 molecular dynamics with NAMD. *J Comput Chem.* 2005;26(16):1781-1802.

419 23. Kaufman L, Rousseeuw PJ. "Clustering by means of Medoids". Statistical Data Analysis Based on the L1–Norm and
420 Related Methods. North-Holland.

421 24. Mezei M. Simulaid: a simulation facilitator and analysis program. *J Comput Chem.* 2010;31(14):2658-2668.

422 25. Mezei M, Filizola M. TRAJELIX: A computational Tool for the Geometric Characterization of Protein Helices During
423 Molecular Dynamics Simulations. *J Computer-Aided Molecular Design.* 2006;20:97-107.

424 26. Induced Fit Docking protocol 2015-2, Glide version 6.4, Prime version 3.7. New York, NY, 2015: Schrödinger, LLC.

425 27. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M,
426 Perry JK, Francis P, Shenkin PS. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and
427 Assessment of Docking Accuracy. *J Med Chem.*, 2004;47: 1739–1749.

428 28. Lee MS, Jr. FRS, III CLB. Novel generalized Born methods. *J Chem Phys* 2002;116:10606

429 29. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for
430 macromolecular energy, minimization and dynamics calculation. *J Comp Chem.* 1983;4:187 –217.

431 30. M. Mezei RL, B. Das, & T.F. Davies. Supplementary material for "Modeling TSH Receptor Dimerization at the
432 Transmembrane Domain". *Endocrinology* 2022.
433 URL: https://figshare.com/articles/dataset/TSHR_dim_supplement_pdf/21191512

434 31. Latif R, Ali MR, Ma R, David M, Morshed SA, Felsenfeld DP, Ohlmeyer M, Lau W, Mezei M, Davies TF. New small
435 molecule agonists to the thyrotropin receptor. *Thyroid.* 2015;25:51-62.

436 32. Mezei M, Zhou MM. Dockres: a computer program that analyzes the output of virtual screening of small molecules.

437 *Source Code Biol Med.* 2010;5:2.

438 33. Latif R, Davies TF. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies.

439 *Expert Opinion on Therapeutic Targets.* 2015;19:835-847.

440 34. Faron-Górecka A, Szlachta M, Kolasa M, Solich J, Górecki A, Kuśmider M, Dariusz Żurawek, Dziedzicka-
441 Wasylewska M. Understanding GPCR dimerization. In: Shukla AK, ed. Vol 149: Elsevier; 2019:155-178.

442 35. Gurevich VV, Gurevich EV. How and why do GPCRs dimerize? *Trends in Pharmacological Sciences.* 2008;29:234-
443 240.

444 36. Breitwieser GE. G Protein-Coupled Receptor Oligomerization. *Circulation Research.* 2004;94:17-27.

445 37. Allen MD, Neumann S, Gershengorn MC. Occupancy of both sites on the thyrotropin (TSH) receptor dimer is
446 necessary for phosphoinositide signaling. *FASEB J.* 2011;25(10):3687-3694.

447 38. Graves PN, Vlase H, Bobovnikova Y, Davies TF. Multimeric complex formation by the thyrotropin receptor in
448 solubilized thyroid membranes. *Endocrinology.* 1996;137:45217-45224.

449 39. Chazenbalk GD, Kakinuma A, Jaume JC, McLachlan SM, Rapoport B. Evidence for negative cooperativity among
450 human thyrotropin receptors overexpressed in mammalian cells. *Endocrinology.* 1996;137(11):4586-4591.

451 40. Calebiro D, de Filippis T, Lucchi S, Covino C, Panigone S, Beck-Peccoz P, Dunlap D, Persani L. Intracellular
452 entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. *Hum Mol
453 Genet.* 2005;14(20):2991-3002.

454 41. Graves PN, Vlase H, Davies TF. Folding of the recombinant human thyrotropin (TSH) receptor extracellular domain:
455 identification of folded monomeric and tetrameric complexes that bind TSH receptor autoantibodies. *Endocrinology.*
456 1995;136(2):521-527.

