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G protein coupled receptors (GPCRs) can lead to G protein and non-G protein initiated
signals. By virtue of its structural property, the TSH receptor (TSHR) has a unique ability
to engage different G proteins making it highly amenable to selective signaling. In this
study, we describe the identification and characterization of a novel small molecule
agonist to the TSHR which induces primary engagement with Gq11. To identify allosteric
modulators inducing selective signaling of the TSHR we used a transcriptional-based
luciferase assay system with CHO-TSHR cells stably expressing response elements
(CRE, NFAT, SRF, or SRE) that were capable of measuring signals emanating from the
coupling of Gus, Gag/11, Gy, and Gy12,/13, respectively. Using this system, TSH activated
Gas, Gagy11, and Gg12/13 but not Gg,,. On screening a library of 50K molecules at 0.1,1.0
and 10 uM, we identified a novel Gq/11 agonist (named MSq1) which activated Ggq/14
mediated NFAT-luciferase <4 fold above baseline and had an ECsg = 8.3 x 1079 M with
only minor induction of Gas and cAMP. Furthermore, MSqg1 is chemically and structurally
distinct from any of our previously reported TSHR agonist molecules. Docking studies
using a TSHR transmembrane domain (TMD) model indicated that MSg1 had contact
points on helices H1, H2, H3, and H7 in the hydrophobic pocket of the TMD and also
with the extracellular loops. On co-treatment with TSH, MSqg1 suppressed TSH-induced
proliferation of thyrocytes in a dose-dependent manner but lacked the intrinsic ability to
influence basal thyrocyte proliferation. This unexpected inhibitory property of MSqg1 could
be blocked in the presence of a PKC inhibitor resulting in derepressing TSH induced
protein kinase A (PKA) signals and resulting in the induction of proliferation. Thus, the
inhibitory effect of MSq1 on proliferation resided in its capacity to overtly activate protein
kinase C (PKC) which in turn suppressed the proliferative signal induced by activation of
the predomiant cAMP-PKA pathway of the TSHR. Treatment of rat thyroid cells (FRTL5)
with MSqg1 did not show any upregulation of gene expression of the key thyroid specific
markers such as thyroglobulin(Tg), thyroid peroxidase (Tpo), sodium iodide symporter
(Nis), and the TSH receptor (Tshr) further suggesting lack of involvement of MSqg1 and
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Gqg Agonist Against the TSHR

Gag/11 activation with cellular differentation. In summary, we identified and characterized
a novel Gag/11 agonist molecule acting at the TSHR and which showed a marked
anti-proliferative ability. Hence, Gq biased activation of the TSHR is capable of
ameliorating the proliferative signals from its orthosteric ligand and may offer a therapeutic
option for thyroid growth modulation.

Keywords: TSH, GPCR, gprotein, proliferation, agonist

INTRODUCTION

Traditionally GPCR drug development has focused on
conventional agonists and antagonists that are known to
act as “on-off” switches. However, there is growing appreciation
that GPCRs can mediate their physiologically relevant effects
through selective signaling due to subtle structural changes and
engagement of G protein and non-G protein effectors. Selective
signaling can be driven by endogenous ligands, synthetic
peptides or small molecules, which bind to the orthosteric or
allosteric site(s) and in turn bias the downstream signal. The
TSHR which is made up of a large glycosylated ectodomain
and seven transmembrane helices which are connected by
extracellular and intracellular loops (1) is structurally poised as a
candidate for allosteric modulation with its ability to engage all
four classes of G proteins (2). Studies using both modeling and
mutational analysis of the TSHR have indicated the structural
determinants of the G protein coupling to the receptor (3, 4).
However, it is not yet fully clear as to what preferential order
these different G proteins are engaged by the TSHR during
activation nor the exact intra- and -inter molecular interactions
leading to coupling of the different G proteins by TSH or TSHR
antibodies. However, crystallization of the partial ectodomain
with stimulating and blocking autoantibodies (5-7) together
with studies of the molecular rearrangement of the TSHR
ectodomain and hinge regions has given some recent insight into
the possible mechanism(s) of this activation (8, 9).

