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Abstract

Biophysical studies have established that the TSH receptor (TSHR) undergoes post translational modifications
including dimerization. Following our earlier simulation of a TSH receptor — transmembrane domain (TMD) monomer (called
TSHR-TMD-TRIO) we have now proceeded with a molecular dynamics simulation (MD) of TSHR-TMD dimerization using
this improved membrane embedded model. The starting structure was the TMD protein with all extracellular and
intracellular loops and internal waters, which was placed in the relative orientation of the model originally generated with
Brownian dynamics. Furthermore, this model was embedded in a DPPC lipid bilayer, further solvated with water and added
salt. Data from the molecular dynamic simulation studies showed that the dimeric subunits stayed in the same relative
orientation and distance during the 1000 ns of study. Comparison of representative conformations of the individual
monomers when dimerized with the conformations from the monomer simulation showed subtle differences as represented
by the backbone RMSDs. Differences in the conformations of the ligand binding sites, suggesting variable affinities for
these “hot spots”, were also revealed by comparing the docking scores of 46 small molecule ligands that included known
TSHR agonists and antagonists as well as their derivatives. These data add further insight into the tendency of the TSHR-
TMD to form dimeric and oligomeric structures and show that the differing conformations influence small molecule binding

sites within the TMD.
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INTRODUCTION

The TSH receptor (TSHR) is a class A GPCR with particular importance because of its involvement in autoimmune
thyroid disease, particularly Graves’ disease in which it is the primary antigen (1). The TSHR is a 764 amino acid protein
comprising a large, heavily glycosylated, ectodomain (ECD) connected to a seven-helix transmembrane domain (TMD) via
a hinge region (2,3). We have previously shown, by biochemical and biophysical methods that TSHRs in native, as well as
transfected cells, exist as both dimeric and oligomeric units and that oligomerization may be regulated by exposure to the
TSH ligand (3-5). Studies have also shown that TSHR dimerization may have physiological consequences including a
role in receptor negative cooperativity (6) and G-protein selection and activation favoring Gaq (7). We have also shown
previously that dimerization involves contact between the TSHR ECDs (8) and experimental data with truncated TSHRs
have indicated that the TMD alone continues to dimerize and must also have a major role in TSHR dimerization and
oligomerization (9).

Using a Brownian Dynamics approach (10) we previously generated a computer model for a TSHR dimer of the
transmembrane domain (TMD) using our homology model (11). In this study the dimer model obtained was verified by
mutating three pairs of residues forming contacts between the monomers to cysteines and verifying that this resulted in
disulfide links between the monomers. Since then the TSHR-TMD monomer model has been further enhanced by

generating its extracellular loops (12) by the Monte Carlo technigue (13) and more recently, we used the same technique
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to generate the intracellular loops. A grand-canonical ensemble (GCE) Monte Carlo (MC) simulation (14,15) was then used
to add internal waters. This enhanced TSHR monomer model was subsequently embedded in a DPPC membrane including
a water layer with counterions to neutralize the system and provide an environment with an ionic strength of 0.3 m/L. After
equilibration, the membrane-embedded system was subjected to a 600 ns molecular dynamics (MD) simulation resulting

in three representative structures of the TMD which we named TSHR-TMD-TRIO (16).

The improved membrane-embedded monomer model (TSHR-TMD-TRIO) has now allowed us to examine TSHR
TMD dimerization with molecular dynamic simulation to gain better insight into receptor conformations and the interaction
of allosteric ligands to the dimeric structure. The starting structure consisted of two copies of the initial TRIO protein with
all loops and internal waters placed in the relative orientation of the model generated with Brownian dynamics which was

embedded in a DPPC bilayer, further solvated with water, counter ions and added salt, as previously described (16).

MATERIALS AND METHODS

Initial TSHR TMD monomer model: The structure with the largest weight from the TSHR-TMD-TRIO structure (16) was
used to prepare the initial dimer model. As for the generation of TSHR-TMD-TRIO, the positions of internal waters were
obtained as generic sites (17) calculated with the program MMC (18). Generic sites are obtained in an iterative procedure

where in each configuration waters are assigned to the current site estimates using a graph-theory based optimization.
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Setting up for dimerization: Two copies of the TMD with the internal waters were arranged next to each other in a
relative orientation that modeled the contacts established in our original dimer study (11). using a series of translations
and rotations guided by the molecular graphics display (19). This dimer model with all loops generated and with internal
water molecules in place was then sent to the charmm-gui server (20) to be inserted into a DPPC bilayer which also added
the rest of the solvating waters and counterions. Besides the protein, the system contained 458 DPPC molecules, 97 K*
ions, 121 CI ions and 36,093 waters. The system generated used periodic boundary conditions with hexagonal prism as
the unit cell. The initial height of the prism was 110 A and the edge of the hexagon was 80 A. The system thus generated

included inputs for a six-step equilibration protocol and inputs for the production run(21), all using the program NAMD(22).

