Convergence characteristics of Monte Carlo—Metropolis
computer simulations on liquid water

Mihaly Mezei, S. Swaminathan, and David L. Beveridge

Chemistry Department, Hunter College of the City University of New York, New York, New York 10021

(Received 4 April 1979; accepted 9 July 1979)

Very long (~5000 K) Monte Carlo computer simulations are reported for liquid water described in terms
of the analytical potential functions of Matsuoka, Clementi, and Yoshimine and Rahman and Stillinger’s
empirical ST2 potential. The convergence characteristics of both realizations are fully developed in terms
of internal energy, heat capacity, molecular distribution functions, and structureal indices. A hierarchy in
the calculated properties emerges with respect to the degree of computational effort required to obtain
reproducible results. Mean energy and radial distribution functions are the most accessible quantities.
Fluctuation properties such as heat capacity require roughly twice as many configurations to stabilize as
simple orientational averaged quantities. The structural changes over the equilibrated segments of the
realization were examined in terms of quasicomponent distribution functions and found to be small in

chemical terms.

. INTRODUCTION

Ab initio theoretical studies of molecular liquids re-
quire statistical mechanical calculations on sysiems in-
volving relatively strong, orientation dependent interac-
tion potentials. Integral equation methods and thermo-
dynamic perturbation theories have been used eifective-
ly on systems with weak interaction potentials, but are
not well suited for calculations where strong interac-
tions are involved. Problems in this domain are treated
by numerical solution of the corresponding many-body
problem on a digital computer, a so-called “computer
simulation” of the system. In classical statistical
mechanics, this involves numerical integration of con-
figurational integrals by Monte Carlo methods. The
analogous problem in classical kinetic theory involves
simultaneous solution of the Newton-Euler equations
for the system, the method of molecular dynamics. The
results of fully realized Monte Carlo calculations and
molecular dynamics calculations should, according to
the ergodic hypothesis, agree within numerical error
bounds for a given temperature and density. !

The liquid water system, being of extraordinary im-
portance in both basic and applied research in physical
and in biological sciences, has understandably been the
focus of a considerable amount of recent computer
simulaiion research studies, 2~ including several re-
cent research papers contributed from this laboratory.?~?
While broad agreement has been obtained by several
groups working independently in Monte Carlo computer
simulation, *'®? several methodological aspects of the
calculations require further detailed consideration.
These problems involve the convergence characteristics
of Monte Carlo calculations, the practical ergodicity of
the results, and dependency on the number of particles
explicitly considered in the simulation (N dependence).
Also, the convergence characteristics of the standard
Metropolis method must be well documented in order to
critically evaluate the efficacy of the newly proposed
methods® ¥* for accelerating the convergence of Monte
Carlo calculations.

We describe herein a series of Monte Carlo—Metropo-
lis computer simulations on liquid water designed to
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provide further detailed information on the convergence
characteristics of the realizations and the implications
thereof in computer simulation studies of molecular
liquids and solutions. Some results on ergodicity and
N dependence of the calculations are also obtained.
Simulations are reported for both the empirical ST2 po-
tential* and the analytical MCY -CI potential’® repre-
sentative of ab initio quantum mechanical calculations
of the intermolecular interactions. The molecular po-
tential for water is especially strong and anisotropic,
giving rise to characteristic networks of intermolecular
hydrogen bonds in condensed phases. This system is
thus a sensitive test of computer simulation methodology
as applied to associated liquids.

In the following section, the methodology is briefly
reviewed and the problems under consideration are ex-
plicitly defined. In Sec. III, the calculations carried
out are described and the results are presented. A dis-
cussion of results follows in Sec. IV, and the principal
conclusions are collected in summary form in Sec. V.

I1. BACKGROUND

Monte Carlo computer simulation as used herein in-
volves the determination of average properties of an
N-molecule system under canonical ensemble conditions,
with temperature 7, volume V, and number density N/V
fixed and constant. An N-molecule configuration at the
system is specified by configurational coordinates X":

X' ={X,,Xgy + 00, Xub (1)

where X; represents the configurational coordinates of
the ith particle, a product of positional coordinates R;,
and orientational coordinates §};. An average property
of the system such as internal energy U, the “mean
energy”’ of the system, is given by the configurational
integral

U= f f EX")P(X")ax" =(EX")) , @

where E(X") is the configurational energy, and P(X") is
the probability of finding the system in X¥. The integra-
tion ranges over all possible configurations of the sys-
tem. A condensed phase environment for the system is
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modeled using periodic boundary conditions.