Small molecules can bind to the allosteric sites on the TSHR
TMD and ectodomain (10, 11) and are excellent tools to gain
insight into the potential for TSHR selective signaling. Their
unique ability to readily permeate the cell membrane and interact
with specific residues within the transmembrane helices can
induce subtle conformational changes (12-14). In recent years
there has been rapid development of small molecules, both
agonists (15-17) and antagonists (16, 18-20) against the TSHR
as part of a search for novel therapeutic agents. These various
small molecule ligands induce the Go,; pathway of the TSHR and
the possibility of selective Gag/11 activation by a small molecule
has not been explored. However, studies have indicated that such
selectivity in signaling can be established in GPCRs and not only
by different receptor subtypes (21, 22) but also via pathway bias
suggesting ligand selectivity can be a potential source of a defined
pharmacology for small molecules (23, 24).

Abbreviations: TSHR, Thyroid stimulating receptor; GPCR, G protein coupled
receptors; GD, Graves disease; TMD, transmembrane domain; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.

In this report, we describe the identification and in vitro
characterization of a novel small molecule that activates the
TSHR by preferentially initiating Gog/11 signaling and then
examined its biological consequences on thyrocyte proliferation
and gene expression.

MATERIALS AND METHODS

Establishing Double Transfected
CHO-TSHR Cell Lines

In order, to identify the signaling through the four major
classes of G-proteins (Gus,Gag/11 and Ggiz/13 and Ggyyi) by
the TSHR, we generated double transfected CHO-TSHR stable
lines containing CRE, NFAT, SRE or SRE response elements
(RE) tagged to a modified form of luciferase reporter. These
double transfected stable clones were established by selecting
the cells with hygromycin (800 ug/ml) and 500 ug/ml of G418
(neomycin sulfate). Following initial screening and validation,
these stable cell lines were maintained in Ham’s F-12 medium
with 10% fetal bovine serum (FBS), 100 units of penicillin
and streptomycin with 200 ug/ml of hygromycin and G418 to
maintain the selection pressure in these co-transfected cells.
Using the individually co-transfected stable lines containing the
respective response elements, we screened a 50K chemical library
at 0.1,1 and 10 uM against CRE, NFAT, SRE and SRE cells in a
384 well format following the protocol described previously (17).

Treatment and Lysate Preparation

For downstream signaling studies, low passage number of FRTL5
cells were cultured in 60 mm dishes using Hams F12 medium
with 5% calf serum to which 1X 6H (6 hormone mixture) was
added as previously described (25). Once the cells reached 60—
80% confluence, cells were washed twice with plain medium and
then cultured further in Ham F12 medium containing only 5H
hormone (-TSH) for 72 hrs. Following this the cells were washed
twice with plain F12 medium and incubated for another 48h
in Ham’s F12 medium containing 0.3% BSA (basal medium).
These cells were then either stimulated with increasing dose
of MSql, TSH or MS438 or combination of TSH plus MSql
or TSH+MSql+ PKC inhibitor at 2 uM (G06883) as per the
experimental details described under figure legends for 48 h at
37C. Lysates from these treated cells were prepared using 1X
Novagen phosphosafe extraction buffer as per the manufacturer’s
instructions and total protein in the lysate estimated by Bradford
(26). Further the proteins were resolved on 4-15% SDS-PAGE
and transferred to PVDF membranes by wet transfer and classic
immunblotting performed for detection of phospho protein after
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blocking membranes with 2% BSA for 2h at RT or subjected
to protein quantification using simple western system by the
WES machine for immunoblotting and detection (ProteinSimple,
Santa Clara, CA, USA).