The equilibration protocol started with a 1000-step minimization, followed by MD simulations that imposed constraints on
the protein, lipids and ions. Six simulations were performed with progressively weaker force constants; the sixth step
released all constraints except for a very week constraint for the protein backbone. The first three runs were 125 ps long

and used 1 fs timestep; the last three steps each were 500 ps long and used 2 fs timestep.

Dimer simulations: MD simulation was run using the program NAMD (22) in the (T,P,N) ensemble using 2 ps timestep.

The temperature was set to 323.5 K, the pressure to 1 atm. The structures on the trajectory were clustered based on the
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distances between the monomer backbone conformations represented as RMSD without the C-terminal tail. k-medoid
clustering(23) was used separately for each monomer using the program Simulaid (24). This method uses as input the
number of clusters requested and performs the clustering in an iterative manner without resorting to cutoffs; the number of
clusters requested (three for both monomers) was arrived at observing the respective 2D RMSD matrix shown of Figure
3). For each cluster the conformation whose largest RMSD with the rest of the cluster members was the smallest among
the members of the cluster was used as the representative structure to be used for docking. The analysis of the helix
positions and orientations were performed with the TRAJELIX module (25) of the program Simulaid (24). TRAJELIX obtains
the helix axis by fitting a line to the backbone atoms in residue ranges selected by the user; analyses are based on the

coordinates of the beginning, middle and of the axes as well as on their direction.

Small molecule docking studies: The docking experiments described here used the program Glide (26,27) with the
induced fit option. Before the docking runs the representative structures extracted from the MD run were subjected to
minimization using the implicit membrane model GBMV (28). The minimization was set up with charmm-gui (20) and the
minimization was run with Charmm (29). A set of 46 ligands were docked to each representative structure (Supplementary
Table 1(30)). Among the ligands docked were active agonists (n=3) and antagonists (n=3) of variable potency, including
ones developed in our laboratory (31), and derivatives of known active compounds (n=40). Not all derivatives, however,

were found to be active.
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Statistical evaluations: The tests for the significance of differences between score averages were performed with the

Graphpad server (URL: https://www.graphpad.com/quickcalcs/ttest2/) using the two tailed Welch t-test that does not require

the two samples to have the same variance.

RESULTS:
The TSHR monomer and initial dimer

Figure 1la illustrates a TSHR monomer extracted from the TSHR-TMD-TRIO model previously detailed (16) which
was embedded in a lipid membrane. Important points to note include the conformation which was obtained from the MD
simulation studies. The starting dimer conformation (Figures 1b and 1c) was derived by placing two copies of the
monomer in an orientation suggested by our earlier Brownian Dynamic studies (11) and included the internal waters
generated by the grand-canonical ensemble (GCE) MC simulation. The dimer interface constructed as described involved
helices 1, 2 and 4 on monomer 1 (green) and helices 4 and 5 on monomer 2 (orange). This model conformation was then

sent to the charmm-gui server.
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MD simulation

The six-step equilibration protocol provided by the charmm-gui server was followed by a 1,000 nanosecond (ns) MD
run using 2fs time step. The animation of the trajectory showed that the monomers stayed in contact throughout the
simulation and no lipid molecules entered the interface. Figure 2 shows the history of the many residue pairs in contact for
more than 40% of the simulation time and making up the dimeric structure. Note that two atoms were considered to be in
contact if they were mutually proximal (32). These data showed that the contact between monomers was maintained at all

times throughout the simulation. There was no breakup of the dimeric conformation during the entire period of simulation.

The simulation box size during the simulation was monitored and was found stable. The simulation trajectory was
also animated on a graphical display and no anomaly was observed in the bilayer; the counterions were found to sample
well the solvent region and no significant water penetration was observed into the lipid bilayer nor was any lipid seen

penetrating the dimer interface.