The structure of the system follows from the spatial
pair correlation function, an integral over the positional
coordinates RY:

R, R)=p* [ [ P@&"

X9 > 8[L,®) -R]6[L,(RY) ~R,]dRY, (3)
i i#

where p is the number density, L;(R") gives the position
vector of particle i in configuration RY , and the bracket-
ed quantities under the double summation are Dirac 6
counting functions for the number of particles within
dR,, jointly with particles within dR; of R;. This quan-
tity may be transformed directly into an interparticle
g(R), the radial distribution function. Further proper-
ties of the system such as heat capacity can be developed
in terms of fluctuations in mean values

C,=(/kTIHEX"?) —(EE")Y] , (4)
where the bracket notation is defined in Eq. (2).

A microscopic theoretical analysis of the structure of
the system can be generated in terms of quasicompo-
nent distribution functions (QCDF) for coordination num-
ber and binding energy. 16 The QCDF for coordination
number can be displayed as the mole fraction

rot) =2 (Tole,w 1), ®)

where the summation involves Dirac delta counting
functions for the number of particles with coordination
number K in configuration RY. The average coordina-
tion number K is given by the expression

i R
K= Zxxc(x)=pf Y e(R)TR?dR , (6)
h=) 0

where Ry is the radius of the first coordination shell,
customarily taken as the position of the first minimum
in the radial distribution function.

The QCDF for binding energy B, follows from the
definition
BI(XN) =EXyy ooy Xiogy Xy Ky « 00 Xy)
—~EXyy ovey Xiigy Xisgy o0er Xy) o (7)

The mole fraction of particles with binding energy be-
tween v and v +dv is given by

1
5= 5 (o8 -1 - ®
i
This quantity is directly related to the mean energy
N__ N (*
U=% V= j-_., vxg(v)dv . (9)

The individual characteristics of the particular sys-
tem under consideration enter the calculation via the
configurational potential energy E(X¥). The configura-
tional energy can be expanded as

E®")= 3 EVX,X)+ 2 B, X, X400, (10)
<{

i<j<e
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where E‘®)(X,, X,) is the pairwise interaction energy,
E®(X,X,, X,) is a correction term for three-body inter-
actions, etc. Most computer simulation work to date
has been carried out under the assumption of pairwise
additivity

E(XM= )L VOX,X,) . (11)

i<y
Here, V‘z’(xi,x,) may be an effective pairwise interac-
tion energy containing the effects of the higher order
terms in some average and empirical way or, as in the
case of analytical potential function representative of
quantum mechanical calculations, be identically equiva-
lent to E ® (X, X,) with higher order energy terms ne-
glected entirely. In any case, V‘z’(X{,X,) is a relative-
ly simple function of X; and X; and convenient for rapid
evaluation of configurational energies on the computer.
In the calculations described herein, we follow the cus-
tomary practice!” of using the functions v #’(X,,X,) in
truncated form in configurational energy calculations in-
cluding all interactions within a radius of 7.75 A for the
MCY-CI potential and 8.46 A for the ST2 potential.

Monte Carlo computer simulation is effectively the
numerical integration of Eq. (2) on the computer by
means of a stochastic walk through configuration space
on points X" which enter the integrals with a frequency
proportional to P(X"). The determination of average
quantities then reduces to the simple summmation

M
U= ;7 D E(XY), je Metropolis , (12)

B!

where the points X" are chosen by the Metropolis meth-
0d'® based on relative energy differences of successive
randomly generated configurations. Other average
properties of the system as g(R), x.(K), x5(v), and fluc-
tuation properties C, are computed in parallel with the
internal energy. In the computer simulation of a molec-
ular liquid, calculations are typically carried out for up
to several hundred molecules under periodic boundary
conditions.