Immunoblotting and Detection

In the present study, we quantitated the absolute response to
PKC and PKA in the lysate prepared from the treated cells as
descried above. pPKC was detected by classical immunoblotting
procedure described earlier (27) using commercially obtained
primary antibodies to pPKC PBII ser660, Anti-rabbit HRP
(1:20,000) in 1X tris-borate saline with tween 20 0.5% (TBST)
was used as detection antibody and the immunoblots developed
with ECL. Quantitation of pPKA was carried out using the
protein simple WES system after titrating the primary and
secondary antibodies against different concentrations of the
samples. Briefly, the WES protocol is as described here, first, a
0.2 pg of lysate was mixed with master mix to achieve a final
concentration of 1X sample buffer in the presence of fluorescent
molecular weight marker and 40 mM dithiothreitol, the samples
were denatured at 95°C for 5 min. Target proteins were immuno-
probed with primary antibody pPKA (thr197) followed by HRP-
conjugated secondary antibodies. All antibodies were diluted
using an antibody diluent at a 1:100 or 1:200. Detection of
ERK 44-kDa protein in the lysate using anti ERK served as
a positive run control in addition to the biotinylated ladder
for size estimation. B-actin was used as the loading control.
Digital images of the signal were analyzed with Compass software
(ProteinSimple), and the quantified data of the detected proteins
with the correct molecular weight is reported as signal/noise ratio
derived from average signal intensity exposures.

Proliferation Measured by Alamar Blue

Proliferation of FRTL5 cells was measured using Alamar Blue,
which monitors the reducing environment of the living cell.
The active ingredient is resazurin, which is a stable, nontoxic
and permeable compound, which accepts electrons and changes
from the oxidized, non-fluorescent, blue state to the reduced,
fluorescent, pink state. These studies were carried out on FRTL5
grown on black clear bottom 96 well plates. Cells in the log phase
were harvested by trypsin and seeded as 30 x 10° cells/well and
allowed to adhere to the bottom of plate in complete HamF12
medium by incubating the cells with 6H overnight at 37°C.
Following a 24 to 36 hrs incubation, the cells were culturally
prepared by removing TSH for 3 days prior to induction of
proliferation as described earlier. The cells were then exposed
to MSql, TSH or combination of both with and without the
PKC inhibitor as per the experiment described under figure
legends. For determining the effect of a small molecule or
TSH on cell growth, we had stimulated vs. unstimulated cells.
Following 48 h of treatment, Alamar Blue was aseptically added
to each well in an amount equal to 10% of the volume in the
wells. Cells with Alamar Blue were further incubated at 37°C
for another 5h prior to reading the plates. Proliferation was
assessed by measuring fluorescence intensity of the reduced dye
at 540/580 nm. Wells with media plus dye only was used as the
background control. Log change between untreated over that

of treated groups was deduced from the fluorescent intensities
obtained after background subtraction.

Docking and Contact sites

Docking of the lead MSql molecules was performed on a
homology model of the TSHR-TMD based on rhodopsin
(PDB:1F88). This template was chosen because of the low RMSD
values between the backbone of the TM helices of the TSHR
model and that of the rhodopsin x-ray crystal structure (14)
and fits the experimental parameters that we have previously
described (15). The initial homology model of rhodopsin TMD
was obtained from the Uniprot server (http://www.uniprot.org).
The conformations of the extracellular loops were constructed
with a Monte Carlo method (16). The 3D geometries of the
docked ligands were generated with MarvinSketch (http://www.
chemaxon.com). Multiple docking was carried out using the
programs Glide, Autodock-4 and Autodock-Vina. The docking
results were analyzed using Dockres and other supporting script
tools (17). In particular, Dockres extracts the coordinates of the
docked poses from the docking log file and identifies contacts
between the ligand and target as pairs of mutually proximal atoms
and hydrogen bonds (if any) as X...H-X" where X and X’ are
polar atoms (one on the ligand and the other on the target) with
X...H distance within threshold and X...H-X angle is greater
than 120 deg.

