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Efficient Multipole Expansion: Choice of Order and Density Par-
titioning Techniques

Mihaly Mezei and Edwin S. Campbell∗

Department of Chemistry, New York University, New York, N. Y. 10003,
USA

Two approaches to improve the convergence of the multipole series were considered 1) an
increase in the order of the expansion; 2) decomposition of the molecular charge density
into smaller distributions. New decompositions of the molecular electronic density and a
computational procedure to generate high-order moments are presented. The accuracy and
timing of test calculations on the H2O ... H2O system are given and suggestions are made
for optimizing the choice of an expansion for more general systems.
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1. Introduction

A comparison of the time ( > 10 sec) required for a direct calculation of the Coulomb
interaction,

∫
ρ(x1)ρ(x2)/|x1 − x2| dx1dx2, (1a)

ρ(x1), ρ(x2) : the charge densities, (1b)

for the near H-F wave function of H2O given by Diercksen and Kraemer [1,2] with that of
a multipole expansion of the extremely high 14th order (1.3 sec) shows the clear advantage
of the latter. This advantage is further enhanced by the fact that the multipole expansion
can be easily extended to include induced interactions [3, 4] . Although wave functions for
interacting molecules do overlap and the infinite multipole series for the energy of interaction
of two charge distributions converges if and only if the distributions are non-overlapping,
finite expansions for the energies corresponding to the densities they define yield excellent
;approximations even at intermolecular distances corresponding to those of condensed phases.
Pack, Wang and Rein [5] have provided support for this conclusion by comparison of the
evaluation of the integral (1) with the results of a multipole expansion of the integrand.

Two approaches have reduced significantly the computational work required by such ex-
pansions and thus made applications feasible which the slow convergence of these finite
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approximations at such distances using earlier techniques prohibited. First, Rein [6] has
published calculations in which significant improvement in the accuracy of the expansions
including only fourth-order terms was obtained. He divided the molecular density ρ(x) into
a sum of densities assigned to each atomic center:

ρ(x) =
nc∑

k=1
d(k,x), (2a)

nc: number of centers, (2b)
d(k,x): density function for the kth center. (2c)

The results of the following two calculations were compared: 1) an expansion in ρ(x) about
a single center x0 in terms of what he called “molecular moments”; 2) an expansion of each

d(k,x) about the position of the nucleus xk in terms of what he called“atomic moments”. An
improved accuracy in the calculations truncated at fourth-order terms using the multicenter
expansion was reported. A second approach has sharply reduced the computational effort
required for higher-order approximations through development of more efficient algorithms
and programs (Mezei and Campbell [7] ; Campbell and Mezei [8] ).

The purpose of this note is to report: 1) results which lead to a more effective choice of
decomposition of the densities in Eq.(2), cf. Sect. 2.2; 2) a test of the efficiency of the
calculation as a function of the position of a single center, cf. Sect. 2.2; 3) results which
provide a better basis for a combination of the two aforementioned approaches to reduce
the computation required, cf. Sects. 3.1, 3.2; 4) the availability of tested programs for: a)
generation of moments (Appendices A and B), and b) translation of the expansion center,
rotation of the coordinate axes and/or contraction of the moments belonging to any set of
centers to one of the centers (Appendix C). All tests were made on the interaction of two
water molecules.

2. Definition of the Multipole Moments and of the Density Splits

2.1. Definition of the Moments

The moments of a charge distribution with respect to any center x0 over a domain D are
defined as:

M(ρ,x0,n, {ei}) =
∫
D

3∑
k=1

(xk − x0
k)nkρ(x)dx, (3a)

{ei} : the set of orthonormal basis vectors, (3b)

n = 〈n1, n2, n3〉, ni a non− negative integer. (3c)
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The charge density is assumed to be given by:

ρ(x) =
n0∑
i=1

Friφ
2
i (x), (4a)

φ(x) =
nb∑

j=1
cijBj(x) (4b)

n0: number of molecular orbitals, (4c)

nb: number of basis functions, (4d)

Fri: fractional occupancy of the ith MO, 0 ≤ Fri ≤ 2, (4e)

Bj(x): jth basis function, (4f)

cij : constants. (4g)

Let
xj = 〈xj

1, x
j
2, x

j
3〉: center of the jth basis function. (5a)

The set {xj} is contracted into a 1-1 sequence

r(i), i = 1, . . . , nc. (5b)

Each φi(x) must be rewritten as a sum over linear combinations of subsets of the basis
functions which have the same centers:

C(k) ≡ {Bj(x)|xj = r(k)}, (6a)

φi(x) =
nc∑

k=1
ψi(k,x), (6b)