Once decisions on these basic characteristics of the
calculation are finalized, the computer simulation pro-
ceeds as follows; An initial configuration is selected,
and the Metropolis walk is initiated. During the initial
phase of the calculation, the calculated internal energy
is rapidly changing. After this initial phase of the real-
ization, the internal energy should no longer be sig-
nificiantly changing with further sampling, and the simu-
lation is said to be equilibrated. The average proper-
ties of the system are calculated over the equilibrated
section of the calculation.

Convergence characteristics of the calculation are
further monitored using “control functions,” i.e.,
mean energies U, calculated over independent sections
of length % of the stochastic walk, At the termination
of the calculation, the total internal energy should be
ideally constant and the values of the control functions
should be fluctuating randomly about the internal energy.
Statistical error bounds may be established based on
control functions in terms of the standard deviation®®
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1 n
= 1 B, -~

where » is the number of “controls” or “groups.” Here
the control mean energies should be statistically inde-
pendent. The convergence profile of a calculation is
presented in terms of the behavior of U, the U,, C,,

and other calculated properties as the calculation
evolves.

The convergence of Monte Carlo-Metropolis calcula-
tions must also be viewed in the context of fundamental
numerical ideas about ergodicity. % A system is said
to be ergodic if all distinct low energy pockets of phase
space are reached in a single-step Monte Carlo gener-
ated chain of finite length, such that independent full
simulations on the system will produce identical aver-
age values of a mechanical variable for an ergodic sys-
tem. When all basic characteristics of the calculations
are equivalent, the Monte Carlo results for an average
quantity (of an infinitely large system) should agree with
those obtained from molecular dynamics within the sta-
tistical error bounds. When this is not the case, or
when Monte Carlo calculations based on different initial
configurations converge to statistically significant dif-
ferent values, the problem is said to be nonergodic.
Nonergodic behavior is expected for a system in the
region of a phase transition.

In recent studies related to these problems, Ladd’ in
Monte Carlo work using the ST2 potential on liquid water
at 300 °K observed significant N dependence in the re-
sults, which could be due to boundary conditions or
practical nonergodic behavior of the simulation. Pan-
gali, Rao, and Berne® note possible convergence prob-
lems in Monte Carlo computer simulation on ST2 water
at 283 °K, and also point out problems in serial corre-
lations which lead to possible errors in fluctuation
properties in associated liquids. Furthermore, recent
Monte Carlo studies of the structure of molecular solu-
tions by Owicki and Scheraga® and Swaminathan, Harri-
son, and Beveridge“ both note the problem of large
statistical errors in the calculation of differential inter-
nal energies, a consequence of the more limited statis-
tical averaging possibilities for the calculated proper-
ties of a solute in solution. Owicki discusses this fur-
ther in Ref. 21. The high sensitivity of the various
dipole correlation functions, properties not involving
an orientational average, to boundary conditions and
system size was noted by Levesque et al. * for a model
fluid and Pangali ef al. find similar behavior in ST2
water.

Overall, the Monte Carlo computer simulation proce-
dures are a powerful means for accessing structural
problems in molecular liquids, and are likely to be used
extensively in future years for research on structure
and process in solution. To develop this position, fur-
ther detailed studies aimed at the clarification of the
basic convergence characteristics and related numeri-
cal problems are in order. The calculations must be
carried out an order of magnitude longer than those
previously reported to produce significant results on
these points, and be analyzed in the context of common-

: Computer simulations on liquid water

ly accepted chemical tolerances for energetics and
structure to place the results in proper perspective.
Clearly, some properties of the classical fluid can be
expected to be more accessible to calculation by com-
puter simulation than others, and thus the capabilities
and limitations of the methodology with respect to each
individual molecular property needs to be studied. The
study described herein is contributed as a step in this
direction.