IP-One Assay

In principle PLC is the main intracellular effector enzyme of
Gogy11-coupled GPCRs. PLC hydrolyzes PIP; into IP3 and DAG.
The intracellular second messenger IP; is rapidly degraded by
phosphatases and recycled back via inositol into cell membrane
PIP,. Thus, for measuring Gog/11 activation by MSql in
CHOTSHR cells we used the Cisbio IP-One Gq kit which is
a competitive immunoassay intended to measure myo-inositol-
Iphosphate (IP1) accumulation in cells. The inositol phosphate
accumulation assay utilizes the ability of lithium to inhibit
the breakdown of inositol monophosphates and detects this
accumulated IP1 by HTRE® technology. In the assay native IP1
produced by cells or unlabeled IP1 (standard curve) compete
with d2-labeled IP1 (acceptor) for binding to anti-IP1-Cryptate
(donor). The specific signal (i.e., energy transfer) is inversely
proportional to the concentration of IP1 in the standard or
sample. 50 x 10> CHOTSHR cells per well were seeded in 96
well black plates in complete Hams F12 medium and incubated
overnight at 37°C. The adherent cells were gently washed once
with warm plain medium with low serum (2%) and the cells
were treated with increasing doses of TSH (nU) or MSql (M)
in stimulation buffer containing 50 mM of lithium chloride. At
the end of 2h incubation the cells were lysed using the lysis
buffer provided and treated with detection antibodies as per
manufacture’s instructions and run along with the standards
provided in the kit. The measurement of acceptor (665nm) to
donor (620nM) emission was obtained using the microplate
plate reader ClarioStar and ratio calculated and interpolated to
standard curves to calculate the values of the unknown samples.
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TSHR Expression by Flow-Cytometry

ML-1 and FT236, two follicular cancer lines, were grown in
DMEM high glucose with 10 % FBS, 200mM glutamine, 1x
sodium pyruvate 1X Minimum essential medium with 100 units
of penicillin and streptomycin. The cells were detached from the
plate non-enzymatically using 1 mM EGTA/EDTA and washed
twice with 1X PBS, filtered using 75 uM filter and total cells
counted. 0.5 x 10° cells/tube were suspended in 100 ul of
FACS staining buffer (1X PBS with 0.2% sodium azide and
2% FBS) with anti TSHR mAb RSR1 mouse Mab (0.1 pg/ml)
and incubated for 1h at room temperature. Following 2x wash
with FACS buffer (1XPBS with 0.02% sodium azide) and the
bound TSHR receptor antibodies were detected using anti-mouse
antibody Fab’ phycoerthrin (PE) labeled secondary antibody at
1:200. Unstained cells, isotype antibody or secondary antibody
alone were used as controls in the assay. The results were
expressed as the percentage positive cells detected in the test
samples compared to the controls by the vertical gates assigned
based on the controls.

Gene Expression

For gene expression analysis, total RNA was extracted
using a RNeasy kit and was treated with ribonuclease-free
deoxyribonuclease. Five micrograms of total RNA were reverse
transcribed into ¢cDNA using the SuperScript III system. All
Q-PCRs was performed using the Step OnePlus Real-time
PCR system (Applied Biosystems, Foster City, CA). The
reactions were established with 10 WL of SYBR Green master
mix (Applied Biosystems, Foster City, CA), 0.4 pl 2pM)
of sense/anti-sense gene-specific primers, 2 pl of cDNA and
DEPC-treated water to a final volume of 20 pl. The PCR
reaction mix was denatured at 95°C for 60s before the first
PCR cycle. The thermal cycle profile was used is as follows:
denaturizing for 30s at 95°C; annealing for 30s at 57-60°C
(dependent on primers); and extension for 60s at 72°C. A total
of 40 PCR cycles were used. For each target gene, the relative
gene expression was normalized to that of the glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) housekeeping gene. Data
presented as fold change in relative gene expression are from two
independent experiments in which all sample sets was analyzed
in triplicate.

Statistical Analyses

All curve fitting and P value calculations (one-way ANOVA)
were carried using GraphPad Prism 5 software. All assays
were performed at least 2 or 3 times as indicated. In case of
immunoblot one representative experiment is shown.

