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Abstract: Molecular docking has become an increasingly important tool for drug discovery. In this review, we present a 
brief introduction of the available molecular docking methods, and their development and applications in drug discovery. 
The relevant basic theories, including sampling algorithms and scoring functions, are summarized. The differences in and 
performance of available docking software are also discussed. Flexible receptor molecular docking approaches, especially 
those including backbone flexibility in receptors, are a challenge for available docking methods. A recently developed 
Local Move Monte Carlo (LMMC) based approach is introduced as a potential solution to flexible receptor docking 
problems. Three application examples of molecular docking approaches for drug discovery are provided. 
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INTRODUCTION 

 The completion of the human genome project has 
resulted in an increasing number of new therapeutic targets 
for drug discovery. At the same time, high-throughput 
protein purification, crystallography and nuclear magnetic 
resonance spectroscopy techniques have been developed and 
contributed to many structural details of proteins and 
protein–ligand complexes. These advances allow the 
computational strategies to permeate all aspects of drug 
discovery today [1-5], such as the virtual screening (VS) 
techniques [6] for hit identification and methods for lead 
optimization. Compared with traditional experimental high-
throughput screening (HTS), VS is a more direct and rational 
drug discovery approach and has the advantage of low cost 
and effective screening [7-9]. VS can be classified into 
ligand-based and structure-based methods. When a set of 
active ligand molecules is known and little or no structural 
information is available for targets, the ligand-based 
methods, such as pharmacophore modeling and quantitative 
structure activity relationship (QSAR) methods can be 
employed. As to structure-based drug design, molecular 
docking is the most common method which has been widely 
used ever since the early 1980s [10]. Programs based on 
different algorithms were developed to perform molecular 
docking studies, which have made docking an increasingly  
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important tool in pharmaceutical research. Various excellent 
reviews on docking have been published in the past [5, 11-
14], and many comparison studies were conducted to 
evaluate the relative performance of the programs [15-18]. 

 The molecular docking approach can be used to model 
the interaction between a small molecule and a protein at the 
atomic level, which allows us to characterize the behavior of 
small molecules in the binding site of target proteins as well 
as to elucidate fundamental biochemical processes [19]. The 
docking process involves two basic steps: prediction of the 
ligand conformation as well as its position and orientation 
within these sites (usually referred to as pose) and 
assessment of the binding affinity. These two steps are 
related to sampling methods and scoring schemes, 
respectively, which will be discussed in the theory section. 

 Knowing the location of the binding site before docking 
processes significantly increases the docking efficiency. In 
many cases, the binding site is indeed known before docking 
ligands into it. Also, one can obtain information about the 
sites by comparison of the target protein with a family of 
proteins sharing a similar function or with proteins co-
crystallized with other ligands. In the absence of knowledge 
about the binding sites, cavity detection programs or online 
servers e.g. GRID [20, 21], POCKET [22], SurfNet [23, 24], 
PASS [25] and MMC [26] can be utilized to identify putative 
active sites within proteins. Docking without any assumption 
about the binding site is called blind docking. 

 The early elucidation for the ligand-receptor binding 
mechanism is the lock-and-key theory proposed by Fischer 
[27], in which the ligand fits into the receptor like lock and 
key. The earliest reported docking methods [10] were based 
on this theory and both the ligand and receptor were treated 
as rigid bodies accordingly. Then the “induced-fit” theory 



2    Current Computer-Aided Drug Design, 2011, Vol. 7, No. 2 Meng et al. 

[28, 29] created by Koshland takes the lock-and-key theory a 
step further, stating that the active site of the protein is 
continually reshaped by interactions with the ligands as the 
ligands interact with the protein. This theory suggests that 
the ligand and receptor should be treated as flexible during 
docking. Consequently, it could describe the binding events 
more accurately than the rigid treatment. Considering the 
limitation of computer resources, docking has been 
performed with a flexible ligand and a rigid receptor for a 
long time, and remains the most popular method in use [7, 
30-35]. Recently many efforts have been made to deal with 
the flexibility of the receptor [36-42], however, flexible 
receptor docking, especially backbone flexibility in 
receptors, still presents a major challenge for available 
docking methods. In our study, we propose a Local Move 
Monte Carlo (LMMC) approach as a potential solution to 
flexible receptor docking problems. 

THEORY OF DOCKING 

 Essentially, the aim of molecular docking is to give a 
prediction of the ligand-receptor complex structure using 
computation methods. Docking can be achieved through two 
interrelated steps: first by sampling conformations of the 
ligand in the active site of the protein; then ranking these 
conformations via a scoring function. Ideally, sampling 
algorithms should be able to reproduce the experimental 
binding mode and the scoring function should also rank it 
highest among all generated conformations. From these two 
perspectives, we give a brief overview of basic docking 
theory. 