. CALCULATIONS AND RESULTS

We report herein the results of two ~ 5000 K realiza-
tions on liquid water, very long compared to earlier
works, and also a number of shorter runs on liquid
water, generating full details of the convergence char-
acteristics in each case. One long run is based on the
pairwise additive MCY -CI potential representative of
ab initio quantum mechanical calculations on the water
dimer, and used in the Monte Carlo computer simula-
tions on liquid water reported by Clementi and co-work-
ers, Owicki and Scheraga, ® and Swaminathan and
Beveridge. # The other long run is based on the pairwise
additive ST2 potential determined from semiempirical
considerations by Rahman and Stillinger? and used in the
molecular dynamics computer simulation work and in
the characterization of the force-bias Monte Carlo cal-
culations by Pangali et al.®® The MCY-CI calcula-
tions were carried out on 125 water molecules at
T =25°C and a density of 0.997 g/cm®. The ST2 calcu-
lations were done on 216 molecules at 7=10°C and a
density of 1 g/cm3, chosen to correspond directly with
the previous ST2 calculations. Simple cubic periodic
boundary conditions were employed in both long simula-
tions. A number of additional calculations based on
the MCY -CI and ST2 potentials using both simple and
face-centered cubic periodic boundary conditions®'®
were carried out to study the effect of the starting con-
figurations and boundary conditions on the realization
and to obtain an indication of the extent of N dependence
on the results.

The convergence information for a 4410K realization
on 125 MCY -CI water molecules is shown in Fig. 1.
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FIG. 1. Convergence curves for the Monte Carlo simulation
on liquid water based on the MCY~CI potential. The heat
capacity values only are corrected for internal modes.
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FIG. 2. Calculated points on the intermolecular radial dis-

tribution function g(R) vs center-of-mass geparation R. Ex-

perimental data (solid line) adapted from A. H. Narten and H.

A. Levy, J. Chem. Phys. 55, 2263 (1971).

Note particularly the expanded scale chosen for the
energy ordinate here and in subsequent analogous figures;
the convergence characteristics must be discussed in
tenths of kcal/mole. The calculation achieves a mean
energy of - 8.57 kcal/mole after 200K configurations.
The mean energy oscillates within 0.1 keal/mole of this
value for the next 1000K configurations. The conver-
gence profile indicates a mean energy value of — 8.56

+ 0. 03 kcal/mole for this section of the run. At

N =1200K to 1400K, the control function shows a sharp
decline of 0.13 kcal/mole in energy to — 8. 78 kcal/mole
at N=1400K, and the onset of a region of 1600K config-
urations with a mean energy of - 8.75+ 0. 02 kcal/mole.
Concommitent with this decline is a sharp increase in
heat capacity. At N=3000K, the control function rises
again, and at termination is oscillating about - 8.64
+0.03 kcal/mole. The heat capacity is relatively con-
stant from N =2000K on. The general appearance of the
control function suggests that the high frequency oscil-
lations in the control function are superimposed on a
grand oscillatory cycle with an amplitude of 0.2 kecal in
the realization, of which our calculation covers roughly
one and one half cycles. The cumulative mean energy
is ~8.65 kcal/mole, with a heat capacity of 14.1 cal/

0.8r
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T 06"
< 04r
(8]
* o02f
o =
T T T T T T — sl
o] 1 2 3 4 5 6 7 8

K —
FIG. 3. Calculated quasicomponent distribution function x o(X)
vs coordination number K for the MCY~CI simulation on liquid
water.
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FIG. 4. Calculated gquasicomponent distribution function xz(v)
vs binding energy v for the MCY~—CI simulation on liquid water.

mole deg, which after the kinetic energy correction re-
sults in — 6. 87 kcal/mole and 20. 1 cal/mole deg for
mean energy and heat capacity, respectively. The
MCY -CI results reported previously on a 500K realiza-
tion from this laboratory were U=—6.9+ 0,03 kcal/
mole and C,=18 cal/moledeg.

The analyses of the MCY —CI results on liquid water
in terms of g(R), x.(K), and x5(v) updated on the basis
of this more extensive calculation are shown in Figs.
2, 3, and 4, respectively. The basic interpretation of
the results in terms of the energetic continuum model
is the same as that described previously and does not
require repeating here. The only significant change is
in the 3.5 A region of g(R), where a shoulder in the
second hydration shell is not in evidence in the results
from the longer realization.