RESULTS

Identification of a Unique Gq Activator

In order to identify allosteric ligands that can activate different
G proteins of the TSHR we first developed a series of CHO-
TSHR cells that were transfected with different response elements
tagged to luciferase that can specifically identify the activation

of specific G proteins as indicated schematically in Figure 1A.
The activation of these different response elements was validated
using bovine TSH as indicated in Figure 1B. This analysis clearly
indicated that TSH was capable of activating Gas, Gag/11, and
Gay2/13 in a dose-dependent manner. No activation was observed
of Gy in this system. The respective positive controls used for
each of the response elements are indicated and explained in the
figure legends.

Screening a 50K library at 0.1,1 and 10 uM against
this panel of stable CHO TSHR luciferase cells allowed us
to identify a small molecule, which preferentially activated
CHO-TSHR-NFAT luciferase cells. Further examination of
this Gq activator (named MSql) against CHOTSHR-NFAT,
which couples Gag11, and CHOTSHR-CRE, which measures
activation via Gog, in a dose-dependent manner (Figure 2A)
showed MSql to be a potent activator of Gq with an ECsg
= 83 x 107°M after normalizing the data to max TSH
(10w U/ml). MSql had only minor activation toward Gs thus
making this molecule a preferential Gq activator. Structurally
this molecule differed from any of the known agonist or
antagonist small molecules (Figure 2B). Control studies with
MSql measuring its influence on activation in normal CHO
cells (without a TSHR) but transfected with either NFAT
luciferase or CRE luciferase at 10 wM showed no activation of
luciferase (Figure S1). We have shown that MSql is incapable
of activating either Gg, or Giy/13 using the luciferase system
further confirming that this is a G4/11 biased novel small molecule
(Figure S2).

Binding Sites of MSq1 by Docking Studies
We examined the binding sites of this Gq activator by in-
silico docking using the structure of the TSHR TMD region
developed by homology modeling and based on the rhodopsin
crystal structure (as detailed in Methods). Using the top
scoring docking poses generated by Autodock-4 and the
criteria of <4A, the putative contact points of MSql within
the TSHR TMD were deduced. Like most allosteric small
molecules against the TSHR, the MSql sites were nestled in
the “hydrophobic pocket” formed by the different helices within
the TSHR TMD (Figure 3A). Further analysis indicated that
MSql made major contact points on the TSHR TMD helices
H1, H2, H3, and H7 within the hydrophobic pocket and the
extracellular loops including L2-3 & L4-5 (Figure 3B). When
these contact residues were compared to our Gos agonist
MS438 some overlapping, and some unique residues could
be observed as shown in Table 1 which lists the top-scoring
Glide, Autodock-4 and Autodock-Vina poses for both MS438
and MSql.

Downstream Signaling of the Gq Activator

Since the in-silico modeling confirmed the potential binding of
MSql to the TSHR TMD, we examined the key downstream
signals that are known ****to be driven by Gq activation.
Activation of PLC was assayed by measuring IP1 accumulation,
which showed that MSql and TSH were capable of significantly
increasing IP1 generation (Figure4A inset). Furthermore,
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FIGURE 1 | Activation of the TSH receptor and G proteins. (A) Schematic representation of double transfected CHO-TSHR cells generated to study activation of the
different G proteins. Shown are the 4 luciferase tagged response elements (REs) that are capable of measuring the activation of the respective second messengers
used by the G proteins. (B) The bar graph panels represent the dose-responses with TSH (10 U to 10° U/ml) and the respective positive controls used with each of
the double transfected stable cells. The change in activity is represented as fold change of Iuciferase units (LU) on the Y-axis. The gray bars marked with C+ in the x
-axis are the positive controls for the each of the response elements. The positive controls used were as follows: CRE - forskolin 5 uM, NFAT- ionomycin 100 M,
SRF- 20% serum + PMA 10 ng and SRE—20% serum. The data represented here are from 3 separate experiments. Note that all the data shown here are baseline
subtracted.
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FIGURE 2 | (A)Potency of selected Gag,11 agonist MSq1. Dose-response relationship of MSq1 against the NFAT and CRE response element containing cells. A
4-fold increase of NFAT luciferase was observed with MSqg1 compared to a small increase in CRE luciferase showing that MSq1 is biased toward Gag,11 signaling. (B)
Molecular structure of MSq1. Chemical structure and SMILE of Msq1. The blue represents the nitrogen atoms and red corresponds to the oxygen atoms in a carbon
backbone. Chemically it is 2-(4-propylphenyl)-N-(4-pyridinylmethyl)-4-quinolinecarboxamide. SMILE:C1(C2=CC=CC=C2N=C(C2C=CC(=CC=2) CCC) C=1)
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FIGURE 3 | Binding of MSq1 molecule to the TSHR TMD. A homology model of the TSHR transmembrane domain, previously described (28), was used as the
template for docking studies. Analysis of the Autodock results as detailed in Materials and Methods indicated that MSqg1, like other small molecules, docks into a
hydrophobic pocket of the TSHR TMD and in this case makes contact with residues in helices H1, H2, H3, HB, and H7 and the extracellular loops 2,3 and 4,5. (B)
The TSHR TMD and its contact sites with MSqg1. On extracting the co-ordinates of the docked poses using Dockres, the program showed contact resides against the
TSHR TMD (red semi asterisks) assessed by the criteria of < 4A as indicated in this diagram. Furthermore, these contact residues in the TSHR TMD and their location
within the TMD residues are indicated along with the contacts for MS438 in Table 1 for comparison.