Sampling Algorithms 

 With six degrees of translational and rotational freedom 
as well as the conformational degrees of freedom of both the 
ligand and protein, there are a huge number of possible 
binding modes between two molecules. Unfortunately, it 
would be too expensive to computationally generate all the 
possible conformations. Various sampling algorithms have 
been developed and widely used in molecular docking 
software (Table 1). 

 Matching algorithms (MA) [43-45] based on molecular 
shape map a ligand into an active site of a protein in terms of 
shape features and chemical information. The protein and the 
ligand are represented as pharmacophores. Each distance of 
the pharmacophore within the protein and ligand is 

calculated for a match; new ligand conformations are 
governed by the distance matrix between the pharmacophore 
and the corresponding ligand atoms. Chemical properties, 
like hydrogen-bond donors and acceptors, can be taken into 
account during the match. Matching algorithms have the 
advantage of speed; thus they may be used for the 
enrichment of active compounds from large libraries [7]. 
Matching algorithms for ligand docking are available in 
DOCK [10], FLOG [46], LibDock [47] and SANDOCK [48] 
programs. 

 Incremental construction (IC) [30, 49, 50] methods put 
the ligand into an active site in a fragmental and incremental 
fashion. The ligand is divided into several fragments by 
breaking its rotatable bonds and then one of these fragments 
is selected to dock into the active site first. This anchor is 
usually the largest fragment or the piece which may have 
significant functional role or interaction with protein. The 
remaining fragments can be added incrementally. Different 
orientations are generated to fit in the active site, which 
realizes the flexibility of the ligand. The incremental 
construction method has been used in DOCK 4.0 [51], FlexX 
[30], Hammerhead [52], SLIDE [53] and eHiTS [54]. 

 In addition to IC, Multiple Copy Simultaneous Search 
(MCSS) [55, 56] and LUDI [57] are fragment-based 
methods for the de novo design of ligands and modifications 
of known ligands that may enhance their binding to the 
target protein. MCSS makes 1,000 to 5,000 copies of a 
functional group, which are randomly placed in the binding 
site of interest and subjected to simultaneous energy 
minimization and/or quenched molecular dynamics in the 
forcefield of the protein. Copies only interact with the 
proteins and any interactions among the copies are omitted. 
Consequently a set of energetically favorable binding sites 
and orientations for the functional group is identified based 
on the interaction energies. The binding site is mapped by 
using different functional groups. New molecules which 
perfectly match the binding site can be designed through the 
linkage of those different functional groups. 

 LUDI focuses on the hydrogen bonds and hydrophobic 
contacts which could be formed between the ligand and 
protein. Its central concept are interaction sites, which are 
discrete positions in space suitable for forming hydrogen 
bonds or for filling a hydrophobic pocket [57]. A set of 
interaction sites is generated either by searching the database 
or using the rules. The fragment is then fitted onto the 
interaction sites and evaluated by distance criteria. The final 

Table 1. Some Sampling Algorithms Discussed in this Paper 

 

Algorithms Characteristic Ref. 

Matching algorithms Geometry-based, suitable to VS and database enrichment for its high speed [43-45] 

Incremental construction Fragment-based and docking incrementally [30, 49, 50] 

MCSS fragment-based methods for the de novo design [55, 56] 

LUDI fragment-based methods for the de novo design [57] 

Monte Carlo Stochastic search [58, 59] 

Genetic algorithms Stochastic search [31, 32, 64] 

Molecular dynamics For further refinement after docking [68-70] 
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step is the connection of some or all of the fitted fragments 
to a single molecule. 

 Stochastic methods search the conformational space by 
randomly modifying a ligand conformation or a population 
of ligands. Monte Carlo (MC) and genetic algorithms are 
two typical algorithms that belong to the class of stochastic 
methods. 

 Monte Carlo (MC) [58, 59] methods generate poses of 
the ligand through bond rotation, rigid-body translation or 
rotation. The conformation obtained by this transformation is 
tested with an energy-based selection criterion. If it passes 
the criterion, it will be saved and further modified to 
generate the next conformation. The iterations will proceed 
until the pre-defined quantity of conformations is collected. 
The main advantage of MC is that the change can be quite 
large allowing the ligand to cross the energy barriers on the 
potential energy surface, a point that isn’t achieved easily by 
molecular dynamics based simulation methods. Examples of 
applying the Monte Carlo methods include an earlier version 
of AutoDock [60], ICM [61], QXP [62] and Affinity [63]. 

