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We present a newly adapted Brownian-Dynamics (BD)-based protein docking method for predicting native protein complexes.
The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order
to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor
protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal
protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and
accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility
of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two
unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of
protein-protein interactions.

1. Background

Protein-protein interactions are involved in most cellular
process. In order to gain a better understanding of the
function of a protein, it is necessary to know how it interacts
with other proteins at the molecular level. Both experimental
and computational methodologies are used to achieve this
goal. Experimental techniques, such as X-ray crystallography
and nuclear magnetic resonance (NMR), have been used to
determine an increasing number of protein structures that
are deposited into the Protein Data Bank (PDB). However,
determining the structures of protein complexes is more
difficult by using these techniques. In the PDB, the number of
protein complexes as biologically functional units is relatively
small (11,331 (PDB search criteria: chain type: protein;
entity type: protein; number of entities >1; October 14,
2011)) compared to the total number of protein structures
(70,852) [1, 2]. As for the computational tools, a successful
protein docking method can be used to predict the three-

dimensional structures of protein complexes and provide
theoretical understanding of protein-protein interactions at
the atomic level. The most challenging problems for the com-
putational approaches are extensive enough conformational
sampling, accurate scoring, and inclusion of the flexibility of
proteins [3, 4].

A variety of search algorithms were developed and imple-
mented in protein docking programs, such as fast Fourier
transforms (FFT), geometric matching, and the Monte
Carlo technique [3]. FFT-based methods, which are used
in ZDOCK, FTDOCK [5, 6], and so forth, use correlations
to search the sampling space and evaluate the putative
complexes with grid representation [7]. These methods
initially assess the geometrical surface complementarity and
further expand to include electrostatics and hydrophobic
complementarity. The Monte Carlo methods, which are
used in RosettaDock, ICM [8, 9], and so forth, conduct
stochastic rotation/translation searches from random initial
structures around the known or hypothetical binding site
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and thus explore only certain regions of the surface [10]. The
Brownian dynamics (BD) method, which is similar to the
force-biased Monte Carlo approach [11–13], has been used
in the past to predict protein-protein interactions [14–20]. In
earlier work, we used BD to successfully simulate the recog-
nition between scorpion toxins and potassium channels [21,
22]. Recently, our previous BD prediction of the interaction
between scorpion toxin Lq2 and KcsA potassium channel
has been verified by the potassium channel-charybdotoxin
complex structure (PDB: 2A9H), which was determined
by NMR studies [21, 23]. The sequence identity between
the KcsA of our model and the experimental structure
is 97%. Scorpion toxins Lq2 and charybdotoxin (CTX)
share 78% sequence identity, and the RMSD of Cα atoms
between Lq2 and CTX is 1.62 Å. The RMSD of our predicted
KcsA-Lq2 model and experimental KcsA-CTX structure is
2.85 Å (based on the backbones of Lq2 and CTX only, two
KcsA structures are superimposed), which shows excellent
agreement between the BD predicted and experimentally
solved complex structures. Our BD results indicate that the
strong electrostatic interactions between scorpion toxins and
potassium channels are the main driving force for their
recognition and association.

In the original version of the BD program (MacroDox),
only electrostatic interactions between two proteins are
included [24]. However, for protein docking simulations
it is critical to include the short-range interaction energy
terms to rank the final complexes correctly. Accordingly,
we have introduced additional local energy minimizations
after BD simulations by using a force field, which includes
electrostatics, van der Waals, and desolvation energy terms.
We used the Coulomb potential with a sigmoidal distance-
dependent dielectric permittivity to model the electrostatic
energy term, a 12-6 Lennard-Jones potential to model the
van der Waals energy term, and the general approach of
Wesson and Eisenberg [25] to model the desolvation term.
The 12-6 Lennard-Jones potential parameters of four united
atom types (C, N, O, and S) were obtained from the
AUTODOCK program. The atomic solvation parameters
were calculated based on the absolute partial charge on
the atom. These energy terms were introduced by the
corresponding potential maps. We previously used a similar
grid-based force field for protein loop predictions [26].