TABLE 1 | TSHR residues on the TMD that MSq1 and MS438 contact.

MS438 MSq1
TSHR residue Residue No # Ballest # rG(I-P) rA(L-P) rV(l-p) rG(L-P) rA(L-P) rV(L-P)
LEU 10 1.35 3.1 3.6 3.1
VAL 14 1.39 3.2 3.4
VAL 17 1.42 3.4
LEU 60 2.57 3.2 3.2 3.2
LEU 61 2.58 3.2 3.1
ALA 64 2.57 2.9 2.8 3.5 2.9 2.8
ASN 76 L (2-3) 31 2.8 3.6 2.9
TRP 81 L (2-3) 3.8 3.1
CYS 87 3.25 3.6 3.6
ALA 90 3.28 4.0 3.7 4.0
GLY 91 3.29 3.0 3.6 3.6
THR 94 3.32 2.8 2.7 3.8 3.5 3.7
VAL 95 3.33 3.1 3.6 3.1 3.6
SER 98 3.36 3.3 3.4 3.4 34
GLU 99 3.37 3.7
LYS 158 L (4-5) 3.2
VAL 159 L (4-5) 3.4 3.5 3.7 41
ILE 233 6.51 3.2 3.4 3.4
LYS 253 7.42 3.3 3.8 3.3
ILE 254 7.43 3.3
VAL 257 7.46 3.7 2.7 3.6 3.2 3.3 3.4
LEU 258 7.47 3.1 3.2 3.5 34
TYR 260 7.49 3.2 3.5
PRO 261 7.50 31 3.0 3.6 3.1 3.7
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using phospho-specific antibodies against PKC, we observed
that MSql significantly enhanced pPKC compared to both
TSH and MS438 in thyroid (FRTLS5) cells (Figure 4B, upper
panel). However, no significant enhancement of pERK or
pAKT was observed by MSql activation (Figure4B, lower
panel). These downstream signaling studies indicated that MSql
had the ability to activate the two major arms of Gog11
signaling as shown by NFAT-luciferase activation and enhanced
PKC activation.