Dimer clustering

We then analyzed the structures by examining the clustering of the monomers in the dimer simulations. Clustering
of similar monomer structures was found to be best represented by three dominant conformations for both monomers.
These clusters were based on the backbone root mean square deviation (RMSD) calculated without the C-terminal tail.

9
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The RMSD matrix of the conformations rearranged by clusters is shown in Figures 3a and 3b for monomers 1 and 2,
respectively. The black lines delineate the different clusters. The cluster memberships are shown in Figures 4a and 4b
for monomers 1 and 2, respectively showing that the monomer conformations were not totally consistent with time indicating

movement between the clusters. Such movements are indicators of extensive sampling.

The overall conformations of the representative structures from the earlier TRIO model and the two simulated
monomers were then compared by calculating the backbone RMSDs (with three representative structures from the
clustering) for both of the newly simulated monomers (1 and 2) and the TRIO monomer making nine structures to analyze.
The larger the RMSD the more flexible the structure is within the model. The matrix of the RMSDs is given in Table 1 and
shows that this type of analysis illustrates differences between the model structures; for example monomer 2 appears more

flexible than monomer 1 and both show subtle differences between each other and from the TRIO monomer.

Intramolecular hydrogen bonding

The formation and breakup of the hydrogen bonds within the TMD monomers were compared for the 600 ns TRIO
simulation and the two monomers within the 1000 ns dimer simulation by tracking the presence and absence of hydrogen
bonds among all pairs of residues. Figure 5 shows a typical graph for the second monomer of the dimer; residue pairs

should be hydrogen bonded at least 20% of the time. Also, residues in the pair have to be at least five residues apart — this

10
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eliminates the trivially present hydrogen bonds forming the transmembrane helices. Supplementary Table 2(30) lists the
residue pairs that are hydrogen bonded according to the criteria above in at least one of the three models, the % of time
they are hydrogen bonded and their multiplicity (1/2/3). Eleven residue pairs were hydrogen bonded in all three systems

(Table 2) and their conservation indicated they likely represented important bonding sites.

Helix changes

As all GPCRs, the TMD of the TSHR consists of seven transmembrane helices. It also has an 8™ helix on the
intracellular side and a long C-terminal tail. Helices 6 contains one proline and helix 7 contains two. Since prolines introduce
kinks in helices, for the purpose of these analyses these two helices are broken into two (the short helix between the two
prolines in helix 7 is ignored). The analyses described below for each property calculated its average over the three
representative structure of one of the monomers and compared it with the corresponding value from the third structure in
the TRIO model. If the value of the TRIO model fell outside the range of the monomer values then the change was
considered significand (marked with ‘S’ in the respective table). The changes in the lengths (end-to end distance) of the
transmembrane helices and the changes in the radii of the circle fitted to the helix axes (a measuring the degree of bent)
are shown in Table 3 for both monomers. Interestingly, most of the changes, while small, occur in a different direction for

the two monomers. Supplementary Table 3(30) shows the changes in the helix-helix distances using two different

11
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measures: the distance between the helix centers and the distance (closest approach) of the helix axes for monomers 1
and 2. For monomer 1, Helix 7 shows large changes while for Monomer 2 Helices 5 and 6 is seen the most variable and
Supplementary Table 4(30) contains the changes in the helix-helix angles. They display similar behavior as the distances:

for monomer 1 Helix 7 shows the largest changes while for monomer 2 Helices 6 and 7 are the most variable.

Small molecule docking

In order to examine the preference of allosteric ligands that are targeting the TSHR-TMD in either the dimeric or
monomeric conformation, we examined the docking of a series of small molecules (h=46) some of which we have described
earlier (33). Docking was performed as described earlier using the cluster sizes for monomer #1 [1141,289,570] and
monomer #2 [791,923,346] to weight the docking scores of each ligand on the cluster representatives to give an overall
docking score for each ligand; docking scores represent the free energy of binding to the receptor. Supplementary Table
1(30) shows the docking scores and the weighted averages of the scores for all 46 ligands. The weighted score averages
over agonists and antagonists for the three targets (TRIO, Monomer #1 and Monomer#2) are shown in Table 4. This table
also gives the separate averages for the agonist and antagonist groups of compounds found earlier to be biologically active
or inactive. As there was very little difference between the respective active and inactive sets the table only shows the

standard deviations for the whole agonist and antagonist sets. Table 5 gives the results of the t-test comparing the agonist

12
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and antagonist averages of docking scores against the three targets; statistically significant differences are shown in bold.
These data show that certain small molecules have a significant preference for binding to one of the monomers compared

to the other indicating that the difference between conformations is likely to be biologically significant.