In order to systematically evaluate the performance of
our newly adapted BD program for protein-protein docking
simulations, we applied the BD approach on a test set of
24 crystal protein complexes from PDB, which was used by
other groups for protein docking approach evaluations [27].
The results from redocking experiments showed that the
root mean square deviation (RMSD) between the predicted
structures and the crystal structures is within 2 Å. We have
further developed the approach to account for the flexibility
of proteins, which has been successfully applied to reproduce
the experimental complex structure from two unbounded
proteins. These results indicate that this adapted BD protein
docking approach can be useful for prediction of protein-
protein interactions.
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Figure 1: A schematic representation of the Brownian dynamics
simulations of the association between two proteins. Simulations
are conducted in coordinates defined relative to the position of the
center of the protein, protein I.

2. Methods

2.1. Global BD Sampling. The program package MacroDox,
version 3.2.2 [24], was used to assign charges on proteins,
solve the linearized Poisson-Boltzmann equation, and run
the BD simulations. The BD algorithm for this program has
been detailed by Northrup et al. [28, 29].

For the BD simulations of protein-protein interactions,
there are only two solute particles, the receptor and ligand
proteins treated as rigid bodies. In this study, the receptor
of the complex was defined as protein I and was kept
fixed with its center of mass (COM) at the origin while
the ligand was defined as protein II of which translational
and rotational motions were simulated (Figure 1). In each
trajectory, protein II starts with a random orientation
and position on the b-surface, which was defined as the
sum of the maximum radii of the two proteins plus 2 Å.
Protein II was subjected to three forces: electrostatic, the
random Brownian force, and the frictional force due to
solvent viscosity. During the simulation, the motion of the
complex(es) satisfying the reaction criteria for encounter
complex formation is retained as an effective trajectory [30].
Within such an effective trajectory, two configurations which
have lowest electrostatics interaction energy and shortest
distance between protein I and protein II, respectively, are
recorded as two independent sampled conformations. The
trajectory was terminated when protein II either escaped out
of the c-surface (5 Å outside of the b surface) or was running
longer than 20 ns.

2.2. Structure Refinement by Local Energy Minimization.
Local energy minimizations were conducted for all putative
protein complexes obtained from the BD simulations. We
developed a shell-based grid force field based on our earlier
work [26], which includes van der Waals (vdW), electro-
statics, and hydrophobic potentials to represent protein I
(united atom types) and solvation effect. Figure 2 displays
the two-shell grid force field generated from protein I of
1AY7. The inner shell includes 948,240 grids with 0.5 Å
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Figure 2: The shell-based grid force field of protein I of 1AY7.
Protein I is shown in blue and protein II in green. Each point
represents a force field grid with a 3 Å resolution. Accordingly, for
the inner shell (in red) one point corresponds to 6 grids with 0.5 Å
resolution; for the outer shell (in orange) one point corresponds to
4 grids with 0.75 Å resolution.

resolution representing electrostatics, vdW, and hydrophobic
potentials, 15 Å width from the surface of protein I. The
outer shell includes 962,432 grids with 0.75 Å resolution
representing electrostatics potentials, 30 Å width from the
surface of protein I.

The van der Waals interactions are described by the 12-6
Lennard-Jones potentials:

φ(r) = C12

r12
− C6

r6
, (1)

where the C12 and C6 Lennard-Jones parameters of four
atom types (united atoms C, N, O, and S) are from the
AUTODOCK program [31]. Since the real vdW potential
(“real” stands for the standard vdW potential as defined in
(1)) is extremely sensitive to the distance r, we also used a
soft potential which replaces the energy value calculated at r
by the lowest value calculated from r, r − 0.5 Å, and r + 0.5 Å
using (1). As shown in Figure 3, this soft potential has the
effect of smoothing the potential energy surface and thus
helping protein II to cross local energy barriers during the
energy minimization.

2.2.1. Electrostatics. Coulomb potential φ(r), with a sig-
moidal distance-dependent dielectric function was used to
model solvent screening, based on the work of Mehler and
Solmajer [32]:

φ(r) = Q
4πε(r) · r ,

ε(r) = A +
B

1 + ke−λBr
,

(2)

where Q is partial charge and B = ε0 − A, ε0 = 78.4 (the
dielectric constant of bulk water at 25◦C), A = 6.02944,
λ = 0.018733345, and k = 213.5782 are parameters. The
original parameter set has been modified to produce better
results when comparing with the GB model [33]. When the
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Figure 3: Representation of the real (standard) and the soft
(smoothed) van der Waals potential used in this work. Soft potential
has the effect of widening the region of maximum affinity at ε and
also reduces the potential energy at r = 0 to a finite value.

distance between two charges is <1.32 Å, a dielectric constant
of 8 is used [26].