Inhibition of TSH Induced Proliferation by

Gq Activation

The physiological significance of cAMP signaling by Gag
coupling on thyrocyte growth and proliferation is well-
established. Since the effect of Gag/11 on thyroid cell proliferation
is not clear we examined the action of MSql on proliferation
of thyrocytes using rat FRTL5 cells. As indicated in Figure 5A,
MSq]l failed to enhance basal proliferation of thyrocytes while
one of our previously published TSHR agonists (MS438) showed
a dose-dependent increase in proliferation and which is known
to activate the cAMP-PKA pathway like TSH. In contrast,

in the presence of 10* WU/ml of TSH, MSql inhibited the
TSH induced proliferation of thyrocytes in a dose-dependent
manner suggesting a suppressive action of Gq activation on
the proliferative capacity of the TSH induced Gs-cAMP-PKA
pathway (Figure 5B). This inhibition was only observed in TSH
dependent thyrocytes and ML-1 cells derived from a human
follicular carcinoma line with a high expression of TSHRs
(75% expression of cell surface TSHR as established by flow
cytometry) (Figure 6A) or FTC 236 cells, another follicular
carcinoma line which totally lacks cell surface TSHR (Figure 6B),
did not respond to MSql actions (Figures 6C,D). Examining
gene expression for common thyroid differentiation markers
such sodium iodide symporter (NIS), thyroglobulin (Tg) and the
TSHR by qPCR, we did not find these markers to be upregulated
in treated cells, suggesting that MSql activation of Gag/11 lacked
the ability to affect thyrocyte differentiation markers (Figure S3).

Release of Inhibitory Effect on Proliferation
by PKC Inhibition

In order to examine the mechanism of the suppression of TSH
induced thyroid cell proliferation we used a broad-spectrum
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PKC inhibitor (G06983) in the presence of TSH and MSql.
As shown earlier, MSql treatment at 10 uM caused inhibition
of TSH induced proliferation. However, in the presence of the
PKC inhibitor, inhibition of proliferation by MSql was markedly
reduced (Figure7A). On quantitating the PKA signal using
Western blotting with an anti PKA antibody, we observed that
cells treated with TSH and MSql in the presence of the PKC
inhibitor for 48h showed significantly enhanced PKA signals
compared to MSq1 plus TSH or TSH alone (Figures 7B,C). These
data demonstrated that enhancement of the PKC signal by MSq1
inhibited the cAMP-PKA pathway induced by TSH activation in
the thyrocytes.

DISCUSSION

TSH is known to induce engagement of all four classes of G
protein (2) with the TSHR. However, the major pathway activated
by TSH is the Gas pathway via PKA (29). The consequence of
changing this selection is not well-understood. In particular, the
role of the Gog/11 pathway via PKC has not been clearly clarified
and it is unclear whether overt activation of this pathway has any
cellular consequences. Therefore, identifying selective allosteric
activators, which are biased to activating a G protein class, is
one way of studying the mechanism of TSHR selective signaling
and its physiological or pathophysiological effects on thyroid

and extra thyroidal TSHRs. This is especially so when knock-
out mouse models, which although a very valuable research
tool for studying gene function, have their limitations in terms
of producing an observable change and may even produce
unexpected characteristics which in certain situations cannot be
extrapolated to humans (30). In this report, we present data on
the identification of a potent Gog 11 activator against the TSHR
and our examination of its effects on thyrocytes.

In recent years high-throughput screening assays, combined
with in silico structural approaches and medicinal manipulations,
have resulted in the identification of a number of specific
and potent agonists (16, 17, 31) and antagonists (18, 19, 32)
against the TSHR which effectively activate or inhibit Gas
initiated signals such as the cAMP-PKA pathway. Using a
“tool kit” of CHO-TSHR cells harboring CRE, NFAT, SRF
or SRE response elements tagged to luciferase, as shown in
Figure 1A, we identified potent and specific Goag/11 selective
small molecules. Our search found a molecule (MSql) unlike
our previously reported (17) agonist molecules which is biased
toward Gogy11. TSH activates predominantly Gas (33) and
Gog/11 when used in high (non-physiologic) concentrations
(34, 35). Coupling of Gag/11 to the TSHR leads to activation
of phospholipase C (PLC) which in turn triggers the release
of intracellular calcium [Ca?t], and NFAT and alternatively
activates protein kinase C (PKC) and its downstream effector
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MAP kinase (MAPK). The normal physiological consequences of
activating Ga in thyrocytes are proliferation, hormone synthesis
and thyroglobulin (Tg) iodination (29, 36). However, the
physiological or pathophysiological control of Gag/11 signaling
in thyrocytes or extrathyroidal TSHRs is not well-characterized
despite multiple reports. For example, conditional deletion of
Gog/11 in mouse thyroid resulted in hypoplastic thyroid glands
and severe hypothyroidism (34). It has also been shown that
Gog/11-PKC dependent activation in TSHR transfected papillary
cancer cells (line FTC236) resulted in the upregulation of a
class of redox and metal ion scavengers which are cysteine-rich
proteins known as metallothioneins (MTs) (37). Studies have also
shown an indirect relationship of Gag1; activation to thyroid
peroxidase formation (34, 38) and a congenital hypothyroidism
phenotype (39).