Analogous results for 216 ST2 water molecules are
shown in Fig. 5. The ST2 potential is generally deeper
than the MCY -CI potential (— 6.8 kcal/mole vs —5.5
kcal/mole for the linear water dimer), and the conver-
gence is generally more sluggish even considering the
larger system size. One achieves a mean energy of
~ - 10. 4 kcal/mole after 750K configurations and ob-
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FIG. 5. Convergence curves for the Monte Carlo simulation
on liquid water based on the ST2 potential. The heat capacity

values only are corrected for internal modes.
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FIG. 6. Calculated points on the intermolecular radial dis~
tribution function g(R) vs center-of-mass separation R from the
ST2 simulation on liquid water. Experimental data (solid line)
are from the same source as in Fig, 2.

serves a region of relative stability from N =1375K to
N =2300K corresponding to a mean energy of —10.49
+0.03 keal/mole. At this point, there is a gradual de-
cline of 0.2 kcal/mole and a long, relatively stable re-
gion of 2000K configurations with a mean energy of
—10.70+ 0. 02 kcal/mole. The cumulative mean energy
from N =1375 to termination is —10.62+10.62+0.06
kcal/mole, with C,=20.6 cal/moledeg. For compari-
son purposes, Fig. 5 also includes convergence data
from the ST2 realization on liquid water using the force
bias modification of the Metropolis method.!* The
analysis of our results of the ST2 water simulation is
shown in Figs. 6-8. The structural interpretation of
the results on ST2 water is qualitatively similar to that
for MCY-CI water, and differs quantitatively in the di-
rection of the higher structuration induced by the deep-
er ST2 potential.

The convergence profiles of a number of shorter
realizations on ST2 water are shown in Fig. 9. Calcu-
lations for several different N values, different options
for figuring the periodic boundary conditions, and dif-
ferent initial configurations are represented here.
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FIG. 7. Calculated quasicomponent distribution function x X))
vs coordination number K from the ST2 simulation on liquid
water.
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FIG. 8. Calculated quasicomponent distribution function x g(v)
vs binding energy v from the ST2 simulation on liquid water.

Three realizations based on face-centered cubic period-
ic boundary conditions were carried out, for N =54,

100, and 155 molecules. The N =54 and 155 were ini-
tiated at a high energy value. Both of these calcula-
tions appear to equilibrate in the region of - 10.5 to
~10.6 kcal/mole. The fluctuations in the control
function are larger when the number of particles is
smaller, as expected. The fcc realization for N =100
was initiated at a configuration very near the energy
minimum for the molecular assembly. The mean ener-
gy for the initial control function is however relatively
high, and achieves a value ~ - 10. 5 kcal at termination.
The fluctuations in the control function for this calcula-
tion are high, and do not indicate that the realization has
reached equilibration at termination.

IV. DISCUSSION

The general behavior of the mean energy and control
functions in Figs. 1-3 indicates that the number of con-
figurations to be discarded to rid calculations of this
size [0(100) molecules] of the memory of the arbitrarily
chosen starting configuration is around 500K. The
mean energy and other properties of the system are de-
termined over the remaining part of the run.

ST2,T=i0°C

Mean energy (kcal/mol) —=

T T o
2000K

T T T
1000K
Configurations —

FIG. 9. Convergence curves for assorted smaller ST2 simula-
tions on liquid water.
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The mean energy at termination of both the MCY ~CI
and ST2 long runs has been stable over an extensive
(2000K) segment of the realization and appear for all
practical purposes to be well converged. The value of
- 8.65 kecal/mole for mean energy in the MCY-CI run
agrees well with those of — 8. 68 kcal/mole obtained in
comparable previous Monte Carlo studies, starting
from distinctly different assumed starting configura-
tions. The mean energy of —10.6 kcal/mole determined
for the ST2 calculation agrees well with the corre-
sponding results of — 10. 6 kcal/mole from force bias
studies and - 10. 4 kcal/mole from molecular dynamics
work of Rahman and Stillinger. A natural difference
between the numerical results of the Monte Carlo and
molecular dynamics results is expected due to the dif-
ference in the way truncation of the potential function
affects the simulation. A numerical estimate of the
difference in mean energy (Uyc-Uyp) is 0.1 kcal/mole.?*
Considering this correction factor, the Monte Carlo
and molecular dynamics results are still in reasonable
accord (see also Ref. 24).