457 42. Latif R, Ando T, Davies TF. Lipid rafts are triage centers for multimeric and monomeric thyrotropin receptor
458 regulation. *Endocrinology.* 2007;148(7):3164-3175.

459 43. Latif R, Graves P, Davies TF. Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. *J
460 Biol Chem.* 2002;277(47):45059-45067.

461 44. Fotiadis D, Jastrzebska B, Philippson A, Müller DJ, Palczewski K, Engel A. Structure of the rhodopsin dimer: a
462 working model for G-protein-coupled receptors. *Current Opinion in Structural Biology.* 2006;16:252-259.

463 45. Zhao DY, Pöge M, Morizumi T, Gulati S, Eps NV, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister
464 W, Ernst OP, Palczewski K. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. *J Biol Chem.*
465 2019;294:14215-14230.

466 46. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall NT, Inglese J, Austin CP,
467 Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC. Small-molecule agonists for the thyrotropin receptor
468 stimulate thyroid function in human thyrocytes and mice. *PNAS*. 2009;106:12471-12476.

469 47. S.Neumann, M.C.Gershengorn. Small molecule TSHR agonists and antagonists Le récepteur de TSH et les petites
470 molécules : les agonistes et les antagonistes. *Annales d'Endocrinologie*. 2011;72:74-76.

471 48. Latif R, Realubit RB, Karan C, Mezei M, Davies TF. TSH Receptor Signaling Abrogation by a Novel Small Molecule.
472 *Frontiers in Endocrinology*. 2016;7:130.

473 49. Kleinau G, Haas A-K, Neumann S, Worth CL, Hoyer I, Furkert J, Rutz C, Gershengorn MC, Schülein R, Krause G.
474 Signaling-sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor. *The FASEB
475 Journal*. 2010;24:2347–2354.

476 50. Getter T, Kemp A, Vinberg F, Palczewski K. Identification of small-molecule allosteric modulators that act as
477 enhancers/disrupters of rhodopsin oligomerization. *Jounal of Biological Chemistry*. 2021;297.