2.2.2. Desolvation. The general approach of Wesson and
Eisenberg was used [25], and the atomic solvation parame-
ters were calculated based on the absolute partial charge on
the atom:

ΔGdesolv =Wdesolv

∑

i, j

(
SiVj + SjVi

)
e−r

2
i j /2σ

2
,

Si = ai + k
∣∣qi
∣∣,

(3)

where i is the index of atoms in the ligand, j the index
of atoms in the receptor, Wdesolv = 1, linear regression
coefficient or weight for the desolvation free energy term, Si
the solvation term for atom i, ai atomic solvation parameter,
k charge-based atomic solvation parameter, qi partial atomic
charge on atom i, Vi the atomic fragmental volume of atom
i, ri j the distance between atom i and atom j (in Å), and
σ the Gaussian distance constant = 3.5 Å. The parameters
are obtained from the AUTODOCK4 program [34]. Only
nonpolar carbon atoms (the absolute value of charge is <0.2)
were used for desolvation energy calculations.

The rigid energy minimizations of the protein complexes
are based on the downhill simplex method [35] using the
newly developed force field [26, 30]. Six variables (three
translation values and three rotation values of protein II
relative to protein I) are allowed to change during the energy
minimizations.

2.3. Accounting for Protein Flexibility by MD Simulations.
To account for protein flexibility, we conducted molecular
dynamics simulations on each individual protein complex
obtained from the BD docking with low interaction energies.
The complexes were subjected to 100 steps of the steepest
descent (SD) energy minimizations followed by 2ps simu-
lated annealing (SA) from 300 K to 50 K, and additional 100
steps of SD energy minimizations by using the generalized
Born (GB) solvation module in the CHARMM program
[36]. The optimized complex structures were rescored by the
same force field we developed here, but in the explicit form
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Figure 4: Flowchart of the docking protocol used in this work.

(i.e., without resorting to the grids and without smoothing
the LJ potential) with cutoff values of 8 Å and 15 Å for van
der Waals and electrostatic interactions, respectively. The top
200 low energy complex structures obtained from rigid body
energy minimization by soft energy potential were selected
to conduct the flexible protein MD simulations in this study.

2.4. Computational Costs. All simulations were conducted
on a Sun Linux Beowulf cluster (2.6 GHz Opteron and 1TB
RAM (4 GB–32 GB per node)) at the Center for High Per-
formance Computing (CHiPC) at Virginia Commonwealth
University. Computational costs are closely related to the size
of both the protein receptor and ligand. For BD sampling,
one million runs can be completed within 20 h/CPU for
this test set (average residue number is about 500 in the
protein complexes). For the soft optimization, it usually
takes 12 h using 40 CPUs by splitting the trajectory into 40
subtrajectories. For the real optimization, only the top 500
complexes, ranked by soft interaction energies, are selected
to be further calculated, which usually takes 1 h per CPU. For
each complex the post-MD-simulated annealing refinement
process takes about 30 minutes per CPU.

3. Results

3.1. Docking Bound Complexes. To evaluate the performance
of our newly developed BD protein docking approach, we
first applied it for a redocking experiment on a test set
of 24 protein-protein complex crystal structures which was

previously used by several other groups for protein docking
method evaluations [27]. The computational protocol of the
BD protein docking method including conformational sam-
pling, compact complex selection, and energy minimization
is presented in Figure 4. Firstly, the experimental crystal
complex structures were subjected to 200 steps of the steepest
descent (SD) followed by 2000 steps of the adopted basis
Newton-Raphson Method (ABNR) energy minimizations
using the generalized born (GB) solvation module in the
CHARMM program [36] to remove steric overlap that
produces bad contacts. Then BD simulations were conducted
to explore the configuration space of the protein ligand
relative to the protein receptor by translational and rotational
motions to form the protein complexes. The intermolecular
forces and torques between proteins were given by the sum
of electrostatic and excluded volume forces [24].