 Genetic algorithms (GA) [31, 32, 64] form another class 
of well-known stochastic methods. The idea of the GA stems 
from Darwin’s theory of evolution. Degrees of freedom of 
the ligand are encoded as binary strings called genes. These 
genes make up the ‘chromosome’ which actually represents 
the pose of the ligand. Mutation and crossover are two kinds 
of genetic operators in GA. Mutation makes random changes 
to the genes; crossover exchanges genes between two 
chromosomes. When the genetic operators affect the genes, 
the result is a new ligand structure. New structures will be 
assessed by scoring function, and the ones that survived (i.e. 
exceeded a threshold) can be used for the next generation.  
 

Genetic algorithms have been used in AutoDock [31], 
GOLD [65], DIVALI [66] and DARWIN [67]. 

 Molecular dynamics (MD) [68-70] is widely used as a 
powerful simulation method in many fields of molecular 
modeling. In the context of docking, by moving each atom 
separately in the field of the rest atoms, MD simulation 
represents the flexibility of both the ligand and protein more 
effectively than other algorithms. However, the disadvantage 
of MD simulations is that they progress in very small steps 
and thus have difficulties in stepping over high energy 
conformational barriers, which may lead to inadequate 
sampling. On the other hand, MD simulations are often 
efficient at local optimization. Thus a current strategy is to 
use random search in order to identify the conformation of 
the ligand, followed by the further subtle MD simulations. 

Scoring Functions 

 The purpose of the scoring function is to delineate the 
correct poses from incorrect poses, or binders from inactive 
compounds in a reasonable computation time. However, 
scoring functions involve estimating, rather than calculating 
the binding affinity between the protein and ligand and 
through these functions, adopting various assumptions and 
simplifications. Scoring functions can be divided in force-
field-based, empirical and knowledge-based scoring 
functions [5]. Table 2 shows some examples of scoring 
function formulae belonging to those three classes of scoring 
functions respectively. 

 Classical force-field-based scoring functions [71-73] 
assess the binding energy by calculating the sum of the non-
bonded (electrostatics and van der Waals) interactions. The  
 

Table 2. Examples of Scoring Function Formulae 

 

Scoring Function Formulae Ref. 
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Extended force-field-based scoring function from AutoDock. 

For two atoms i, j, the pair-wise atomic energy is evaluated by the sum of van der Waals, hydrogen bond, coulomb energy and desolvation. W are 
weight factor to calibrate the empirical free energy. 
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Empirical scoring function from FlexX. 

G is the estimated free energy of binding; 
0
G is the regression constant; 
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Knowledge-based scoring functions PMF. 

B
k  is the Boltzmann constant; T is the absolute temperature; r is the atom pair distance. ( )rf j corrVol _

 is the ligand volume correction factor; 

( )
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seg r  designates the radial distribution function of a protein atom of type i and a ligand atom of type j. 

[84] 
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electrostatic terms are calculated by a Coulombic 
formulation. Since such point charge calculations have 
problems in modeling the protein’s real environment a 
distance-dependent dielectric function is generally used to 
modulate the contribution of charge–charge interactions. The 
van der Waals terms are described by a Lennard-Jones 
potential function. Adopting different parameter sets for the 
Lennard-Jones potential can vary the “hardness” of the 
potential which controls how close a contact between protein 
and ligand atoms can be acceptable. Force-field-based 
scoring functions also have the problem of slow 
computational speed. Thus cut-off distance is used to handle 
the non-bonded interactions. This also results in decreasing 
the accuracy of long-range effects involved in binding. 

 Extensions of force-field-based scoring functions 
consider the hydrogen bonds, solvations and entropy 
contributions. Software, such as DOCK [10, 50, 51, 74], 
GOLD [65] and AutoDock [31], offer users such functions. 
They have some differences in the treatment of hydrogen 
bonds, the form of the energy function etc. Furthermore, the 
results of docking with force-field-based functions can be 
further refined with other techniques, such as linear 
interaction energy [75] and free-energy perturbation methods 
(FEP) [71, 76] to improve the accuracy in predicting binding 
energies. 

 In empirical scoring functions [77-81], binding energy 
decomposes into several energy components, such as 
hydrogen bond, ionic interaction, hydrophobic effect and 
binding entropy. Each component is multiplied by a 
coefficient and then summed up to give a final score. 
Coefficients are obtained from regression analysis fitted to a 
test set of ligand-protein complexes with known binding 
affinities. 