478

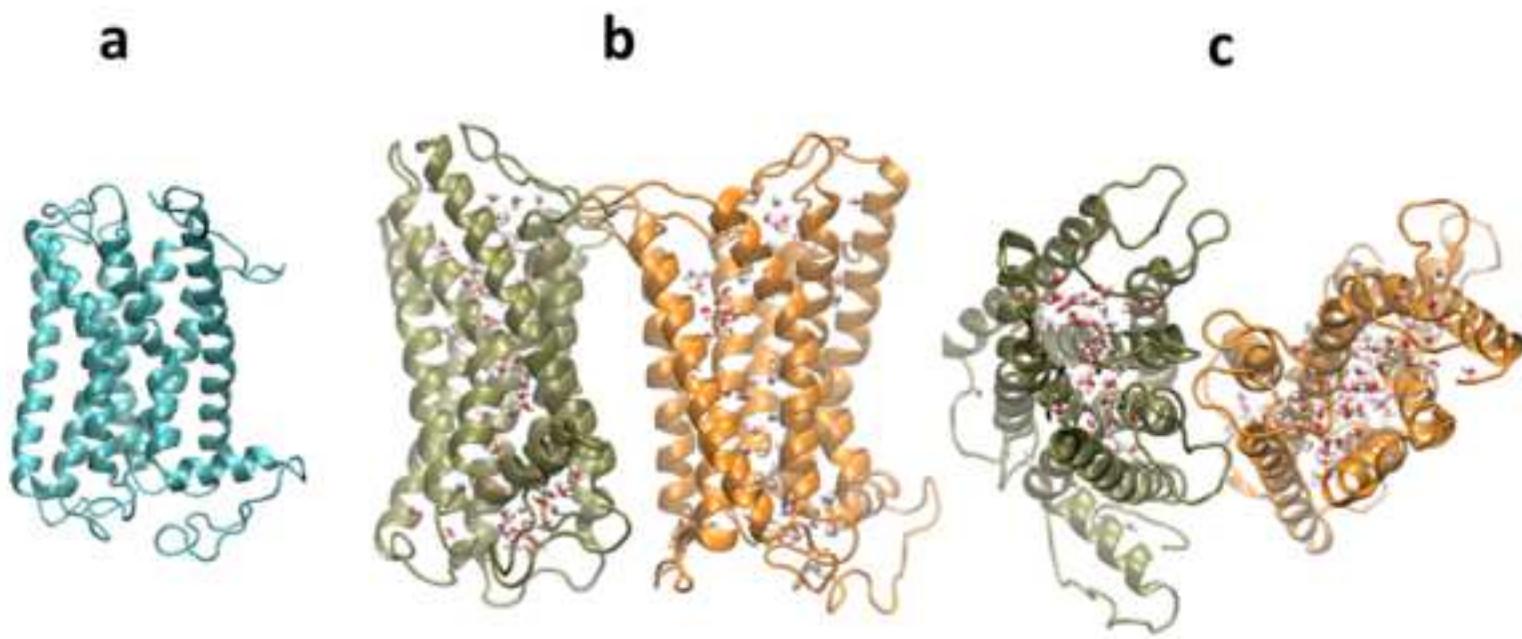


Figure 2

[Click here to access/download;Figure;fig_2.epi](#)

ARG 300 - GLN 205
ARG 129 - GLU 111
VAL 136 - ILE 134
LEU 39 - TYR 114
THR 34 - CYS 192
LYS 288 - LYS 196
TYR 59 - MET 165
THR 70 - PRO 164
LYS 38 - TRP 113
ARG 129 - ARG 127
TRP 139 - GLY 137
MET 58 - ALA 174
VAL 140 - VAL 136
CYS 55 - PHE 178
PHE 143 - VAL 140
LEU 128 - TYR 114
PHE 54 - THR 181
PHE 93 - LEU 144
VAL 136 - ALA 133
THR 89 - LEU 148
TYR 74 - MET 165
TYR 59 - LEU 148
HSD 36 - TRP 113
LEU 150 - VAL 151
PHE 143 - PHE 143
ARG 129 - HSD 130
PHE 96 - LEU 144
PHE 92 - LEU 147
ASN 88 - VAL 151
PRO 85 - MET 165
PRO 85 - THR 167
TYR 59 - PHE 178
PHE 54 - PHE 178
HSD 36 - PHE 118
LEU 33 - ILE 189