ψi(k,x) =
∑

Bj(x)∈C(k)
cijBj(x). (6c)

Two basic alternatives for the assignment of two-center densities to the d(k,x) have been
used. 1) The first was a convenient generalization of the Mulliken split used by Rein [6] . It
allows the assignment of the overlap density to a third center, which will be shown to have
great advantages. It is described as follows:
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d(k,x) =
n0∑
i=1

Fri[ψ
2
i (k,x) +

nc∑
p=q+1

nc∑
q=1

S(k, p, q)ψi(p,x)ψi(q,x)], (7a)

S(k, p, q): parameters defining the split of the density, (7b)

nc∑
k=1

S(k, p, q) = 2. (7c)

2) The second alternative was investigated to determine whether a decrease in the range of
the overlap density despite the concomitant increase in the asymmetry of the d(k,x) could
increase the accuracy of lower-order approximations. It can be described as follows. Consider
a plane perpendicular to

u = (r(q)− r(p))/|r(q)− r(p)| (8a)

and passing through the point

r0(p, q) = (w(q)r(p) + w(p)r(q))/(w(p) + w(q)), (8b)

w(p), (p = 1, . . . , n, ): positive input parameters. (8c)

Let

χ =
{

1 if u · (x− r0(p, q)) < 0,
0 otherwise.

(8d)

Then

d(k,x) =
n0∑
i=1

Fri[ψ
2
i (k,x) +

nc∑
p=q+1

nc∑
q=1

χ(p, q,x)ψi(p,x)ψi(q,x)], (9)

2.2. Specification of the Multipole Expansions Used

Results from two choices made for splits of type (1) will be discussed. The first, proposed
by Mulliken and considered by Rein [6] is defined by

S(k, p, q) = δpk + δqk. (10)

It will be called the Mulliken split. The second removes all overlap density from a selected
set of centers and will be called a “very extreme split”. It has an immediate advantage
based on the following consideration. For any of the conventional basis sets, after all overlap
densities have been excluded what remains in d(k,x) is a linear combination of functions of
the form:
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f(|x|)H(x), (11a)

H(x: a surface spherical harmonic of order ≤ 2n (in the sense defined by Hobson [9a])

about the center xk, (11b)

n: the highest order of spherical harmonics involved in the functions of C(k). (11c)

After integration over |x| this implies that the set is exactly represented by a sum of spherical
harmonics of order < 2n [9b]. In our calculations using a very extreme split, all overlap
densities have been transferred to the oxygen atom of the water molecule. This minimizes
the number of interactions involved in the split calculations.

The second split alternative will be called a “sharp split” and is defined by

w(k) = 1, k = 1, . . . , nc, (12)

i.e., the plane dividing the overlap density between any two centers p and q contains the
midpoint of r(p)− r(q).

Finally, for the case of the single center expansion, calculations for different choices of x0 in
the neighborhood of the O nucleus were made over distances ca. 10% of the O-O distance.
These had no marked influence and all results referring to one-center expansion are for the
oxygen nucleus as the x0.

3. Comparison of the Different Multipole Techniques

3.1. Accuracy as a Function of Multipole Order and Expansion Type

The limiting value for the energy E for a given orientation was estimated as follows: 1) The
expansion type presumed to yield the greatest accuracy was inferred from inspection of the
increments [E(n)−E(n− 1)] . 2) E(n) for the highest order (i.e., n = 10 in this study) for
this type was adopted as the estimate.

Two types of orientations were considered. Type 1 (perpendicular): Let D and A denote
donor and acceptor molecules, respectively. The donor HD is on the OD-OA line. Let bA,
bD be the bond angle bisectors for A and D pointing toward the hydrogens. Let u lie in
the donor plane and be either of the two normals to the OD-OA line. The two molecular
planes are perpendicular. The angle θ between bA and (OD → OA) is positive if (bA · u)
and (bD · u) are of opposite sign. Type 2 (stacked): The O-O line is perpendicular to the
two molecular planes and γ is an angle between the bisector of molecule 1 and the projection
of the bisector of molecule 2 on the plane of the first. Representative results1 are presented
in Tables 1-2.