 Empirical scoring functions have relatively simple 
energy terms to evaluate. However, it is unclear as to how 
well they are suited for ligand-protein complexes beyond the 
training set. Additionally, each term in empirical scoring 
functions may be treated in a different manner by different 
software, and the numbers of the terms included are also 
different. LUDI [57], PLP [78, 79, 82], ChemScore [83] are 
examples derived from empirical scoring functions 

 Knowledge-based scoring functions [84-89] use 
statistical analysis of ligand-protein complexes crystal 
structures to obtain the interatomic contact frequencies 
and/or distances between the ligand and protein. They are 
based on the assumption that the more favorable an 
interaction is, the greater the frequency of occurrence will 
be. These frequency distributions are further converted into 
pairwise atom-type potentials. The score is calculated by 
favoring preferred contacts and penalizing repulsive 
interactions between each atom in the ligand and protein 
within a given cutoff. 

 The appeal of knowledge-based functions is 
computational simplicity, which can be exploited to screen 
large compound databases. They can also model some 
uncommon interactions like sulphur-aromatic or cation- , 
which are often poorly handled in empirical approaches. 
However, they are still faced with the problem that some 
interactions are underrepresented in the limited training sets 
of crystal structures as well as by the bias inherent in the 

selection of proteins for successful structure determination 
thus the obtained parameters may not be suitable for 
widespread use, especially with interactions involving metals 
or halogens. PMF [84], DrugScore [90], SMoG [91] and 
Bleep [85] are examples of knowledge-based functions 
which differ mainly in the size of training sets, the form of 
the energy function, the definition of atom types, distance 
cutoff or other parameters. 

 Consensus scoring [92] is a recent strategy that combines 
several different scores to assess the docking conformation. 
A pose of ligand or a potential binder could be accepted 
when it scores well under a number of different scoring 
schemes. Consensus scoring usually substantially improves 
enrichments (i.e. the percentage of strong binder among the 
high-scoring ligands) in virtual screening, and improves the 
prediction of bound conformations and poses [93]. However, 
the prediction of binding energies might still be inaccurate. 
Also, the usefulness of consensus scoring diminishes when 
terms in different scoring functions are significantly 
correlated [5, 93]. CScore [94] is an example of which 
combines DOCK, ChemScore, PMF, GOLD, and FlexX 
scoring functions. 

 Typical scoring functions face the problem of affinity 
prediction partly because of the limited treatment of 
solvation effect. One of the ways to solve this problem is 
physics-based scoring e.g. MM-PB/SA and MM-GB/SA 
(MM stands for molecular mechanics, PB and GB for 
Poisson-Boltzmann and Generalized Born, respectively, SA 
for solvent-accessible surface area), which is involved in 
rescoring or lead optimization to improve the accuracy of 
binding affinity prediction. Promising results were obtained 
using MM-PB/SA [95, 96] or MM-GB/SA [97] in some 
studies. However, recently Guimarães and Mathiowetz 
reported that the GB/SA model poorly estimated protein 
desolvation on certain systems, while incorporating 
WaterMap into the MM-GB/SA method instead of GB/SA 
protein desolvation gave the best ranking result [98]. Singh 
and Warshel compared several methods for evaluating the 
affinity of protein-ligand complexes and suggested that 
PDLD/S-LRA/  (protein dipoles Langevin dipoles linear 
response approximation) appears to offer an appealing 
option for the final stages of massive VS and in contrast, 
PB/SA appears to provide erroneous estimates of the 
absolute binding energies because of its incorrect estimation 
of entropies and the problematic treatment of electrostatic 
energies [99]. 

DOCKING METHODOLOGIES 

Rigid Ligand and Rigid Receptor Docking 

 When the ligand and receptor are both treated as rigid 
bodies, the search space is very limited, considering only 
three translational and three rotational degrees of freedom. In 
this case, ligand flexibility could be addressed by using a 
pre-computed a set of ligand conformations, or by allowing 
for a degree of atom–atom overlap between the protein and 
ligand. The early versions of DOCK [10, 50, 51, 74], FLOG 
[46] and some protein-protein docking programs, such as 
FTDOCK [100], adopted such a method that kept the ligand 
and receptor rigid during the process of the docking. 
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 DOCK is the first automated procedure for docking a 
molecule into a receptor site and is being continuously 
developed. It characterizes the ligand and receptor as sets of 
spheres which could be overlaid by means of a clique 
detection procedure [101]. Geometrical and chemical 
matching algorithms are used, and the ligand-receptor 
complexes can be scored by accounting for steric fit, 
chemical complementation or pharmacophore similarity. 
Within its improved versions, incremental construction 
method and exhaustive search are added to consider the 
ligand flexibility. The exhaustive search randomly generates 
a user-defined number of conformers as a multiple of the 
number of rotatable bonds in the ligand. With respect to 
scoring, the latest version DOCK 6.4 has included both an 
AMBER-derived force-field scoring with implicit solvent 
[102] and GB/SA, PB/SA solvation scoring [97, 103]. 