Our docking studies with a modeled TMD (28) showed that
the Gog/11 activator molecule binds within the hydrophobic
pocket of the TMD. By this analysis we saw that in addition to
overlapping contacts with our agonist MS438 (Go; dominant),
the MSql molecule also made contact with some unique resides
helping to explain its selective allosteric Gog/11 activation

(Table 1). Furthermore, docking MSql to the TSH binding
surface of the ECD resulted in docking scores that were
more than 4 kcal/mol weaker than the top scores observed
when docked to the TMD. Such differences represent ~786
times weaker binding indicating that this molecule, like our
previously reported small molecules, is can be a allosteric
molecule (17).

Despite tremendous progress into the molecular mechanism
concerning contacts and activation of G proteins by GPCRs
(40, 41) our understanding as to how structurally distinct
ligands may lead to the stabilization of different “active states”
of the receptors remains open. Homology modeling of the
TSHR with the Gq heterodimer combined with mutational
analysis of the transmembrane domain has indicated the
principal determinants leading to the complex interaction
(4, 14, 42) suggesting spatial conformation for selective G
protein activation.

In this study, we observed that MSql is an activator of
PLC (Figure 4A) and its downstream effectors—PKC and NFAT
activation (Figure 4B). MSql showed increased phosphorylation
of PKC. However, we failed to see any up regulation in the
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mRNA levels of thyroid specific genes in contrast to the effect
of TSH or our small molecule agonist MS438. On examining
the proliferation of these cells, MSql alone did not induce any
proliferation as seen with MS438 or TSH. It is generally accepted
that the proliferation of thyroid cells by TSH is mediated in
large part by the cAMP-PKA pathway (43, 44). In contrast,
the MSql molecule showed the unique ability to suppress TSH
induced proliferation. Since we did not observe any blockade
of TSH induced cAMP by MSql (Figure S4) we hypothesized
that suppression must be due to interference with the cAMP-
PKA pathway and most likely by PKC activation. There exists
cross-talk in downstream signaling of GPCRs (45) and it has been
previously shown that PKC can suppress PKA induced activation
(46) and functional interference between cAMP/PKA and PKC
pathways is possible (47, 48). Thus, experiments carried out in
the presence of a PKC inhibitor confirmed that inhibiting PKC
in the presence of MSql and TSH showed a marked reduction
in the suppressive effect of MSql on proliferation. Furthermore,
pPKA levels showed a significant increase after exposure to the
PKC inhibitor. The only study which supports a physiological
role for the Gag/1; mediated signaling pathway in TSH induced
hormone synthesis (34) was performed in Go,q/11 knock out mice.
However, the action of MSql on proliferation is opposite to the
Gog/11 study. Our model would suggest that overt activation

of the cAMP-PKA pathway by high concentrations of TSH
leading to increased proliferation might be kept in check by the
PLC-PKC pathway via Gq and thus maintain a balance in the
endogenous proliferative capacity of thyrocytes differing with
data that contradicts much of the literature which suggested that
TSH stimulates differentiation and not proliferation of normal
human thyrocytes (49).

In conclusion, we have identified a novel Gogs1 biased
modulator of the TSHR with inhibitory effects on thyrocyte
proliferation. The data illustrate the intertwining molecular
mechanisms leading to this action. This raises the prospect
of modulating biased TSHR signaling for more specific
pharmacologic responses.
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