1 The wave function was provided by Diercksen and Kraemer in a private communication involving
slight variations in the basis set published in [1].
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Table 1. The error in the interaction energies E(n) of expansions of different types in perpendicular ori-
entations. 1) The distance of the oxygens, R(O-O) is in Å. 2) The angle ϑ is in degrees and is defined in
Sect. 3.1. 3) The entries in parentheses are the last relative increments |1 − [E(9)/E(10)]| for the type of
expansion chosen for inferring an approximation to the limiting E (cf. Sect. 3.1). 4) All other entries are
the errors of the particular approximation: |1− E(n)/E(limit)— (cf. Sect. 3.1). 5) The number after E is
the corresponding power of ten; thus, .13E − 1 = .013. 6) All interactions of order n′ ≤ n are included in
E(n)

n

Expansion Type ϑ R(O-O) 4 6 8 10

Molecular 0.0 3.0 .13E–1 15E–1 .18E–2 .39E–3
Very extreme split 0.0 3.0 .52E–2 .45E–3 .13E–3 (.35E–4)
Mulliken split 0.0 3.0 .57E–2 .26E–1 .19E–1 .84E–2
Sharp split 0.0 3.0 .25E–1 .11E–1 .17E–3 .12E–1

Molecular 60.0 3.0 .93E–1 .33E–1 .82E–2 .85E–3
Very extreme split 60.0 3.0 .50E–1 .46E–2 .50E–3 (.93E–4)
Mulliken split 60.0 3.0 .58E–1 .23E–1 .67E–2 .18E–2
Sharp split 60.0 3.0 .68E–2 .11E–1 .28E–1 .70E–1

Molecular 120.0 3.0 .14E+1 .27E+0 .24E+0 .77E–1
Very extreme split 120.0 3.0 .75E+0 .39E–1 .12E–1 (.28E–2)
Mulliken split 120.0 3.0 .70E+0 .76E–1 .35E+0 .32E+0
Sharp split 120.0 3.0 .64E–1 .15E+0 .15E+0 .84E–1

Molecular 180.0 3.0 .35E+0 .19E+0 .34E–1 .94E–2
Very extreme split 180.0 3.0 .52E–3 .30E–1 .27E–2 (.37E– 3)
Mulliken split 180.0 3.0 .10E+0 .69E–3 .47E–1 .17E+0
Sharp split 180.0 3.0 .33E–1 .18E–1 .67E+0 .83E+0

Molecular 0.0 2.72 .22E–1 .22E–1 .35E–2 .79E–3
Very extreme split 0.0 2.72 .10E–1 .79E–3 .14E–3 (.81E–4)
Mulliken split 0.0 2.72 .58E–3 .51E–1 .52E–1 .30E–1

Molecular split 60.0 2.72 .12E+0 .49E–1 .15E–1 .19E–2
Very extreme split 60.0 2.72 .69E–1 .58E–2 .96E–3 (.13E–3)
Mulliken split 60.0 2.72 .87E–1 .42E–1 .17E–1 .62E–2

Molecular 120.0 2.72 .16E+1 .80E–1 .12E+0 .42E–1
Very extreme split 120.0 2.72 .31E+0 .52E–2 .60E–2 (.13E–2)
Mulliken split 120.0 2.72 .31E+0 .48E–1 .36E+0 .11E+0

Molecular 180.0 2.72 .63E+0 .37E+0 .67E–1 .35E–1
Very extreme split 180.0 2.72 .36E–2 .62E–1 .57E–2 (.58E–3)
Mulliken split 180.0 2.72 .43E–1 .19E+0 .28E+0 .76E–1
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Table 2. The error in the interaction energies E(n) of expansions of different types in stacked orientations.
1) The angle γ is in degrees and is defined in Sect. 3.1. 2) For further explanation, see the legend of Table 1

n

Expansion Type γ R(O-O) 4 6 8 10

Molecular 0.0 3.0 .96E–1 .25E–1 .65E–2 .12E–2
Very extreme split 0.0 3.0 .11E–1 .11E–2 .23E–3 .24E–3
Mulliken split 0.0 3.0 .19E–1 .69E–3 .69E–3 .23E–3
Sharp split 0.0 3.0 .69E–2 .56E–3 .66E–4 (.47E–5)

Molecular 180.0 3.0 .34E+1 .13E+1 .55E+0 .23E+0
Very extreme split 180.0 3.0 .23E+0 .84E–1 .20E–1 .46E–3
Mulliken split 180.0 3.0 .24E+0 .18E–1 .20E–2 .37E–2
Sharp split 180.0 3.0 .82E–1 .24E–2 .27E–2 (.24E–2)

The results of Tables 1-2 show that: 1) in general the accuracy advantage of the split de-
creases sharply with the accuracy sought and, therefore, with the order of the approximation
used; 2) in these calculations on small H-bonded molecules, the very extreme split gives the
highest accuracy in orientations of greatest interest and in all cases its accuracy is at least
comparable to the best; 3) the Mulliken split gave significantly lower accuracy than the very
extreme and was in many cases outperformed by the molecular expansion at higher orders;
4) the sharp split showed greater accuracy at orientations of lesser interest.