 FLOG generates ligand conformations on the basis of 
distance geometry and uses a clique-finding algorithm to 
calculate the sets of distances. Up to 25 explicit 
conformations of the ligand could be used to dock for some 
flexibility. FLOG allows users to define essential points 
which must be paired with a ligand atom. This approach is 
useful if an important interaction is already known before 
docking. Conformations are scored with a function 
considering van der Waals, electrostatics, hydrogen bonding 
and hydrophobic interactions. 

Flexible Ligand and Rigid Receptor Docking 

 For systems whose behavior follows the induced fit 
paradigm [28, 29], it is of vital importance to consider the 
flexibilities of both the ligand and receptor since in that case 
both the ligand and receptor change their conformations to 
form a minimum energy perfect-fit complex. However, the 
cost is very high when the receptor is also flexible. Thus the 
common approach, also a trade-off between accuracy and 
computational time, is treating the ligand as flexible while 
the receptor is kept rigid during docking. Almost all the 
docking programs have adopted this methodology, such as 
AutoDock [31], FlexX [30]. 

 AutoDock 3.0 incorporates Monte Carlo simulated 
annealing, evolutionary, genetic and Lamarckian genetic 
algorithm methods to model the ligand flexibility while 
keeping the receptor rigid. The scoring function is based on 
the AMBER force field, including van der Waals, hydrogen 
bonding, electrostatic interactions, conformational entropy 
and desolvation terms. Each term is weighted using an 
empirical scaling factor obtained from experimental data. 
AutoDock 4.0 is able to model receptor flexibility by 
allowing side-chains to move. Additionally, interaction of 
protein-protein docking could be evaluated in this version of 
AutoDock. AutoDock Vina was recently released as the 
latest version for molecular docking and virtual screening 
[104]. By redocking the 190 receptor-ligand complexes that 
had been used as a training set for the AutoDock 4, 
AutoDock Vina simultaneously showed approximately a two 
orders exponential improvement of magnitude in speed and a 
significantly better accuracy of the binding mode prediction. 

 FlexX uses an incremental construction algorithm to 
sample ligand conformations. The base fragment is first 
docked into the active site by matching hydrogen bond pairs 

and metal and aromatic ring interactions between the ligand 
and protein. Then the remaining components are 
incrementally built-up in accordance with a set of predefined 
rotatable torsion angles to account for ligand flexibility. The 
FlexX scoring function is based on Böhm’s work [105]. Its 
current version includes terms of electrostatic interactions, 
directional hydrogen bonds, rotational entropy, and aromatic 
and lipophilic interactions. The interactions between 
functional groups are also taken into account through 
assigning the type and geometry for groups. 

Flexible Ligand and Flexible Receptor Docking 

 The intrinsic mobility of proteins has been proven to be 
closely related to ligand binding behavior and it has been 
reviewed by Teague [106]. Incorporating the receptor 
flexibility is significant challenge in the field of docking. 
Ideally, using MD simulations could model all the degrees of 
freedom in the ligand-receptor complex. But MD has the 
problem of inadequate sampling that we mentioned earlier. 
Another hurdle is its high computational expense, which 
prevents this method from being used in the screening of 
large chemical database. 

 In addition to the historic induced fit several theoretical 
models, conformer selection and conformational induction, 
have been proposed to illustrate the flexible ligand-protein 
binding process. According to the definition given by 
Teague [106], conformer selection refers to a process when a 
ligand selectively binds to a favorable conformation from a 
number of protein conformations; conformational induction 
describes a process in which the ligand converts the protein 
into a conformation that it would not spontaneously adopt in 
its unbound state. In some cases, this conformational 
conversion can be likened to a partial refolding of the 
protein. 

 Various methods are currently available to implement the 
receptor flexibility (Table 3). The simplest one is so-called 
“soft-docking” [37, 107, 108], decreases the van der Waals 
repulsion energy term in the scoring function to allow for a 
degree of atom–atom overlap between the receptor and 
ligand. For example, the LJ 8-4 potential in GOLD and 
smooth potential in AutoDock 3.0 belong to this class. This 
method may not include adequate flexibility. Nevertheless, it 
has the advantage of computational efficiency as the receptor 
coordinates are fixed, simply by adjusting van der Waals 
parameters. 

 Utilizing rotamer libraries [109, 110] is another approach 
to modeling receptor flexibility. Rotamer libraries include a 
set of side-chain conformations which are usually 
determined from statistical analysis of structural 
experimental data. The advantage of using rotamers is the 
relative speed in sampling, and the avoiding of minimization 
barriers. ICM (Internal Coordinates Mechanics) [61] is a 
program using rotamer libraries with the biased probability 
methodology [111], coupled with Monte Carlo search of the 
ligand conformation. 

