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8.1 Introduction

The era of atomic-level simulations was ushered in by the 1952 paper of
Metropolis and coworkers.1 Molecular dynamics was introduced much later,
by Rahman and Stillinger,2 but Monte Carlo was the preferred choice of
simulation technique for quite a while. Currently, however, many simulations
of biomolecular systems use molecular dynamics.
On a purely philosophical level, however, the Monte Carlo approach should

have the edge since the problem of accurately solving the equation of motion
for a very large number of degrees of freedom (O(106)) appears to be a much
more exacting task than the generation of a sample of conformation that ‘just’
follows a certain distribution (i.e. the Boltzmann distribution corresponding to
the ensemble in which the simulation was done). Indeed, the Monte Carlo
approach has been successfully applied in diverse areas.3 This success, however,
did not extend to the field of simulating macromolecular assemblies.
The aim of this chapter is – instead of reviewing the considerable progress

made so far – to discuss the obstacles that prevent the wider use of the Monte
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Carlo method for macromolecular simulations. Successful adoption of the
Monte Carlo method for conformational sampling of macromolecular assem-
blies requires solution(s) to the following problems: (1) convince investigators
that it is worth it; (2) devise move sets that generate large enough correlated
changes that can be accepted with reasonable probability; (3) develop efficient
treatment of non-pairwise additive potentials; (4) develop efficient treatment
of long-range contributions to the system’s energy; and (5) the efficient paral-
lelization of the algorithm. In the remainder of this chapter these issues will be
treated one by one. For many fundamental details see refs. 4–6 and for some
recent applications see refs. 7 or 8. Richey provided a historical account of the
development of the Markov-chain Monte Carlo method and the widening of
the scope of its application.34

Note that there are two distinct approaches for the enhancement of con-
formational sampling: (a) enhancing the algorithm generating successive con-
formations during the simulation and (b) manipulating the treatment of the
energy surface governing the simulation. Typical examples for the second
approach are umbrella sampling9 or replica exchange;10 but they are all equally
applicable to molecular dynamics and Monte Carlo and thus will not be dis-
cussed in this chapter – it is for the algorithm generating successive conforma-
tions where the choice between Monte Carlo and molecular dynamics arises.

8.2 Basic Ideas of Monte Carlo Sampling

The Metropolis method1 obtains a Boltzmann-averaged sample of configura-
tions by generating a Markov chain. Markov chains have the basic property
that each member of the chain (series of configurations in the case of molecular
systems) is obtained solely based on the member preceding it. For each prob-
ability distribution defining a new member (called transition probability) there
is a corresponding distribution describing the members of the Markov chain
defined by the transition probability. The most general relation between tran-
sition probabilities has been described by Hastings.11

The general pattern for selecting the next member of the Markov chain,
usually called aMonte Carlo move, is by making a random change in the current
configuration and accepting it with a probabilistic filter – the next member of the
chain will be either the configuration just generated (if accepted) or the repeat of
the previous configuration (if rejected). The classic case is the move of one atom
by selecting Dxi with uniform probability within a cube of fixed size around
xi, and accepting the new configuration with probability min{1,exp(�DE/kT)}
where DE is the energy difference between the two configurations. In other
words, if the change lowers the energy, accept for sure, if not, then accept it with
exponentially diminishing probability as the difference increases. The beauty of
this method lies in the fact that it leads to Boltzmann-averaged distribution
without having to calculate the partition function that is the normalizing factor
in calculating the Boltzmann factor. Further, it requires only the change in the
energy, leading to simplifications in the energy calculations in certain cases – this
issue will be discussed in Sections 5 and 6 in more detail.
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The design of a successful Monte Carlo sampling algorithm consists of
the selection of the trial moves (move set) and the distribution these moves are
sampled from. First requirement is that the move set should provide for the
sampling of all the degrees of freedom in the system. This obviously includes
the change in the atomic coordinates. For thermodynamic ensembles other than
the canonical, further moves can include the change in the volume (in the isobaric-
isothermal ensemble) or even the number of particles (in the grand-canonical
ensemble), requiring the creation or annihilation (attempts) of part of the system.
The guiding principle in selecting the type of moves and the distribution(s) they

