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Introduction

In a previous paper [5] the force constants of tetrahedral molecules were com-
puted on the assumption that the energy of the molecules was proportional
to the sum of overlap integrals between the bonding orbitals. The sum of
overlap integrals was computed with the mazimum overlap method [6]. In
that case the number of bonding orbitals of the central atom was identical
with the number of ligands.

The maximum overlap method can also be used in cases, where there are fewer
ligands than bonding orbitals on the central atom, but the result does not
depend on the non-bonding orbital being empty or occupied by a lone pair.
The two cases clearly differ from each other physically. so we must must first
decide, which of the two possible cases is represented by the hybrid orbitals,
obtained by the maximum overlap method.
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If the geometry of the above-mentioned two types of molecules is taken into
account, it can be seen that the difference is not only quantitative but also
qualitative, i.e. the symmetry of the molecules is different. (For example,



BF5 belongs to the D3 group, while NH3 to the Cs,, group.) On the basis
of this qualitative difference it will be shown that the hybrids obtained with
the mazimum overlap method correspond to the case of empty orbitals.

XY, and XY3 type molecules were examined in a general form. We used
only s and p orbitals, and consequently the XY; distances and the Y;-X-Yj
angles were equal in the same molecule. In the following we will vary only
the bond angle.

If the overlap integrals between the atomic orbitals are known, the overlap
matrix can be computed (S), and the maximal sum of overlaps between the
bonding orbitals (MAX) can be obtained in the following way [1, 6]:

MAX = tr(SS™)/2 (1)

where ST is the transposed of S. The elements of S depend only on the
geometrical data of the molecule, namely in our case the Y;-X-Y; angle,
denoted in the following by «, and the atomic overlap integrals between the
ligand orbitals and the s and p orbitals of the central atom, denoted by S and
P, respectively. Using Eq. (1), the maximal sum of overlaps, MAX, can be
obtained as a function of these three parameters. We succeeded in expressing
the maximal overlap with a relatively simple formula in both cases:

XY;: MAX = \/252+P2(1+cosa)+\/pQ(l—cosoz)a (2)

XY},:MAXzQ\/ﬁPSinomL\/5\/S2+P2\/1—1.33Sin2a (3)

Having obtained Eqs. (2) and (3), the maximal value of MAX was searched
with respect to the angle . It is clear that the maximum overlap method
predicts this configuration to be the most stable. In this way we derived an
equation from which the equilibrium bond angle could be expressed explicitly.
We obtained the same formula for both cases:

cosa, = S/ P? (4)

We found, moreover, that if S/P > 1 for XY, molecules and if S/P > 271/2
for XY3 molecules, the equilibrium bond angle would be 180° and 120°,
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respectively. In the case of common molecules S/P is always greater than 1.
It follows that the hybrid orbitals obtained by the maximum overlap method
correspond to the case of empty non-bonding orbitals.
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Papers in the literature dealing with the problem of lone pair electrons con-
clude that the experimental equilibrium data in the case of molecules with
lone pair electrons cannot be reproduced with the maximum overlap method,
unless an empirical parameter is introduced.

DEL RE et al. [2] reproduced the experimental bond angle of water by
introducing a parameter which represented the interaction of the lone pair
electrons with the others. This parameter was chosen in such a way as to fit
the experimental data.

The works of VOLKOV [8] have shown that no serious mistake is made if
the lone pair electrons are considered to be on the s orbital, and treated as
an inert pair.

According to our calculation, we ought to decrease the value of S to ob-
tain results, in accordance with the former procedures. But if there is no
theoretical reason for doing so, it must be considered an arbitrary action.

It appears that for the consideration of the lone pair, further effects must
be taken into account. We refer primarily to the electrostatic interaction
of the electrons. If the central atom does not possess a lone pair, the elec-
trostatic repulsions of the electrons are almost compensated, because the
bonding electrons are equivalent or nearly equivalent. If the central atom
does possess a lone pair, the electrostatic repulsions no longer be considered
to be compensated. This problem requires further detailed investigation.
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Before speaking about the numerical calculations, a theoretical problem will
be discussed with the aid of Eq. (4). We know from experimental results
that if a bond distance increases, there is a decrease in the s content of the



bonding orbital [7]. This phenomenon can be interpreted in the case of XY,
and XY3 type molecules with the mazimum overlap method.

The connection between the equilibrium bond and the s content of the hybrid
orbital has to be investigated first. On the basis of the geometry of the s and
p orbitals, it is clear that the angle between the hybrid orbitals decreases
when there is a decrease in the s content of the hybrid. Moreover, it can
be seen that the hybrid orbital always points to the direction of the ligand,
because we are dealing with the maximum overlap configuration. In this way
the angle between the hybrids is the same as the angle between the bonds.

Next, we investigate the connection between the ratio S/P and the bond
length. On the basis of the geometry of the s and p orbitals it can be seen
that S/ P is a monotonically decreasing function of the bond length. Thus it
can be seen using Eq. (4) that the experimental facts are in accordance with
the results of the mazimum overlap method.

2

In order to show that the maximum overlap method can be used if the non-
bonding orbital is empty, the force constants of BF35 were calculated. In our
calculations the same method was used as in the case of tetrahedral molecule
[5]. The bonding orbital of fluorine was taken to be sp hybrid. Only the
bending and the stretching — bending force constants were computed, because
the model is unstable to stretching.

The symmetry coordinates are shown in Table I. r; is the distance between
the -th F atom and the B atom, «;; is the F; - B - F; angle and ; is the
angle between the threefold symmetry axis and the i-th bond. The effective
nuclear charges are shown in Table II.



Table I
Symmetry coordinates and force constants of planar XYz molecules

Symmetry Symmetry coordinate Force constant
class
All Sl = 3_1 2(57“1 + 57"2 + (5’/’3) FH
A Sy = 371/27"0(551 + 002+ 603) | Fao
£ S = 271/2(57"2 — 57”3) Fisq Fsy
Si = 271/27’0(50413 — daa) Fy4

7, 1s the equilibrium bond length.

Table 11
The effective nuclear charge of the Slater orbitals
25 2p
B | 1.608 | 1.569
F | 2.564 | 2.550

Table III
The calculated and the experimental force constants of BF3

Reference [4] | Reference [3] | Calculated
Fo — 0.865 0.865
Fsy -0.268 -0.313 -0.311
Fyy 0.525 0.515 0.323

Table III contains the calculated and the experimental values of the force
constants. The constant factor was chosen so that the calculated Fsy should
agree with the experimental one. The results are qualitatively in agreement
with the experimental values, as in the case of the tetrahedral molecules. The
sign of the non-diagonal force constant is correct, but its numerical agreement
must be considered accidental.

SUMMARY

We have shown that the maximum overlap method can be used, provided the
central atom does not possess any lone pair electrons.

The stretching and stretching-bending force constants of BF3 were computed up to
a constant factor with our previously applied method. The sign of the non-diagonal
force constant was obtained correctly in this case, too.
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