Finally, calculations at over 200 orientations and distances using the wave function of Popkie,
Kistenmacher and Clementi [10] confirmed the general superiority of the very extreme split
over the molecular expansion.

3.2. Time Requirements of the Different Types of Expansions

Data on the time requirements for different types of expansions are presented in Table 3.
Although the number of multipole series calculations required for the total energy is pro-
portional to (N1N2) the product of the number of distributions used for the two interacting
systems, inspection of the times listed in Table 3 shows that at lower orders there is a sub-
stantial contribution from initialization common to all centers. Furthermore, a comparison
of times for the very extreme and other splits in Table 3 shows the marked savings which
arise from the vanishing of higher order moments for centers devoid of overlap density.

Table 3. Time requirements (sec) for computing the interaction energy with different types of expansions

n

Expansion Type 4 6 8 10 12 14

Molecular 0.097 0.133 0.229 0.430 0.664 1.29
Any split, other than
the very extreme 0.148 0.407 1.10 2.70 5.1a 12.a

Very extreme split 0.098 0.179 0.376 0.908 1.53 3.07

aEstimated
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4. Considerations for the choice of Expansion Type and Order

The following points should be considered in the selection of the compromise between an
increase in the order of the multipole series and an increase in the number of distributions
into which the molecular density is partitioned. 1) It is reasonable to extrapolate from our
calculations on H2O. . .H2O to the case where the interactions between AHx of one molecule
with atom B of an other (R-AHx . . .B-R′) make significant contributions to the total energy.
In such case, it is expected that a very extreme split with a transfer of all overlap densities
involving the H’s to A will yield a similar accuracy advantage to that found in water. It seems
plausible that for (R-A-C. . .B-R’) it would likewise be advantageous to use a very extreme
split with all overlap involving C transferred to A. 2) The results on stacked orientations
suggest that for less directly interacting centers the very extreme split will probably lose its
accuracy advantage in comparison with other splits. 3) Although the additional accuracy
gained by a split in general is expected to increase with the size of interacting systems the
aforementioned asymptotic increase in time makes it imperative to group the nuclei into
subsets with a common expansion center. 4) The very extreme split with its advantage of
limiting harmonic types can be applied usefully only to centers within a “reactive” group.
For other groups another split type is required. One can expect that there will be a maximum
number of groups from the standpoint of accuracy as well from time economy on the basis
of the following two observations: (a) there were certain orientations for which either the
Mulliken of the sharp split gave results which were no better than those of a single center
expansion, and others for which they were worse; (b) in most cases these splits were more
accurate at lower orders only. 5) For the small system tested, at orientations and distances
of greatest physical interest an increase between two or four orders yielded an accuracy for
the one-center expansion approximately equal to that of the best multipole decomposition,
i.e., the very extreme split. 6) A split moment program is somewhat more complex. 7) The
use of split moments in calculations on crystals may sacrifice symmetry elements that might
be present for the appropriate choice of a single molecular center.

Appendix A

Specification of the Moment Computation Program

The CDC 6600 Fortran program MOMENTS, available on request, computes the moments
of a charge distribution, subject to the following restrictions:

1) An input parameter, Nmax, determines that the moments will be given for all orders
N = n1 + n2 + n3 such that

N ≤ Nmax ≤ 14 (A1)

2) Each basis function Bj(x) is assumed to be a contracted normalized linear combination
of normalized Gaussians of the form:
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Bj(x) = Nj

 ∑
{m}

a
j
m

3∏
p=1

(xp − xj
p)

mp

 nj∑
q=1

N j
q b

j
q exp[−αj

q|x− xj |], (A2a)

{m|mk is a non− negative integer and m1 +m2 +m3 ≤ 3}, (A2b)

aj
m, b

j
q, α

j
q : parameters; Nj , N

j
q : normalization constants, (A2c)

nj : number of Gaussians contracted in the jth basis function. (A2d)

3) The input syntax is compatible with the POLYATOM system of programs [12].