For each system, one million independent BD simu-
lations were conducted that usually generated about 0.9
million protein complexes. To reduce computational costs,
a distance-based criterion was introduced to filter the com-
plexes from the BD sampling. The protein complexes whose
distance between the surface of protein I and the COM of
the protein II is smaller than the maximum radius of protein
II were retained. This filtering step usually yielded around
0.5 million of these “compact complexes,” which were further
optimized using precalculated shell-based grid soft potentials
(see Figure 3). Then, the optimized protein complexes were
ranked by the soft protein interaction energies. The top 500
complexes with the lowest interaction energies were selected
and followed by structural optimization using the shell-based
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grid real potentials. The optimized complex structures were
reranked and the one, with the lowest interaction energies
were selected as the final predicted protein complexes.

The predicted results from the newly developed BD
protein docking approach are listed in Table 1. The RMSDs
from the corresponding crystal structures of all the redocked
complexes are within 2 Å, ranging from 0.18 to 1.98 Å (the
RMSDs are based on the Cα atoms of the ligands since
the receptors are always fixed). With the single exception of
2PCB (see Section 4), in each system studied, the near-native
conformation was ranked first based on our scoring function.

To further verify the shell-based grid force field, we also
optimized the crystal structures with the real potential map
(unsmoothed vdW potential) (Table 1). One can see that
the interaction energies of crystal complexes are comparable
to those of our redocked complexes. On the other hand,
we analyzed the correlation between RMSD and interaction
energy for each complex. Taking 1CHO as an example,
the plot of interaction energies versus RMSD is shown in
Figure 5. After the optimization with the grid-based real
potentials the complex with the lowest interaction energy
has the smallest RMSD to the crystal structure. Both aspects
indicate that this force-field-based scoring function can
discriminate between the crystal conformation and other
decoy conformations.

3.2. Test BD Protein Docking Approach on Unbound Proteins.
To further evaluate BD docking approach for real protein-
protein interactions, we also conducted docking studies
using the unbound structures of the two proteins in a
complex. Crystal structures for proteins, Trypsin and BPTI,
are available in both bound (Trypsin/BPTI, PDB : 2PTC) and
unbound (Trypsin, PDB : 5PTP; BPTI, PDB : 1BPI) forms,
which provide us an opportunity to further evaluate our
BD approach. 90,079 complexes were obtained from BD
docking simulations and followed by rigid body local energy
minimization by the soft potential. The predicted complex
with the lowest RMSD (2.9 Å) from the crystal structure
complex is ranked as the 142nd by interaction energy.
It suggests that even though the BD approach is able to
sample the native configuration of the complex correctly,
it cannot be selected based on the energy ranking. It is
not surprising since the flexibility of both proteins was not
considered during the BD docking. We conducted MD-
simulated annealing simulations for the top 200 complexes
with the lowest interaction energies obtained from the BD
docking simulations and followed by rescoring with the same
force field we developed here (see Section 2). The energy
ranking for the structure with the lowest RMSD has been
significantly improved to the 4th with the RMSD of 3.2 Å
from the crystal structure. The optimized complex structure
of Trypsin/BPTI superimposed with the crystal complex
structure is shown in Figure 6.

4. Discussion

4.1. BD Sampling and Electrostatics Correlation. Sampling of
the complex conformation is the critical step in protein-
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Figure 6: The superposition of the predicted Trypsin/BPTI com-
plex (blue) with the crystal complex (red) structures. The RMSD
between the predicted and crystal BPTI structures is 3.2 Å.

protein docking process, since neither scoring function
evaluation nor following optimization refinement would be
enough if correct or near-native conformations cannot be
produced by sampling. In our docking procedure, several
significant modifications of sampling parameters were made
compared to the traditional BD simulations. As described
in Section 2 (Figure 1), the radius of b-surface is 2 Å larger
than the sum of the maximum radii of the two proteins; c-
surface is 5 Å from the b-surface. Both are much smaller than
default values in the MacroDox (default values: the radius of
b-surface is 20 Å larger than the sum of the maximum radii
of the two proteins and the radius of c-surface is 200 Å).
Also, 20 ns was set as the longest simulation time for each
BD run. This choice of parameters significantly reduced BD
simulation time per run making it possible to perform 1
million BD runs for each complex in reasonable computation
time.
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(a) (b)

Figure 7: BD sampling and structure refinement of 2SNI. (a) 428,140 compact complexes obtained from BD global sampling. Each gray
point represents the center of mass (COM) of one sampled conformation. The receptor of crystal complex is in blue, and near-native
conformation obtained after BD sampling is in silver. (b) Representation of near-native conformations obtained from BD sampling (silver,
RMSD 11.47 Å), soft potential optimization (yellow, RMSD 2.45 Å) and real potential optimization (red, RMSD 0.27 Å). The receptor and
the ligand of crystal complex are in blue and green, respectively.