 AutoDock 4 [112] adopts a simultaneous sample method 
to deal with side chain flexibility. Several side chains of the 
receptor can be selected by users and simultaneously 
sampled with a ligand using the same methods. Other 
portions of the receptor are treated rigidly with a grid energy 
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map during sampling. Grid energy map introduced by 
Goodford [20] is used to store energy information of the 
receptor and simplify interaction energy calculation between 
ligand and receptor. 

 Still another way to deal with the protein flexibility is to 
use an ensemble of protein conformations, which 
corresponds to the theory of conformer selection [113, 114]. 
A ligand is separately docked into a set of rigid protein 
conformations rather than a single one, and the results are 
merged depending on the method of choice [115]. This 
method was originally implemented in DOCK, which 
generates an average potential energy grid of the ensemble 
[113] and is extended in many programs in different ways. 
For example, FlexE [38] collects multiple crystal structures 
of a certain protein, merging the similar parts while marking 
the dissimilar areas as different alternatives. During the 
incremental construction of a ligand discrete protein 
conformations are sampled in a combinatorial fashion. The 
highest scoring protein structure is selected based on a 
comparison between the ligand and each alternative. 

 Hybrid method is another practical strategy to model 
receptor flexibility. One example is Glide [33], a very 
popular program in the field of docking. Glide designs a 
series of hierarchical filters to search the possible poses and 
orientations of the ligand within the binding site of the 
receptor. Ligand flexibility is handled by an exhaustive 
search of the ligand torsion angle space. Initial ligand 
conformations are selected based on torsion energies and 
docked into receptor binding sites with soft potentials. Then 
a rotamer exploration is used to further model receptor 
flexibility [36]. IFREDA [115] utilizes a hybrid method that 
combines soft potential and multiple receptor conformations, 
accounting for receptor flexibility. Other programs, like 
QXP [62] and Affinity [63], perform a Monte Carlo search 
of ligand conformations followed by a minimization step. 
During minimization, the user-defined parts of the protein 
are allowed to move in order to avoid atom clashes between 
the ligand and receptor. SLIDE [53] is designed to 
incorporate flexibility with the ability to remove clashes by 
directed, single bond rotation of either the ligand or the side 
chains of the protein. An optimization approach based on the 

mean-field theory is applied to model induced-fit 
complementarities between the ligand and protein. 

 Methods mentioned above either include only side chain 
flexibility or full flexibility of the receptor. We have known 
that loops forming active sites play an important role in 
ligand binding. In some cases the loop may undergo 
dramatic conformational change whereas in other portions of 
the receptor there is little change upon ligand binding. For 
this situation, side chain flexibility methods fail to sample 
the correct protein conformation and full flexibility seems to 
be a computational waste. Fig. (1) shows superimposed 
crystal structures of triosephosphate isomerase as an 
example. The active site of triosephosphate isomerase has an 
11-residue loop which moves 7Å upon ligand binding [116]. 
However, the rest of the enzyme has no movement in 
comparison to their apo and holo structures. Several enzyme 
families also involve loop rearrangement within the active 
site responsible for ligand binding, such as Bromodomain, an 
extensive family related to acetyl-lysine binding, or 
Dihydrofolate reductase, responsible for the maintenance of 
the cellular pools of tetrahydrofolate, as well as other kinds 
of kinases [117, 118]. In the next section, we present the 
Local Move Monte Carlo (LMMC) loop sampling method, a 
new approach which focuses on sampling ligand 
conformation within loop-containing active sites. 

Local Move Monte Carlo Sampling for Flexible Receptor 

Docking 

 Local move (also referred to as ‘window move’) starts 
with changing one torsion angle (called the driver torsion) 
followed by the adjustment of the six subsequent torsions to 
allow the rest of the chain to remain in its original position 
while preserving all bond lengths and bond angles (Fig. 2). 
The pioneering work on local move was done by Go and 
Scheraga [119], who developed a solution for the system of 
equations defining the values of the six torsion angles that 
preserve the backbone bond lengths and angles. Hoffmann 
and Knapp first applied the local move method in a MC 
simulation of polyalanine folding that included a suitable 
Jacobian [120], required for maintaining detailed balance. 
They demonstrated that this method samples the 

Table 3. Some Basic Methods for Including Receptor Flexibility 

 

Method Description Advantage Disadvantage Program 

Soft potential 

Change vdW to allow for 
overlap 

between receptor and ligand 
atoms 

Computational efficiency. 

Easy to implement and use 
combined with other methods. 

Inadequate flexibility. 

Describe flexibility in an implicit, 
rude and non-quantitative way. 

AutoDock [31] 

Rotamer library Search side chain library to 
obtain possible conformations 

Relative computational 
efficiency. 