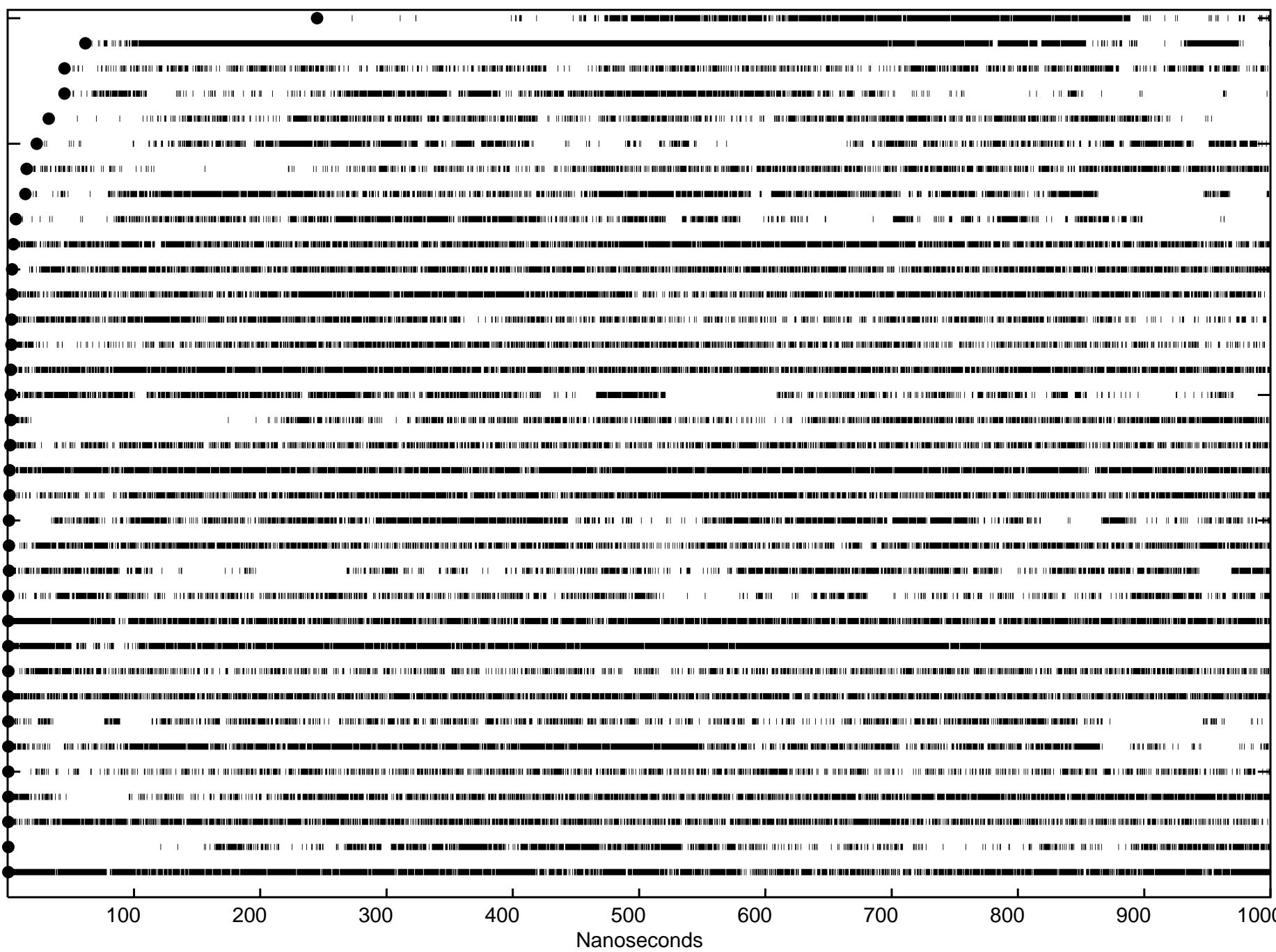
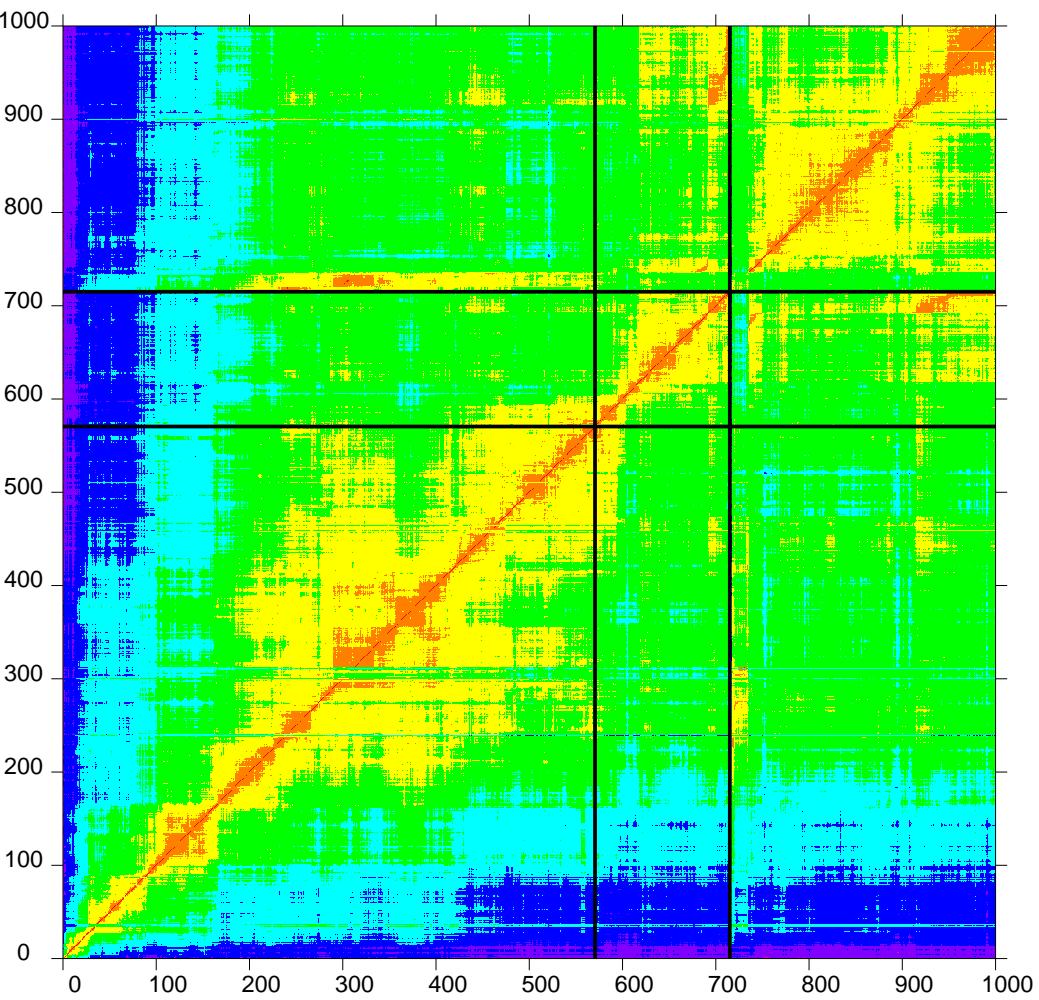