The secondary structure elements (helices or loops) that formed contacts with ligands were also examined. Table
6 shows the number of contacts between agonist and antagonist ligands for each helix and loop, separately for each
monomer. As there are only 11 antagonists vs 35 agonists, the number of antagonists scaled by three is also shown to
make the comparison fair. While there were significant differences between the agonist and antagonist docking scores,
there was very little difference in the number of contacts. One exception would be Helix 5 that seems to be favored by
agonists in both monomers. Also, Helix 4 was only contacted by a few ligands in monomer #2 — another indication of

structural differences between the monomers in the dimer simulation.

DISCUSSION:

Dimerization is the normal state rather than the exception in many Class A and Class C G-protein coupled receptors
(GPCR) (34,35). Homo or hetero dimerization in GPCRs appears to not only provide molecular mechanisms for agonist-
induced activation but also increase specificity of ligand recognition and versatility of downstream signaling (36). Our

earliest studies using native porcine thyroid membranes showed that TSHRs exist as higher order forms including

13
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oligomeric and dimeric structures (5). Since then studies from our laboratory, and others (4,6,11,37), using biophysical
techniques, including FRET and BRET, have developed important clarification of the existence of constitutive TSHR
dimers and oligomeric forms in heterologous systems as well as native thyrocytes (6,8,38). Constitutive homodimeric and
oligomeric TSHR forms have been shown to have a role in negative co-operativity (6,39), in regulating early events during
receptor maturation and intracellular trafficking (9,40) and in Gag/11 Signaling (37). We have previously also shown that these
monomeric and higher order complexes are compartmentalized within lipid rafts in the plasma membrane and furthermore
that these forms can bind TSH and TSHR autoantibodies (41) and may be regulated within lipid rafts (42,43). However,
for understanding their exact roles under physiological or pathological conditions it is important to obtain better insight into
the interaction caused by individual protomers that result in these higher order forms and conformations that may result
due to these interactions. Although we have previous physical evidence of dimerization at the ectodomain and the TMD
(8,11) the present in-silico study was designed to first examine just TMD dimerization using a membrane embedded model
TMD which we developed earlier (16) and which mimics the native state of the TMD of the TSHR.

The DPPC membrane embedded monomeric TSHR-TMD model (Figure 1a) closely resembles the native receptor
and was an ideal starting point for examining a dimeric structure. We obtained evidence for the tendency of the monomers
to be held together as constitutive dimeric units (Figures 1b & 1c) seen in the animation of the 1000ns MD simulation
trajectory as well as from the persistence of the contact residues in the dimeric interface which showed residue pairs in
contact for more than 40% of the simulation time (Figure 2). Furthermore, the interface predicted by the Brownian

14
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dynamics simulation approach was correct and the simulation showed subtle differences between the two monomers as
well as between the conformations in the monomer and dimer simulations. These differences manifested themselves in
the RMDSs of the superimposed structures and the hydrogen-bond patterns within the monomers (after excluding the
hydrogen bonds within the helices). It is notable that there were only 11 hydrogen bonds that persisted in all three systems
(out of the 87 described in Supplementary Table 2(30)). The variability in the dimeric interface further reinforced our earlier
biochemical studies using truncated TMD constructs (11) and ECD beheaded constructs (9) suggesting the promiscuous
nature of the dimerization interface. The cluster analysis and hydrogen bonding history (Figures 3, 4 and 5) within the
monomers during the simulation further reveal flexibility of the conformation assumed by the monomers. This flexibility
could be the cause of the asymmetric nature of dimerization leading to difficulty in obtaining cells solely expressing dimers
to study their function in isolation. However, studies in other GPCRs, especially rhodopsin receptors, have revealed this
dynamic intra- and inter- helical interactions which has been proposed from dimensional models obtained from atomic
force microscope studies (44) and crystallization (45). Our MD simulations support and demonstrate the dynamic nature of
the conformations that the monomers undergo as a dimeric unit which likely create novel conformations leading to the
asymmetric interaction seen in TSHR-TMD dimerization.