Avoid minimization barriers. 

Strong dependence on the database 
used. 

No backbone flexibility. 

ICM [61] 

Receptor side chain 
flexibility 

Sample both side chain and 
ligand conformations 

simultaneously using GA 

Relative computational 
efficiency. 

Model the effect that ligand 
make on binding site residues. 

Only selected side chains are 
involved. 

No backbone flexibility. 

GOLD [65] 

AutoDock 4 [112] 

Ensemble of protein 
conformations 

Docking ligand to a series of 
receptor structures which 

represent different 
conformational states. 

Include full and explicit 
flexibility. 

Expensive computational cost. 

Limited by protein conformations 
used in sampling. 

DOCK [113] 

FlexE [38]  
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conformational space more efficiently than single move 
[121]. The method has been further tested on proline-
containing peptides [122], proteins and nucleic acids [123]. 
Mezei introduced the ‘reverse proximity criterion’ for 
filtering all possible loop closure solutions to select the most 
structurally conservative one and tested it on a solvated lipid 
bilayer [124]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Superimposed apo- (without ligand, in blcak) and holo- 
(with ligand in gray) crystal structures of triosephosphate 
isomerase. PDB code 1YPI and 2YPI, respectively [116]. The 11 
residue-loop composed of binding site is the only region that has 
large motion upon ligand binding (in circle). 

 

 

 

 

 

 

Fig. (2). Local move of a lipid tail. Six subsequent torsions change 
while keeping the rest of the chain to remain in its original position. 

 We have developed an improved local move Monte 
Carlo (LMMC) loop sampling approach for loop predictions. 
The method generates loop conformations based on simple 
moves of the torsion angles of side chains and local moves 
of the backbones of loops. To reduce the computational costs 
for energy evaluations, we developed a grid-based force field 
to represent the protein environment and solvation effect. 
Simulated annealing has been used to enhance the efficiency 
of the LMMC loop sampling and identify low-energy loop 
conformations. The prediction quality was evaluated on a set 
of protein loops with a known crystal structure that has been 
previously used by others to test different loop prediction 

methods. The results show that this approach can reproduce 
the experimental results with root mean square deviation 
(RMSD) within 1.8 Å for the all the test cases [125]. Fig. (3) 
shows the loop structures of 2act (198-205) sampled by the 
LMMC method. This LMMC loop prediction approach 
could be useful for flexible receptor docking. In our future 
studies, we will develop our LMMC based molecular 
docking approach, which samples not only the side chains 
but also the backbone loops in the binding site of proteins 
and flexible ligands as well. A flowchart of the LMMC 
based molecular docking approach is given in Fig. (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Loop Structure of 2act (198-205) produced by the local 
move MC method at 5000K and followed by clustering to generate 
100 representative conformations. Black stick represents the crystal 
loop structure, and gray wires represent the 100 representative loop 
conformations. 

APPLICATION EXAMPLES OF MOLECULAR DOC-

KING FOR DRUG DISCOVERY 

 Molecular docking has been the most widely employed 
technique. Though the main application lies in structure-
based virtual screening for identification of new active 
compounds towards a particular target protein, in which it 
has produced a number of success stories [126], it is actually 
not a stand-alone technique but is normally embedded in a 
workflow of different in silico as well as experimental 
techniques [127]. Several research groups focus on 
evaluating of the performance of various docking programs 
or on making improvements to the scoring functions when 
experimental testing has already been done. Such efforts 
could give meaningful guidance to choose the methodology 
for a particular target system. Docking, combined with other 
computational techniques and experimental data, also could 
be involved in analyzing drug metabolism to obtain some 
useful information from the cytochrome P450 system [128-
130], for example. In the following, three examples of 
successful applications of docking are presented. 

 DNA gyrase is a bacterial enzyme that introduces 
negative supercoils into bacterial DNA and unwinds of 
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DNA, thus being studied as antibacterial target. HTS failed 
to find novel inhibitors of DNA gyrase. Boehm et al. used de 
novo design for this enzyme and successfully obtained 
several new inhibitors [131]. Firstly, 3D complex structures 
of DNA gyrase with known inhibitors, ciprofloxacin and 
novobiocin, were carefully analyzed to get a common 
binding pattern, in which both inhibitors donate one 
hydrogen bond to Asp73 and accept one hydrogen bond 
from a conserved water molecule. In addition, some 
lipophilic fragments should be included in the molecule to 
have lipophilic interaction with the receptor. Based on this 
information, LUDI and CATALYST were employed to 
search the Available Chemicals Directory (ACD) and a part 
of the Roche compound inventory (RIC), respectively, and 
collected about 600 compounds. Close analogs of these 
compounds were also considered, thus in total 3000 
compounds were further tested using biased screening. 
Consequently 150 hits were selected and clustered into 14 
classes of which 7 classes were proven to be the true and 
novel inhibitors. Subsequent hit optimization relied strongly 
on the knowledge of 3D structures of the binding site and 
eventually generated a series of highly potent DNA gyrase 
inhibitors. 