are sampled from is to simultaneously maximize the change in the configuration
and minimize the increase in the energy since the computational effort in calcu-
lating DE is (in most cases) independent of the magnitude of the change. In the
basic example above, this involves optimizing the edge of the cube within which
the random change is made. The selection probability can also be different from
the uniform distribution – for example, moves can be biased in the direction of
force acting on the atom moved12 – with a concomitant modification in the
acceptance probability – the so-called force-biased sampling. This idea can be
applied to the volume changes13 and the insertion/deletion steps14 in the iso-
thermal-isobaric and in the grand-canonical ensembles, respectively. The impor-
tant thing in the use of such biased sampling is that the probability distribution of
the bias is well defined since it is needed in the modified acceptance expression.
While molecules can, in principle, be considered ‘just’ a collection of atoms

and sampled accordingly, the resulting simulation would be very inefficient since
the intramolecular energy changes very steeply with the change in bondlength.
Sampling of molecules involves the sampling of orientation and conformation
as well. This is usually achieved by some random rotation of the molecule and
by some random changes in the intramolecular coordinates, usually torsion or
bond angles. This is an area rich in possibilities whose discussion is outside the
scope of this chapter. Some examples will be discussed in Section 8.3.

8.3 Why ‘Bother’ with Monte Carlo?

The spectacular success of molecular dynamics raises the question of the
worthiness of the effort in trying to apply the Monte Carlo method for such
problems. However, success begets success, and the effort expended in
improving both the theoretical and computational aspects of molecular
dynamics has far exceeded the effort spent on developing Monte Carlo.
Reversing this disparity in the efforts expended thus can lead to development of
efficient Monte Carlo applications. One example of an issue that has never been
thoroughly examined is the fact that while the most general form of generating
a Metropolis move has been described by Hastings;11 most applications use a
more limited form and no systematic study has been performed to determine
the optimal choice.
Besides the philosophical argument cited in the Introduction it has also been

frequently remarked that the very fact that is the source of molecular dynamics’

209Challenges in Applying Monte Carlo Sampling to Biomolecular Systems



success – the strict reliance on the time evolution of the system – is also an
intrinsic limitation since each step the simulation can make is very small. Monte
Carlo, not having this tie to time, is free, at least in principle, both to make
much larger steps and to take shortcuts in the configurational space. The
problem is that when one takes shortcuts, it is easy to get lost. It is also
important to note that with the Monte Carlo approach only indirect kinetic
information (via analysis of activation barriers) can be obtained.
The superiority of current molecular dynamic applications over Monte Carlo

is, however, not absolute. In a comparison of Monte Carlo and molecular
dynamics on liquid hexane15 Monte Carlo outperformed molecular dynamics.
Also, simulation of aqueous systems in the grand-canonical ensemble14 is an
order of magnitude more efficient with Monte Carlo than with molecular
dynamics.16 However, these successes have not (yet) carried to simulations of
biomacromolecules.

8.4 Correlated Moves

Another significant difference between molecular dynamics and Monte Carlo is
that while devising the best numerical method for the calculation of the next
conformation is a strictly scientific enterprise, there is an art to the design of
Monte Carlo moves – followed, of course, by the scientific analysis and
implementation. As discussed in Section 8.2, a successful Monte Carlo move
makes a large change in the conformation that only changes the energy by an
amount that is commensurable to kT so that the acceptance probability is high
enough. This generally requires the selection a ‘soft’ degree of freedom (e.g.
changing torsion angles instead of translating atoms). An additional limitation
on the change is that the ratio of the probability of selecting this change and its
reverse be known (or be computable).
The major question in the design is the selection of the set of atoms to be

moved. First, it is clear that if the change in energy when moving two sets of
atoms is the sum of energy changes for moving the two sets independently (and,
concomitantly, the computational efforts are also additive or nearly so) then
moving them separately is more advantageous, since collision caused by move
in one of the sets would cause the rejection of the combined move while it
would still accept the move of the rest of the set if the moves are performed
separately. This would suggest that generally it is advantageous to select as
small a set of atoms to move as possible.
Biomolecular systems, however, are generally dense, interconnected, and

heterogeneous. This makes the design of efficient moves rather difficult since the
additivity of the energy changes assumed in the argument above is unlikely to
hold. Instead, the chance for finding larger moves with smaller energy change
lies in finding correlated moves of selected atoms that end up avoiding clashes
while making significant change in the conformation. Changing torsion angles
on a side chain or performing a local backbone moves17 are examples of such
correlated moves using a small set of atoms.
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The opposite to moving a single atom or a small subset is the moving all
atoms in each step. This was shown to be feasible18 if the change in the con-
formation is along one of the eigenvectors of the systems Hessian. Unfortu-
nately, the complexity of the calculation of the eigenvectors is O(n3), making
this technique difficult to extend to large systems. Furthermore, its efficiency is
lost when applied to systems in explicit waters.19 It remains to be seen if using
judiciously chosen Hessian blocks of limited size that could reduce the com-
plexity toO(n2), (as suggested for the simulation of lipid bilayers)6 can be found
to be implemented efficiently.
To illustrate the frustration that can result in attempts of ‘clever’ Monte