BD approach has been used to predict the protein-
protein interactions using electrostatics forces as the biasing
guide in addition to Brownian stochastic motions. Adding
electrostatics forces to the docking/diffusion process has the
advantage of speeding up the encounter of the receptor and
the complex formation. When the attractive electrostatics
is the dominant interaction at the binding site, it can even
produce the near-native conformations with only a few
thousand BD runs [21, 22, 37, 38]. On the other hand,
when the vdW interaction or repulsive electrostatics at the
binding site is the dominant force, one million BD runs
would be a reasonable number based on our calculations. It
could cover the entire sampling space around the receptor
(Figure 7(a)). From the column of Sequence number/total
number in Table 1 one can see where the best solution
comes from. It also indicates that one million BD runs
are sufficient for sampling in most cases. One exception
is 1VFB where three million BD runs were needed due
to the repulsive electrostatics interaction of 1.61 kcal mol−1

between the receptor and ligand based on our calculations.
Cluster analysis was also conducted to illustrate the elec-

trostatics effect on BD sampling within this test set. As shown
in Figures 8(a) and 8(b), the more negative (stronger) the
electrostatics interaction between the receptor and ligand is,
the more of the conformations will fall into the cluster of the
near native; and the near-native conformations are produced
increasingly early as well. Generally when the electrostatic
interaction energy is lower than −5 kcal mol−1, the BD
sampling procedure produces the near-native conformations
faster and more easily than in other cases.

4.2. Shell-Based Grid Force Field. The grid potential maps
generated from the receptor were defined in a shell around
the surface of the molecule (see Section 2, Figure 2). This
shell-based grid map has the advantage of largely reducing
the number of grids compared to the 3D box grid map.
Taking 1AY7 as an example, the box-shape potential map
would include 1,739,781 and 1,737,808 grids for the inner
and outer boxes, respectively; while in the same condition the
shell-based map only takes half the number of grids, 948,240
and 962,432 for the inner and outer shells, respectively. In
practice, the computer memory limits the number of grids
involved in the calculation. For example, in earlier work, only
part of the protein surface could be covered for sampling
with the box-shape map [27]. Therefore, the binding site
had to be identified with the aid of other programs or
experimental data. Our shell-based potential map is able to
cover the whole surface area of the receptor for conducting
a global search, which is necessary when clear information is
unavailable for the binding sites of protein receptors.

We used a force-field-based scoring function, which
includes vdW, electrostatics, and hydrophobic potentials.
We found that when the smoothed vdW energy term (soft
potential) was used for the energy optimization, it was much
easier for a ligand to find the global energy minima due to its
smooth potential energy surface. As seen from Figure 7(b),
the RMSD of the ligands between the BD sampling and
the crystal structure was 11.5 Å, which was reduced to 2.5 Å
after the energy minimization by using the soft potential.
Moreover, although the interaction energies obtained from
the soft potential function are not as accurate as the real
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Figure 8: (a) Number of predicted near-native conformations versus electrostatics interaction energies within the test set. Conformations
of which Cα RMSDs <5 Å compared to the crystal structure are regarded as predicted near-native conformations. (b) Sequence number of
the first produced near-native conformations versus electrostatics interaction energies within the test set.

ones, they can still be used for preranking of the predicted
complexes. The top 500 preranked complexes were selected
and followed by a further energy minimization using the
real potential function, which was found to be adequate and
effective for the predictions of native protein complexes.

The scoring function exhibits excellent performance in
the redocking test set. Only exception was in finding the near-
native conformation for the 2PCB. It was ranked the 9th, but
the top 8 conformations formed a single cluster with RMSD
around 30 Å from the crystal structure. A similar problem
existed in Fernández-Recio’s result [27]. We have checked
the crystal structure of 2PCB and found an abnormal
phenomenon that OD2 of Asp34 of Cyt c Peroxidase and
OE2 of Glu90 of Cytochrome c is apart only by 2 Å. It was
speculated that occasional crosslinking between these two
proteins might account for this phenomenon [39]. Such a
short distance between two negatively charged oxygen atoms
may lead to higher interaction energy, and thus other decoy
conformations appear to have more favorable interaction
energy.