In pursuit of developing novel therapeutics against the TSHR, our laboratory and others, have identified several
agonists (7,31) and antagonists (46-48) for the TSHR. These are allosteric small molecules ligands (SMLs) targeted to

binding pockets within the TSHR-TMD (49) and we used them as a tool to characterize the differences between the
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conformations of the monomer during the MD simulation. Although there was little difference in the number of ligands
contacting each helix and loop, statistical analysis of the docking scores (Tables 5 & 6) showed a clear difference between
agonists and antagonists suggesting that small molecules which are structurally different but which go to similar binding
pockets in the TSHR TMD can be influenced by the conformations of the monomers in the dimeric unit and may show
preferential binding. Understanding the preference of the small molecules targeted to the receptor TMD will assist future
SAR studies with the small molecules. It is known that small molecule ligands can enhance or disrupt
dimerization/oligomerization of rhodopsin receptors (50) which also suggests that understanding TSHR dimerization will
further our understanding of TSHR physiology

In conclusion this in silico study using a novel model of the TSHR TMD has provided further insight into our current
understanding of TSH TMD dimerization and shown the dynamic nature of each monomeric unit that may lead to

preferential binding of allosteric ligands.
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Table 1. Backbone RMSD between the cluster representatives of the two monomers and the TRIO model

M1.1 [M1.2 [M1.3 ] [M2.1 [ M2.2 |M2.3| [TRIO.1|TRIO.2 [ TREKY3
M1.1 0.00| 3.24] 3.71 3.96 | 5.00/| 5.76 5.34 6.00 5.73.
M1.2 3.24| 0.00| 2.67] | 4.82| 556 6.30 546 | 596 | 5.72
M1.3 3.71| 2.67| 0.00 4.96| 5.65| 6.60 5.40 5.93 G.QEL
M2.1 3.96| 4.82| 4.96 0.00| 3.49| 4.90 4.49 5.25 5.265
M2.2 5.00| 5.56]| 5.65 3.49| 0.00]| 2.87 4.50 5.06 4.866
M2.3 576 | 6.30| 6.60 4.90| 2.87| 0.00 5.39 5.86 5%?2
TRIO.1 | 5.34| 5.46 | 5.40 4.49| 450] 5.39 0.00 3.01 3.5d9
TRIO.2 | 6.00| 5.96 | 5.93 5.25| 5.06| 5.86 3.01 0.00 3.24g
TRIO.3| 5.73| 5.72| 6.05 5.13| 4.66| 5.16 3.57 3.21 0.001

RMSDs are in A. M1, M2 and TRIO indicate Monomer 1, Monomer 2 and TRIO (the monomer simulation), resp. The
number after the period is the cluster number whose representative was used to calculate the RMSD.
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288
289
290
291

Table 2. Significant hydrogen bonded residue pairs.

==

Res M1 Res M2 T%| M1% | M %
ASP 3] LYS 8 H 1 H1| 356| 230 38
SER 35| ASP | 281 H 1 H8| 723| 704| 2798
ASN 48| TRP | 139 H 2 H4| 922 ] 405 2@
ASP 53| SER| 264 H 2 H7| 830] 956 558
MET 56 | LEU| 61 H 2 H2| 79.7] 669 4.
GLY 57| LEU| 62 H 2 H2| 977 938 2%%
ASN 76 | GIN| 82| L 23| L23]| 701] 413]| 4938
ALA| 272 | GLN| 279 H 7 H8| 813| 762 9%
LEU| 286 | ILE| 291 H8| CTR| 824 806| &%
LEU| 286 | CYS| 292 H8| CTR| 489 59.7| 2867
TYR| 103| ILE| 134 H 3 H4| 96.7] 236 248

TSH receptor dimers

Residue pairs being hydrogen bonded more than 20% of the time in all three systems and being at least five residues
apart are shown. Columns headed with T %, M1 % and M2 % give the percent of the time each residue pair was

hydrogen bonded in the TRIO, Monomer 1 and Monomer 2, resp.
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301
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308

Table 3. Changes in helix length and radius.