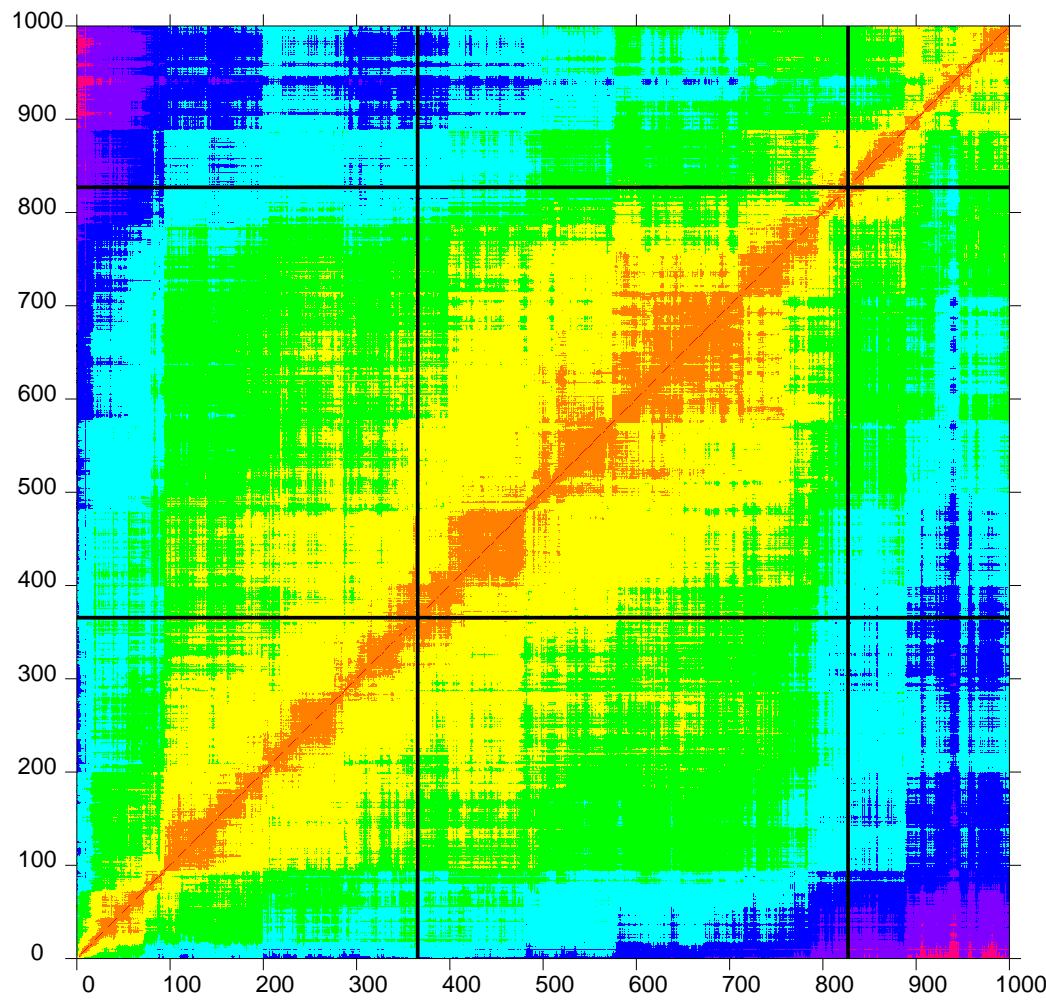