The behavior of the control functions over the latter
segment of the MCY and ST2 realizations on liquid
water in Figs. 1 and 5 are not consistent with a simple,
ideal convergence profile, and further analyses of the
calculations were initiated in order to develop a better
understanding of these results. Inthe MCY-CI cal-
culation, the energy of the control groups fluctuates
first about — 8.56 kcal/mole, then about - 8. 75 kcal/
mole, and at termination about — 8. 64 kcal/mole.
Cumulatively, these results lead to a mean energy of
- 8.65 kcal/mole for the long MCY~-CI calculation.
This behavior in control function for MCY-CI water is
similar in appearance to certain control functions de-
termined in calculations on model potentials by Wood, *°
where fluctuations between two mean energies were
noted. In assessing the viability of Monte Carlo cal-
culations on associated liquids, it is necessary to under-
stand the physical significance of the fluctuations, and
whether or not there are significant structural changes
in the system involved.

To develop 2z quantitative analysis of the fluctuations,
we separated segments A, B, and C as defined on Fig.
1 and carried out separate structural analyses on each
segment. Calculations of oxygen—oxygen radial dis-
tribution functions g(R) and quasicomponent distribution
functions for binding energy and coordination number
were carried out in each case. The results are col-
lected in Table I for MCY-CI water. The g(R) results
are given in terms of the magnitude of g(R) at the posi-
tion of the first maximum, first minimum, and second
maximum in the function with respect to increasing R,
where R is the interoxygen separation. The variation
in the first peak over the three segments is 0. 06 units
ing(R) and 0.5 A in R. For the second maximum, the
variation is 0.04 in g(R) and again 0.05 A in R. The
corresponding variation in mean energy over the seg-
ments is 0.197 keal.

The significance of these variations with respect to
structure can be better understood by examining the
quasicomponent distribution functions for coordination

Computer simulations on liquid water 3371

number and binding energy for each segment. The re-
sults for coordination are given in Table'I in terms of
the principal contributions x¢(3), x.(4), and x.(5). The
variation in x-(4) is 0.031, and the range of variation
in xc(3) and x.(5) are both 0.01. The binding energy
distribution functions are similar in appearance for all
three segments, continuous and unimodal in each case.
For the basic characteristics of the binding energy dis-
tribution, mean value, and amplitude, the variation in
the former is reflected in the mean energy and

the variation in the latter is 0.002. The trend in all the
indices is consistent with increased “structure” in the
lower energy segment of the realization. However, the
magnitude of these variations in mean energy, radial
distribution function, and quasicomponent distribution
functions in passing from segment to segment of the
realization is relatively small and no basic changes in
the qualitative interpretation of structure are anywhere
indicated. The change in heat capacity in passing from
segment A to segment B is significant, and demonstrates
the extremely high sensitivity of a fluctuation property
to small structural reorganizations in the system.

We note one systematic observation in the variation
in energy and structure: segments A and C, closer in
energy than to region B, also have similar structural
parameters. This could indicate the oscillations in
the grand convergence cycle are between two classes
of substructures, which however differ very little in
units of structural chemical significance. A corre-
sponding analysis of the results on the long run of ST2
water is shown in Table II. The control function profile
for ST2 water in Fig. 5 does not lend itself to a very
obvious definition of segments, and we have arbitrarily
chosen the two defined as A and B. For the radial dis-
tribution function, the variation in the first peak is 0.10
units in g(R), 0.05 A for the first minimum, and 0. 04
A units also for the second maximum. The positions of
the two peaks do not change significantly over the two
segments of the run. The corresponding variation in
mean energy is 0.23 kcal. The variation in x,(4) is
0.05 units or 0.1%, and the variation in x,(3) and x(5)
are of a similar order of magnitude.

Since a number of computer simulation results have
been reported for liquid water based on considerably
shorter Monte Carlo realizations than those described

TABLE I. Analysis of Monte Carlo simulation results on
liquid based on the MCY~CI potential.