Carlo moves, Figure 8.1 shows the average displacement and orientational
correlation of lipid molecules in two simulations. In one, simulations were
performed using a move set that includes whole molecule translations, rotations
and torsion angle changes on a bilayer of DMPC molecules20 using the
program MMC.21 In the other, selected rotations of one lipid around the
bilayer normal were accompanied by a similar rotation of the lipid nearest to
the first lipid, but in the opposite direction. It was expected that such correlated
rotations would act like two cogwheels and reduce the clashes between lipids,
resulting in higher acceptance rates and thereby improved sampling. However,
no significant change was observed either in the diffusion rate or in the decay of
orientational correlations, indicating that different approaches are needed for
accelerated the sampling.

Figure 8.1 Comparison of lipid sampling with correlated two-lipid rotation (red) with
one lipid rotation (blue). Full line: COM displacement square; dotted line:
decay of the orientational correlation around the membrane normal.
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8.5 Cooperative Potentials

Most of the successful Monte Carlo techniques change a small fraction of the
atoms at each single step. This means that the efficiency of the method degrades
when the energy update involves atom pairs that were not changed – which is
just the case for most Monte Carlo moves.
Cooperativity is generally introduced either by the use of three-body, four-

body, etc., terms22 or by the introduction of polarization – either by induced
dipoles (or, possibly, higher order multipoles)23,24 or by induced changes in the
partial charges or molecular geometry,25 essentially mimicking induced multi-
poles. Since the multibody terms are generally short ranged, their use with
Monte Carlo sampling will not change the computational complexity of the
calculations. However, cooperative potentials using some form of polarizability
will essentially raise the complexity of the energy calculation when the
attempted move involves a small number of atoms only.
While Monte Carlo calculations have been performed with polarizable

potentials on relatively small systems despite the significant additional com-
putational cost, this is clearly an unsatisfactory solution since for larger systems
the additional expense will become prohibitive. Possible solutions to this pro-
blem is either (a) limit the update of the polarization state to every n-th step
assuming that the change in the polarization state in a single step is (can be
considered) negligible or (b) run the simulation with the pairwise additive part
of the potential and correct the Boltzmann probability of the conformations
selected for averaging with the cooperative part during post-processing.
However, the first solution clearly introduces an error while the second solution
can exacerbate round-off errors if the cooperative terms fluctuate more than a
few kT (due to the exponential in the Boltzmann factor). Other approximations
to the calculation of the polarization contribution have been developed but
tested for liquid water only.26 So far no efficient and procedure with sufficient
numerical precision has been developed for the use of cooperative potentials
with local Monte Carlo moves with proteins or nucleic acids where the presence
of fully charged atoms would make approximate solutions significantly less
accurate than for water. Thus it may well be that use of cooperative potentials
will be restricted to Monte Carlo moves where the whole (or, at least, a large
part of the) system is changed at each step.

8.6 Long-range Energy Contributions

The standard technique for dealing with the long-range contributions to the
electrostatic energy is the use of Ewald sums. This technique, however, raises
the same problem for Monte Carlo methods where a small part of the system is
changed in each step as the calculation of the energy with cooperative poten-
tials, due to the need for the summation in the reciprocal space.
The root of the difficulty of treating long-range electrostatics is the slow and

conditional convergence of the dipolar lattice sum in three dimensions. Without
using an explicit treatment of the full extent of the long-range contributions, for
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acceptable accuracy, rather long cutoffs distances are needed that, incurs a
large additional computational burden. There are, however, two possible
options that may be amenable to efficient Monte Carlo implementation. First,
R. Sperb27 published a formalism that uses fast-converging series, without
resorting to the reciprocal space. This can thus be implemented efficiently since
these series would involve only the changed part of the system. Second,
E. Campbell28,29 has developed a formalism for calculating the Ewald sums (for
multipoles of any order, not just for dipoles) from two components: one, called
crystal constants, that are functions only of the periodic system (and include the
contributions from the direct and reciprocal space) and an other component
whose terms depend on the actual configuration. Change in a conformation
thus affects the part not involved in lattice sums and thus could also be
amenable to efficient Monte Carlo implementation.