In addition to the RMSDs, which were calculated based
on all the Cα atoms of ligands, we also calculated the RMSDs
for the ligands based on the interface Cα atoms of the
predicted structures and compared them with the results
from other groups (Table 2). The ligand interface residues
were defined as having at least one atom within 5 Å of an
atom on the receptor molecule. RMSDs based on interface Cα

atoms in this test set are within 1 Å except for 2PCB (1.18 Å).
18 of 24 complex RMSDs are smaller than those from the
ICM method [27].

4.3. Crystal Packing. Considering that protein structures in
the test set were determined by X-ray crystallography, it is
possible that the protein complexes could be affected by
crystal packing. We reconstructed the crystal packing protein
structures for all the proteins in the test set by using the Swiss
PDB Viewer program [42]. We found that in 12 out of the
24 crystal structures, ligands were located at the interface
of multiple subunits in the crystal packing, and thus native
conformations could be affected by the crystal packing. To
test this possibility, we conducted a comparison study in

which crystal packing information was included by adding
additional related subunits. However, 2 complexes out of 12
packing structures had to be excluded because the additional
subunits block the entrances of protein ligands to access
the binding sites of protein receptors. Thus, 10 complexes
were completely redocked under the condition of crystal
packing. The results (Table 3) show that RMSDs of global
Cα atoms range from 0.26 to 1.44 Å. Comparing the results
without crystal packing, there are no significant differences
in RMSDs, which indicates that the crystal packing could be
ignored for protein docking method evaluations based on the
current test set.

4.4. Prediction of Unbound Proteins. When applying BD
sampling approach to predict the complex structure staring
from the structures of the unbound proteins Trypsin and
BPTI, we found that BD approach was able to sample
the near-native conformations, which indicates that the
current BD approach is efficient and feasible for real protein
complex sampling. However, the near-native poses often
have unfavorable interaction energies due to minor steric
clashes and therefore cannot be selected based on the energy
ranking. This is almost an inevitable consequence arising
from rigid body docking process. Although the soft potential
used in the current BD approach includes implicitly some
partial protein flexibility, it is still not enough to rank the
sampled conformations correctly. To achieve high-accuracy
prediction, protein flexibility, including flexible side-chains
and backbones, has to be considered in either the sampling
stage or the postrefinement process. Our new approach based
on MD-simulated annealing is a postrefinement process,
which accounts for the flexibility of both proteins, and shows
very promising results.

Prediction of a correct protein-protein complex relies on
sampling the near-native conformation and discriminating
it from other decoy conformations. Our BD sampling is
validated to sample the near-native conformation within 1
million runs in most cases and works best for the electrostatic
attractive protein complexes. We recommend performing 3
million runs for electrostatically unfavorable systems or for
any system where electrostatic information is unavailable.
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Table 2: Redocking results compared with other groups.

Complex PDB RMSD (Å)a Other docking methods

ICMb Nussinovc FTDOCKd BiGERe

Protease-inhibitor

1CA0 0.44 0.4 — — —

1CBW 0.24 0.5 — —

1ACB 0.58 0.5 0.9 — 0.6

1CHO 0.26 0.3 0.5 0.8 —

1CGI 0.15 0.4 — 1.0 —

2KAI 0.30 0.8 1.2 0.4

2SNI 0.16 0.3 1.1 0.6 —

2SIC 0.58 0.4 1.1 0.8 3.8

1CSE 0.53 0.3 1.3 — —

2TEC 0.18 0.3 1.2 — 3.6

1TAW 0.39 0.7 — — —

2PTC 0.72 0.4 0.6 0.7

3TGI 0.21 0.3 — — —

1BRC 0.55 0.7 — — —

Enzyme-inhibitor

1FSS 0.13 0.4 — — —

1BVN 0.23 0.4 — — —

1BGS 0.33 0.6 — —

1AY7 0.30 0.7 — —

2B5R 0.60 1.3 — — —

1UGH 0.39 0.4 — — —

Electron transport

2PCB 1.18 1.2 — — —

2PCF 0.19 1.1 — — —

Antibody-antigen

1MLC 0.57 0.4 — 0.8 —

1VFB 0.24 0.5 1.5 0.7 —
a
RMSDs are calculated for the ligand interface Cα atoms in this work. bDocking with known binding site followed by refinement of interface side-chain