Figure 3

Click here to access/download;Figure;fig_3ab.epi

a

<=0/8:□ <=1/8:■ <=2/8:■ <=3/8:■ <=4/8:■ <=5/8:■ <=6/8:■ <=7/8:■ <=8/8:■ >8/8:■
 <= 0.00 <= 0.75 <= 1.50 <= 2.25 <= 3.00 <= 3.75 <= 4.50 <= 5.25 <= 6.00 > 6.00

b

<=0/8:□ <=1/8:■ <=2/8:■ <=3/8:■ <=4/8:■ <=5/8:■ <=6/8:■ <=7/8:■ <=8/8:■ >8/8:■
 <= 0.00 <= 0.80 <= 1.61 <= 2.41 <= 3.22 <= 4.02 <= 4.83 <= 5.63 <= 6.44 > 6.44

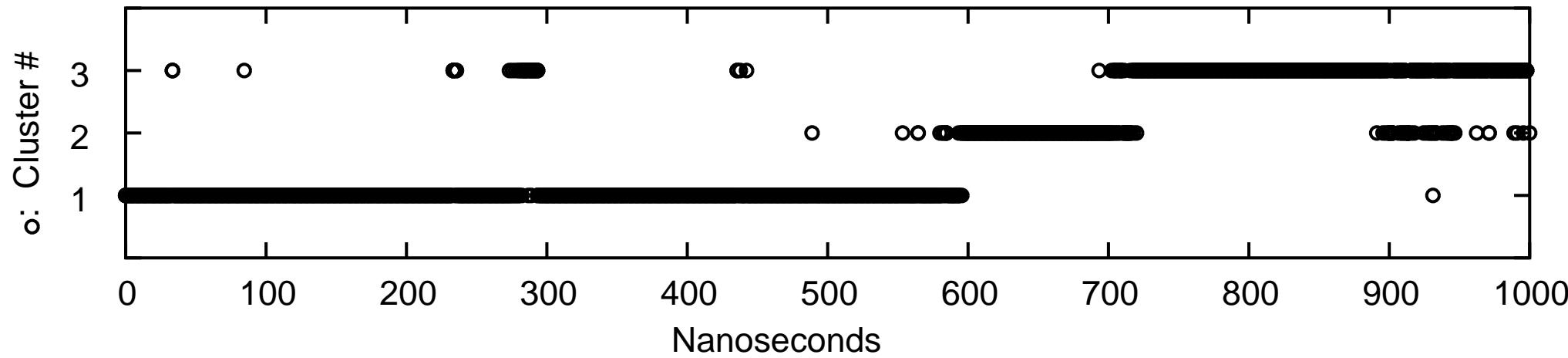
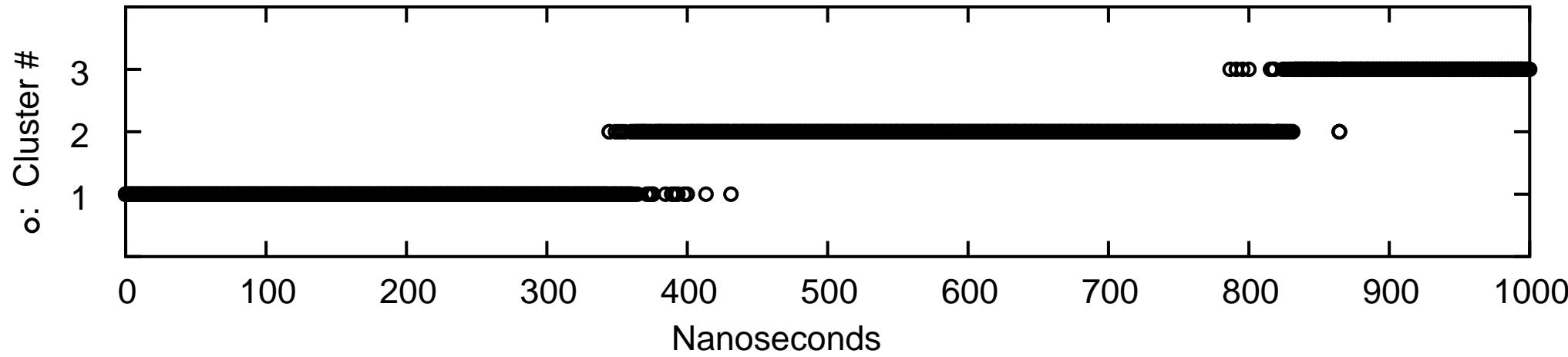
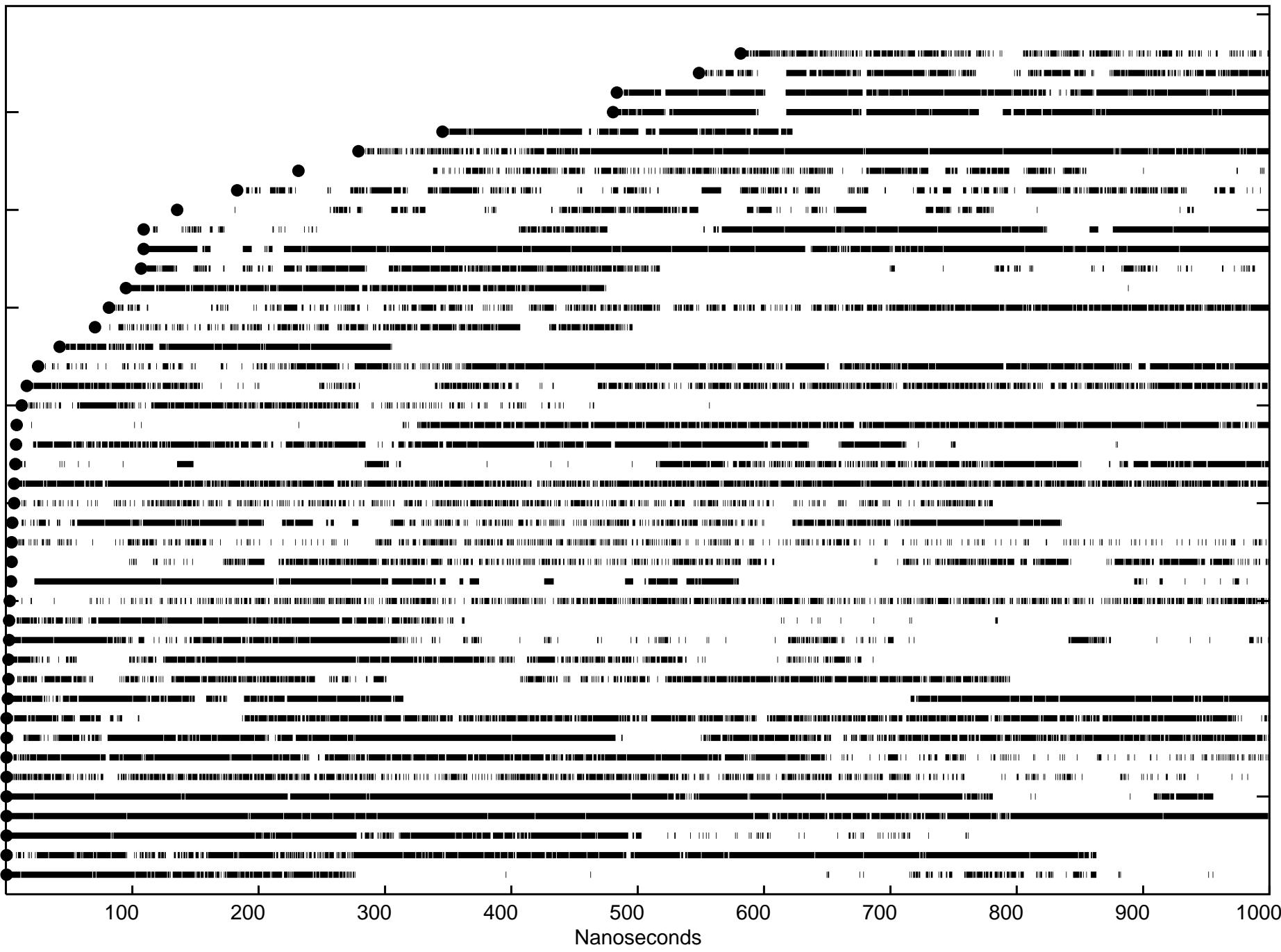
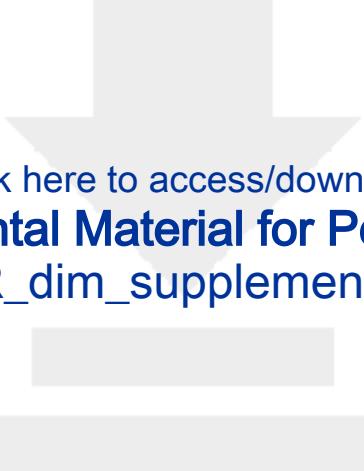