8.7 Parallelization

Any algorithm that is designed for simulating large molecular assemblies has
to be amenable to massive parallelization. Monte Carlo methods are usually
considered amenable to ‘embarrassingly parallel’ treatment where the same
calculation is repeated on different processors with different random-number
seeds and the result is averaged at the end. The problem is more difficult if fine-
grained parallelization is required. There are two obstacles to efficient imple-
mentation of massive fine-grained parallelization.
The tasks involved in a Monte Carlo move include some additional calcu-

lations beyond that of the change in the energy of interaction between the
atoms changed in the trial move and the rest – the part that is amenable in
general to massive parallelization. Other tasks include the generation of the
trial change in the configuration and (in most cases) the change in the inter-
action energy between the moved atoms. While these usually take only a small
fraction of the computational effort, if massive fine grained parallelization is
planned then this fraction will increase proportionally to the number of pro-
cessors, and ultimately limiting the parallel efficiency. Since these smaller tasks
are rarely amenable to massive parallelization the only possibility is to perform
them simultaneously on different parts of the system; but that is only possible if
the system is large enough and the moves are local enough that they can be
generated in such a way that all changes are independent of each other. For
example, torsion angle changes on different side chains can be generated on
different protein side chains and the energy change involved can be calculated
in parallel and then tested for acceptance sequentially using the massively
parallelized energy calculation. Such a decomposition has been discussed by
Heffelfinger and Lewwitt.30 The idea of ‘pre-fetching’ (i.e. calculate multiple
likelihoods ahead of time and only use the ones that are needed) were intro-
duced and tested by Brockwell.33

The biggest obstacle to massive parallelization on distributed memory sys-
tems is the need of communication at the Metropolis decision stage, since the
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acceptance decision depends on the energy of the whole system. While shared
memory systems can initiate communication with little or no latency, this is not
the case for distributed memory system – the ones that are likely to be used for
massively parallel applications, given their much lower price. Similar problems
would arise for GPU implementations, since communication with current
GPUs have relatively large latencies.31

The effect of latency on the parallel efficiency of the fine-grained paralleli-
zation using MPI was tested on two systems of TIP3P32 water molecules under
periodic boundary conditions using the minimum-image convention. Calcula-
tions were performed on two systems containing 3000 and 30 000 molecules,
respectively, on computers employing either distributed memory (marked as
DM) or shared memory architecture (marked as SM). The distributed memory
runs were on our G5 cluster using gigabit Ethernet connections and the shared
memory runs were on an 8-CPU SGI Origin system using R12K processors and
the simulations were run with the program MMC.21 Figure 8.2 shows the
results for up to 8 processors, plotting the efficiency factor E¼T(Ncpu)*Ncpu/
T(Ncpu¼ 1) as a function of the number of processors, Ncpu (note the loga-
rithmic scale on the horizontal axis). Here T(Ncpu) and T(Ncpu¼ 1) are the run
times for simulations using Ncpu and 1 processors, respectively. Ideal parallel
efficiency would result in E¼ 1.
The results on the parallelization of the Monte Carlo steps also show nearly

ideal efficiency on the shared memory system indicating that the parallelization
is distributing the workload efficiently among the processors. However, due to
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Figure 8.2 Parallel efficiencies of water simulations. +: 3000 waters, distributed
memory; J: 30 000 waters, distributed memory; *: 3000 waters, shared
memory; broken line: ideal speedup.
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the latency on the communication on the distributed memory system the effi-
ciency is disappointingly low. As expected, there is an improvement with the
increased system size.

8.8 Conclusion

This chapter discussed the open problems that need to be resolved for the
Monte Carlo algorithms to be used for simulating macromolecular systems.
One of the problems facing an efficient Monte Carlo implementation is partly
the result of the extensive freedom one has in the choice of sampling algorithms
since definitive comparison of such choices require large-scale simulations on a
variety of systems. Other problems arise when the energy change is needed to be
calculated for cooperative potentials, for the use of the well-tested Ewald
summation to calculate the long-range electrostatics contributions and for
massive parallelization on distributed memory computer systems. Possible
solutions were suggested for the calculation of long-range electrostatics and for
some aspects of parallelization. It is hoped that further developments, both in
algorithm design and test as well as in hardware/software development will
solve most of these problems.
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