conformations [27]; RMSD (Å) calculated for the ligand interface Cα atoms. cGlobal docking followed by hydrophobicity and connectivity filters [40]; RMSD
(Å) calculated for the ligand heavy atoms when only receptor is superimposed onto the real structure. dGlobal docking and filtering with distance restraints
[6]; RMSD (Å) when both receptor and ligand Cα atoms are superimposed onto the real complex. eGlobal docking [41]; RMSD (Å) calculated for the ligand
Cα atoms when only the receptor Cα atoms are superimposed onto the real structure.

Table 3: Comparison between docking with crystal packing and without crystal packing.

Complex PDB
Crystal packing Without packing

RMSD∗(Å) Interaction energy (kcal mol−1) RMSD∗(Å) Interaction energy (kcal mol−1)

1CBW 0.72 −161.60 0.54 −83.51

1ACB 0.49 −131.61 1.00 −103.41

1CHO 0.23 −140.39 0.30 −102.35

1CGI 1.07 −138.82 0.18 −147.17

2KAI 0.98 −140.16 1.10 −114.68

2SNI 0.58 −120.52 0.27 −108.81

2SIC 1.44 −103.29 0.89 −94.41

2TEC 0.76 −127.74 0.44 −108.55

1TAW 0.44 −103.90 1.10 −97.13

1FSS 0.26 −175.90 0.17 −137.88
∗

RMSDs are calculated for the Cα atoms of the ligand protein.
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Another critical step in our study is using MD-simulated
annealing method to account the protein flexibility, which
can significantly improve the ranking of near native confor-
mations. In a real case of protein-protein study, the top 500
or more conformations from the soft energy ranking list may
need to be included for flexible protein refinement by the
MD-simulated annealing simulations.

5. Conclusions

We have developed an adapted Brownian dynamics method
to predict the structures of protein complexes. It has three
steps. In the first step, global BD sampling, one million inde-
pendent BD simulations are conducted to explore the entire
possible conformational spaces of the protein complexes.
In step two, the compact complexes selection, a distance-
based criterion is used to select compact complexes. In step
three, local energy minimization, all compact complexes
are optimized using grid-based soft potentials followed by
grid-based real potentials. The complexes with the lowest
interaction energies are selected as final predicted protein
complexes. To reduce the computational costs for energy
evaluations, a grid-based force field was developed to repre-
sent protein receptors and solvation effect. The performance
of this newly developed BD protein docking approach was
evaluated on a test set of 24 crystal protein complexes which
was previously used by other groups. The results show that
the RMSDs between the predicted and the crystal structures
are within 2 Å, which are close to the accuracy of the ICM
results from Fernández-Recio et al. [9]. However, compared
with the ICM approach, the advantage of our newly adapted
BD method is its global sampling, which does not require
knowledge of the binding sites of the protein receptors before
conducting the BD simulations. Shell-based potential maps
can significantly reduce the computer memory requirements
compared to rectangular box-based potential maps, which
make the global sampling possible. The predicted near-
native conformations have the lowest interaction energies for
all complexes in the test set except the 2PCB. The results
indicate that the grid-based force field scoring function we
developed can discriminate the crystal conformation from
other sampled conformations. One million BD runs are
usually required for the global sampling. However, in the
case of positive electrostatics interaction between the protein
receptor and ligand, more BD runs are needed. On the other
hand, BD sampling has a distinct advantage when stronger
electrostatic attraction (<−5 kcal mol−1) exists between the
ligand and receptor proteins.

In the current adapted BD protein docking method,
both the protein receptor and ligand are treated as rigid
bodies. The flexibility during docking is partially consid-
ered by using the grid-based soft potentials. We found
that a postrefinement process based on the MD-simulated
annealing to account for the flexibility of proteins shows us
very promising results and can be also useful if combined
with other rigid docking approaches to account for protein
conformational changes after the rigid docking process. In
our future work, more elegant techniques, such as local move

Monte Carlo (LMMC) approach for loop sampling, [26]
could also be implemented to account for the flexibility of
proteins for mimicking the ligand-induced effect.
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