Appendix B

Algorithms, Storage and Timing for the Moment Calculation

1) Substitution of the expression for the density, Eqs. (4,5,A2) into the definition of the
moments, Eq.(3), yields linear combinations of product of integrals that are of the following
form:

∫ ∞

−∞
(x− xk)nk(x− xp)

np(x− xq)
nq exp[−αp(x− xp)

2] exp[−αq(x− xq)
2]dx (B1)

The product of the two Gaussians is replaced by a single Gaussian through the standard
transformation of perfect squares:

−αp(x− xp)
2 − αq(x− xq)

2 = [−αpαq(xp − xq)
2/αpq]− αpq(x− xpq)

2, (B2a)

xpq = (αpxp + αqxq)/αpq; αpq = αp + αq. (B2b)

Since, in general, for each pair of basis functions the maximum possible number of different
moments is much greater than the maximum number of coefficients in the product harmonic,
it is advantageous to express the integral (B1) as a linear combination of integrals of the
following form:

∫ ∞

−∞
(x− xk)mk exp[−αpq(x− xpq)

2]dx (B3a)

xk : center coordinate for moment expansion. (B3b)

This integral can be evaluated either by applying the transformation η = x − xk or the
transformation η′ = x− xpq, leading to integrals of the form:
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∫ ∞

−∞
ηmk exp[−αpq(η − (xpq − xk))2]dη, (B4)

or

∫ ∞

−∞
(η′ − (xk − xpq))

mk exp[−αpqη
′2]dη′, (B5)

respectively. The integral (B4) can be evaluated recursively,

∫ ∞

−∞
xL+2 exp[−α(x− r)2]dx =[(L+ 1)/2α]

∫ ∞

−∞
xL exp[−α(x− r)2]dx

+ r
∫ ∞

−∞
xL+1 exp[−α(x− r)2]dx

(B6)

while the integral (B5) can be evaluated through the binomial expansion. Since the number
of operations is less for the recursion whenever mk ≤ 5 and test calculations on a wide
range of parameters have shown no propagation of round-off errors, the form (B4) was used
throughout the program.

2) The calculation for the split by perpendicular planes is done similarly, with the following
two modifications: a) for each pair of centers a rotation of coordinates is needed to make
u of Eq. (8a) one of the basis vectors; b) the recursion for the coordinate x corresponding
to u is modified as follows. The first step evaluated the incomplete error function and is
continued as:

∫ B

A
xL+2 exp[−α(x− r)2]dx = [(L+ 1)/2α]

∫ B

A
xL exp[−α(x− r)2]dx+

r
∫ B

A
xL+1 exp[−α(x− r)2]dx−BL+1 exp[−α(B − r)2]/2α+ AL+1 exp[−α(A− r)2]/2α.

(B7)

3) The coefficients of the polynomials in three variables as well as the different moments are
stored in linear arrays in: a) blocks of increasing N = n1 + n2 + n3; b) within each block
of N in blocks of increasing n3; c) within each block of n3 in blocks of increasing n2. The
address of the coefficient belonging to the term with exponents (n1, n2, n3) is:

[N(N(N + 3) + 2)/6] + [n3(2N − n3 + 3)/2] + n2 + 1. (B8)

Note that the term N(N(N + 3) + 2)/6 gives the number of coefficients in a polynomial in
x1, x2, x3 of order (N − 1).

4) The times required to compute various moments from wave functions of different size are
given in Table 4.
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Table 4. Time requirements (sec) of the moment computation using different basis sets

Nmax

No. of Basis No. of
Molecule Functions Gaussians 3 5 6 10 14

H2Oa[11] 14 33 14 163
H2Ob[11] 14 33 9 105
H2Oc[11] 14 33 16 173
H2Oc[1,2] 35 56 24 49 243
H2Od[1,2] 35 56 32 ∼155
H2Oe[1,2] 35 56 105 371
(H2O)2c[1,2] 70 112 1247
H2Oc[10] 29 56 256 594
H2Od[10] 29 56 313

aMolecular (H centered); bMolecular (O centered); cMulliken split; dVery extreme split; eSharp
split.

Appendix C

Transformation of the Moments

A tested CDC 6600 Fortran program called MOMTRSF is also available on request. It
is compatible in its input with the program MOMENTS and can perform the following
transformations: 1) Contraction of the moments. Consider any set of centers xk, 1 ≤ k ≤ n′c,
and the corresponding sets of moments {Mk(ρk,xk,n, {ei})|n1 +n2 +n3 ≤ Nmax}. Choose
x0 = xj ’, 1 ≤ j ≤ n′c. The moments {M(ρ,x0,n, {ei})} of

ρ =
n′

c∑
k=1

ρk

are generated. 2) Translation of the center of expansion. The set of moments {M(ρ,x0,n, {ei})}
is converted to the set of moments {M ′(ρ,x0′

,n, {ei})} referring to another center x0′
.

3) Rotation of the coordinate system around the center of expansion. The set of moments

{M(ρ,x0,n, {ei})} is converted to the set of moments {M ′′(ρk,x0,n, {e′i})} where {e′i} is
the set of orthonormal basis vectors of the rotated system.
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