 Another example is focused on the validation of docking 
and scoring applied in cytochromes P450 and other heme-
containing proteins [132]. Docking against heme-containing 
complexes appears to be difficult because certain ligands 
coordinate directly to the heme iron atom and the precise 
energetics of this contact for different chelating groups needs 
to be properly balanced with other energetic terms, and in the 
case of the P450s, the environment above the heme group is 
very hydrophobic compared to other enzymes and some 
scoring functions and docking methods perform poorly on 
interactions driven entirely by lipophilic contacts. In this 
study, 45 complexes from the PDB database comprising 
heme-containing proteins and ligands were selected. The 
native ligands were removed and then docked into the 
defined active cavities using the GOLD [65] software which 
employs genetic algorithms to generate ligand 
conformations. The scoring functions used to rank the 
docking poses were Goldscore [32] and Chemscore [65]. 
The results show that the success rates are 64% and 57% for 
Chemscore and Goldscore respectively, which is 

significantly lower than the value of 79% observed with both 
scoring functions for the full GOLD validation set. 
Additionally, it is apparent from the data that the search 
algorithm was very unlikely to be responsible for the failure 
in docking. Further research indicated that re-
parameterization of metal-acceptor interactions and 
lipophilicity of planar nitrogen atoms in the scoring 
functions resulted in a significant increase in the percentage 
of successful docking poses against the heme binding 
proteins (Chemscore 73%, Goldscore 65%), which might be 
useful in docking applications on P450 enzymes and other 
heme-binding proteins. 

 Concerning VS and HTS, comparative research has been 
done by Doman et al. [133]. Both VS and HTS were applied 
to screen the inhibitors of the protein tyrosine phosphatase-
1B (PTP-1B). For the HTS a library of approximately 
400,000 compounds from a corporate collection were 
screened. Some 85 compounds were found with IC50 values 
less than 100 μM, corresponding to a hit rate of 0.021%. And 
the most active had an IC50 value of 4.2 μM. For VS, 
235,000 commercially available molecules were docked into 
the crystal structure of PTP-1B (PDB code 1pty) using the 
Northwestern University version [134-137] of DOCK3.5 
[102, 138]. After docking, the top-scoring 1000 molecules 
(500 for the ACD and 500 for the combined BioSpecs and 
Maybridge databases) were considered for further 
evaluation. A total of 889 molecules were actually available, 
and after visual inspection 365 compounds were chosen for 
testing. Of these, 127 molecules were found to be active with 
IC50 <100 μM, corresponding to a hit rate of 34.8%. 
Structure-based docking therefore enriched the hit rate by 
1700-fold over random screening. Another point that should 
be noted is that the hits from VS and HTS are very different 
from each other, which implies that combination of VS and 
HTS may be more helpful for lead discovery. 

CONCLUDING REMARKS 

 Receptor flexibility, especially backbone flexibility and 
movement of several key secondary elements of the receptor 
involving ligand binding and the catalyst, is still a major 
hurdle in docking studies. Some methods to deal with side 
chain flexibility have been proven effective and adequate in 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Flowchart of local move Monte Carlo (LMMC) loop sampling approach for protein-ligand docking. Abbreviate: MC: Monte Carlo; 
ESC: Exponential Coolong Schedule; LCS: Linear Cooling Schedule. 



Molecular Docking Current Computer-Aided Drug Design, 2011, Vol. 7, No. 2      9 

certain cases. With respect to global flexibility, an ensemble 
of proteins is a popular solution which accords with the 
viewpoint of conformer selection. It requires an efficient 
way to obtain and select reliable protein structures used for 
docking, which means structures that the ligand can fit in 
should be included in the ensembles. Besides, computational 
cost is another limitation for this method. LMMC could be 
an appropriate method for sampling a ligand within loop-
containing active sites since loop tends to be more flexible 
and hard to model using existing approaches especially due 
to their possibly dramatic movements. Another advantage is 
the adjustment of the extent of flexibility. Either the side 
chain or full movement of the loop can be directly controlled 
by users. 

 Scoring function is a fundamental component worth 
being further improved upon in docking. Successful 
application examples show that computational approaches 
have the power to screen hits from a huge database and 
design novel small molecules. However, the realistic 
interactions between small molecules and receptors still rely 
on experimental technology. Accurate as well as low 
computational cost scoring functions may bring docking 
application to a new stage. 
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