a**b**

Figure 5

[Click here to access/download;Figure;fig_5.epi](#)

ARG 418 - ASP 474
ILE 568 - ASP 573
LYS 565 - THR 576
SER 567 - ASP 573
MET 527 - SER 716
PRO 571 - ALA 581
ASN 447 - ASP 530
ASP 410 - LYS 415
SER 694 - ARG 701
SER 567 - LEU 653
PRO 556 - SER 561
ASN 495 - SER 561
ASP 487 - LYS 565
SER 562 - GLU 575
SER 472 - HSD 484
LYS 445 - ARG 534
ASN 590 - SER 641
ALA 522 - MET 527
CYS 569 - ALA 647
LEU 446 - ARG 534
TYR 601 - ALA 623
ASN 495 - TYR 563
LEU 693 - ILE 698
GLN 489 - CYS 494
LEU 439 - LYS 445
CYS 636 - ASN 670
ASN 432 - SER 671
ASP 460 - TYR 667
LEU 693 - CYS 699
ILE 470 - ASN 483
ASP 460 - SER 671
ASP 633 - ASN 670
TRP 488 - SER 657
SER 442 - ASP 688
ALA 679 - GLN 686
LEU 570 - LEU 580
LEU 552 - TYR 582
TYR 510 - ILE 541
ASN 483 - GLN 489
ASP 474 - SER 479
GLY 464 - LEU 469
MET 463 - LEU 468
ASN 455 - TRP 546

Click here to access/download

Supplemental Material for Peer Review
TSHR_dim_supplement.docx