Segment A B C
Interval 0K -1200K 1400K —3000K 3500K —4400K
U(kcal/mole) ~8.56+0.03 —8.750,02 ~8.6440.03
Tt (R) 2.85 2.80 2.85
B Toaat) 2.5910,03 2.67+0.03 2,600, 02
T (A) 3.45 3.40 3.45
£V atar) 0.98+0,02 0.92:0.03 0.99+0,02
;rw V) 4.20 4.25 4.20
£V ax2) 1.09+0,01 1.1210,02 1.08+0, 02
% 3) 0.156 +0. 008 0.146 + 0,005 0.155+0. 007
xd4) 0,449 +0.008 0,474 +0. 008 o.443¢o.009}
xd5) 0.28840. 007 6.28720.007 0.298 40,010
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TABLE II. Analysis of Monte Carlo simulation results based
on the ST2 potential.

Segment A B
Interval 1375K ~2300K 2700K —-4700K
Utkcal/mole) —10.4940.03 -10.70£0. 02
Tmaxi 2,80 2.8
2(7max ) 3.26+0.04 3.36;&0 02
Vin 1 3.45 3.4
g(‘rmm l) 0.6640, 02 0.6210 01
1.2040,02 1.24£0.01
rm2 4,60 4,60
%(3) 0. 052 +0. 003 0.046+ 0. 003
xc (4) 0.378+0. 009 0.41910.010}
x¢(5) 0.346 0,010 0.332+0.010

herein, it is of interest to estimate from the present
results the convergence errors in the earlier work,
Comparing the present MCY-CI results with those ob-
tained previously {from a different initial configuration),
the difference in internal energy is < 1% and the differ-
ence in calculated heat capacity is 10%. Considering the
MCY-CI results in Fig. 1, calculating the properties
over an initial shorter segment of the realization (say
the 500K to 1000K segment of A) would have led to a 1%
error in internal energy and a 20% error in C,. In the
ST2 simulation, calculation of properties based on seg-
ment A would have resulted in errors of 1.2% in mean
energy and 46% in heat capacity.

Based on these results, a hierarchy of calculated
properties of the system with respect to computational
effort is provisionally established as follows: Mean
energy and orientationally averaged radial distribution
functions are the quantities most accessible to calcula-
tion by computer simulation. Fluctuation properties
such as heat capacity require at least twice as many
configurations to calculate properly. The calculations
of dipole correlation functions and other quantities not
based on full orientational averaging can be expected to
remain problematic at this time, %%

The convergence profiles for several shorter realiza-
tions of diverse setup characteristics collected in Fig.
9 present some leading information on the influence of
the starting configuration, N dependence, and boundary
conditions on ST2 water. Comparing the results for
N =100, beginning at an initial configuration with low
energy, with the other calculations in Fig. 5, which be-
gin with a starting configuration with relatively high
energy, we see the mean energy after equilibration
trends to the same region of mean energy. The higher
fluctuations here are a natural consequence of the small-
er sizes. The variation in mean energy indicated as a
consequence of N dependence and boundary conditions
appears here to be ~ 0.4 kcal/mole. The sensitivity of
computer simulation results on ST2 water to boundary
conditions and sample size is dealt with more exten-
sively in Ref. 23.

The present availability of results on 216 ST2 from
both standard Monte Carlo and force-bias Monte Carlo
simulations permits only a preliminary comparison of

Computer simulations on liquid water

rates of convergence. The convergence profiles for
internal energy and control functions based on data sup-
plied by Rao, Pangali, and Berne are included as U’ and
U}, respectively, in Fig. 5. The force-bias method
finds the converged mean energy region more directly
and ~ 50} sooner than the standard Monte Carlo. Even
recognizing that the force-bias method requires extra
computational labor, these are encouraging results for
the development of improved methodology from the
force-bias point of view.

V. SUMMARY AND CONCLUSIONS

The convergence characteristics of Monte Carlo com-
puter simulation on liquid water have been determined
for two popular intermolecular potential functions for
the system. Mean energies, heat capacities, and struc-
tural indices were determined for each potential. A
hierarchy in the calculated properties emerges with re-
spect to the degree of computational effort required to
obtain reproducible results. The mean energy and
radial distribution functions are the most accessible
quantities. Fluctuation properties such as heat capacity
require roughly twice as many configurations to stabil-
ize as simple orientationally averaged quantities. The
structural changes over the equilibrated segments of
the realization were examined in terms of quasicompo-
nent distribution functions and found to be small in
chemical terms.
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