TSH receptor dimers

295

Helix #: 1 2 3 4 5 6.1 6.1 7.1 7.2 896

M #1 Length | 0.4|n| -1.8|S|06|n|-19|n|-08|S|-09|S|10|S| 00| n|l1l4|S]|-0.ogn
Radius | 0.3|n| 05[{S|10(S|-13|n|-05|S|-04|S|04|S| 04]|S|04|S| 0.204

M #2 Length | 0.2|n| 25|(S|07|S| 15|/S|-06| n|-01|/n|06|S|-03|n|18|S]|-0.1200n
Radius | 0.3|n| 13|S|05(n| 03|n|-04| n| 02|n|03|S| 02| n|05]|S| 0.3B30®

Changes were defined as the difference between the average of values from the representative structures and from the
starting model structure.

A positive number indicates an increase with respect to the starting structure. The labels of the proline-separated

segments of helices 6 and 7 have .1 and .2 added. The characters ‘S’ and ‘n’ indicate that the reference value is within or
outside the range of the representative structure values, respectively

20



309
310
311
312

325
326

Table 4 - Docking scores for the small molecules initially designed as agonists and antagonists

SAMPLE EQIFEXLI\;LE%ED TRIO M1 j\?ljz
Agonists (A) (#35): Average (active) -7.81 -8.44 -\éf§7
Average(inactive) -7.70 -8.41 3P
Combined Average -7.77 -8.43 B1%5
SD 0.76 0.51 0,44

JLT
Antagonists (AA) (#11): Average (active) -7.62 -7.97 S
Average (inactive) -8.44 -7.93 %168
Combined Average -7.62 -7.97 6.82
sD 120| o065| 076

321
All (#46): Average -7.84 -8.32 K7
sD 088| o058| ts2

324

TSH receptor dimers

The averages shown are averages over the weighted averages of the scores on the thre representative structures.
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332
333
334
335

Table 5 - Two tailed Welch t-test results score averages

A-TRIO A-M1 A-M2 AA-TRIO AA-M1 AA-M2 | ALL-TRIO | ALL-M1 | ALL-M2
A-TRIO
A-M1 <0.0001
A-M2 <0.0001 <0.0001
AA-TRIO 0.7029 0.0521 0.0637
AA-M1 0.4040 0.0497 0.0001 0.4084
AA-M2 0.0023 <0.0001 0.9030 0.0802 0.0012
ALL-TRIO 0.7025 0.0003 <0.0001 0.5776 0.5866 0.0012
ALL-M1 0.0007 0.3678 <0.0001 0.0884 0.3500 <0.0001 0.0028
ALL-M2 <0.0001 <0.0001 0.5142 0.0877 0.0002 0.6863 <0.0001 | <0.0001

TSH receptor dimers

Averages were calculated for agonists (A-) and antagonists (AA-) docked to the TMD models TRIO, Monomer #1 (M1)

and Monomer #2 (M2), resp.
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343
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TSH receptor dimers

Table 6 — Number of contacts between the secondary structure elements of the TMD and the angenistagonist (A) and
antagonist (AA) ligands.

Monomer #1 Monomer #2

AA | AA*3 A AA | 3*AA A
Helix 2 3 9 26 0 0 2
Loop 2-3 102 | 306 | 301 14 42 | 57
Helix 3 49 147 | 153 13 39 19
Loop 4-5 167 501 | 586 279 | 837 | 985
Helix 4 23 69 85
Helix 5 1 3 12 17 41 72
Helix 6 18 54 52 5 15 12
Loop 6-7 49 147 | 122 44 | 132 91
Helix 7 49 147 | 180 3 9 15
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TSH receptor dimers

Figure Legends

Figure 1: Cartoon representations of the initial monomer and dimer. a: Initial structure of TMD monomer, b: side view of
the correctly oriented monomers protomers resulting in dimeric subunits. c: top view of b.
In the dimers, monomer 1 is tan and monomer 2 is orange; waters are represented as sticks.

Figure 2: History of residue pair contacts which involve atoms that are mutually proximal at the dimer interface more

than 40% of the time.

Figure 3: 2D RMSD matrices for monomer 1 (panel a) and monomer 2 (panel b), sorted into clusters. The black lines
delineate the clusters. The RMSD ranges for each color are specified under both matrices.

Figure 4: Cluster memberships for monomer 1 (panel a) and monomer 2 (panel b).

Figure 5: Hydrogen-bond history for monomer 2. Each line represents a residue pair; a line was broken for the time
period when the residue pair was not hydrogen bonded. Residue numbers refer to the full TSHR.
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TSH receptor dimers

Data availability: Original data generated and analyzed during this study are included in this published article or in the
data repositories listed in References.
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