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Abstract: This paper reviews the cooperative water model of Campbell and Mezei based
on the Maxwellian form of multipole interaction. The Maxwellian form is described, and the
algorithms and software for their implementation in both disordered and ordered phases are
presented, followed by the specifics of the model. The model has been used in a number of
calculations on various water clusters, liquid, and crystal models. The results of these calculations
are briefly summarized, and their implications, relevant to polarization model in general, are
discussed.

Introduction Background

The Maxwellian Form of Multipole Interaction. The

Standard statistical mechanics offers a systematic treatmennerqy of the electrostatic interaction of two nonoverlapping
of cooperative interactions by partitioning the total energy charge distributionsh and B can be expressed through a

into sums of two-body, three-body, etc. terms. This approach gouple Taylor series of [ts — 1 about the two origin©a
is quite general and does not take advantage of the specificand 0

nature of interactions. Terms beyond the two-body represent
the cooperativity of the interaction.

. . . Ens= ’ZO ; SN 1)
For interacting molecules, the cooperativity is due to the =0 0<NFRg<N
deformability of the electron density upon interaction. For
water clusters, Del Bene and Poptiemonstrated that such ~ With
cooperativity is indeed significant. This led to the idea of

representing the cooperativity of waterater interactions ENAVNB= . Z - Z N
with interactions of induced moments albeit at first in a AT ooz e
negative manner: the idea was first discarded out of hand , 3

based on the fact that dipoles represent cylindrical symmetry ﬂ (V)™ !‘l (Ved™14(0) * 15(ng)(A/(rg — ra))l 0. (2)
but that the charge distribution of water has only planar k= = T

symmetry? As the results reviewed here on Ice |h calcula-

tions show, this skepticism is not unfounded in the sense
that the contributions beyond dipole polarizability are not

negligible. However, the use of dipole polarizability has Vo= (/0% (3)
proven to be very useful in modeling the cooperativity of

water, as witnessed by subsequent work in the Stillinger and

Laboratory as well as the model, contemporary to Still-

. , . 3 3
inger’s, reviewed here. L(n)= f b, I—l X dX/ﬂ N ()

wherey = AorB
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The Maxwellian formalism is based on the fathat with two different, fast converging sums, one in real space
for each center and for eady there exists a unique set of and the other in reciprocal space. A detailed analysis of the
real pole vectors (called characteristic directiog)..., s\ question of which shape does the Ewald sum correspond to

and scalar multipole moments®™, such that the sum has been presented by CampBéBubsequently, Campbell
of directional derivatives in eq 2, involving only vectors derived the Ewald summation formulas for multipoles of
along the Cartesian axes, can be replaced by a singlearbitrarily high order, using the Maxwellian formalism of

directional derivative along a general direction: multipole expansiof® The general form of the electrostatic
energy of a crystal consisting of a set of simple translation
. N Na . lattices{ T;} containing a set of charge distributions centered
Enon, = {Pa™ % pg"I(NA * Ngh}* [ (s™V,) * at{X¢ is given as
=
i U, =~ UX,, T) 6)
(81~ ) o, (5) PP R

-
EachU(X.T) is obtained from a multipole sum over the

Use of eq 5 not only reduces the number of directional multipole tensors of ordeX and Ny that can be written in
derivatives per charge distribution fro\ ¢+ 1)(N + 2)/2 the forni®

to N but also leads naturally to an extension where the N /o

calculation of the electric field generated by the multipoles UK T, DN, N = (P™P™

(required for the calculation of induced dipoles), field o T T T Ny N ! g

gradients, etc. involves the same computational procedure

as the calculation of the interaction between the multipoles: K, Xo = X, My, NDJo(S(X), SX7)) (7)

adding unit vectors as additional characteristic directfons. where the summation is over the set of non-negative integer

A formalism for the calculation of torques has been also triples v = [, vo, vsOwith v1 + vo + v3 = Nx + Ny and

develope# that includes higher order induced moments as p(), S(X,), andP(™), S(X1) are the poles and characteristic

well. directions at the sit&. and the lattice sitd;, respectively.
Use of eq 5, however, requires first the determination of The formulas for the so-called ‘crystal constaritsand the

the polesp(N) and characteristic directionfs'}. For the directional derivativess are given in ref 15. Furthermore,

case ofN = 2 an explicit formula has been developegor for the calculation of the's a recursion, analogous to those

N > 2 it was shown that the characteristic directions can be used to evaluate eq 5, has been develdped.

obtained from the roots of a polynomial of ordeN,2and The salient feature of this expression is that all geometric

the poles can be calculated based on calculating theinformation about the crsytal is incorporated into the crystal

directional derivatives with the newly derived characteristic constantsK and that all information about the charge

directions at selected points. distributions is separated into the factorThe lattice sums
The calculation of the characteristic directions and of the (both direct and reciprocal space) contribute only to the
calculation of the scalar poles from the momek{s) is crystal constants. This means that once the crystal constants

implemented in the programhardir, that is part of the are calculated for a given lattice, the calculation using
packageMaxwell.® The same package also includes the different charge distributions or just different orientations

programmomentsthat evaluate$(n) for anyn from single- of the same distribution can proceed without the need for
determinant wave functions generated by the software additional lattice summation. Calculation of the crystal
POLYATOM 19 or Gaussian*! The calulated momentgn) constantK and the recursion calculating ties have been
can be translated and/or rotated by the prograomtrnsf implemented into the programsyscon and crysten, re-
of Maxwell. spectively!® The calculation of the electrostatic energy of a

Since eq 5 involves only derivatives its evaluation is, in crystal can be supplemented by the direct summatiamn'of
principle, simple. However, the number of terms increases (k > 4) terms with the progransryspot. These programs
exponentially withN since derivation of each term in a are also part of thélaxwell package.
fraction results in two terms. Fortunately, the exponential  Density Partitioning. There are two important facts worth
complexity can be reduced to polynomial order since eq 5 remembering concerning the Taylor expansion represented
can also be evaluated recursively, resulting in an efficient by eqs -4 or, equivalently, eq 5. First, the series is only
algoritm2 This recursion has been implemented in the convergent if the charge distributions and pg do not
programmultipol of the Maxwell packagé. overlap. Second, if a charge distributipn includes only

Periodic SystemsCalculation of the electrostatic energy basis functions centered on the same point (usually a
of a crystal presents a nontrivial mathematical problem. Even nucleus), then the multipole expansion of ordarf exact
when the unit cell is neutral but has a finite dipole moment where n is the highest order term in the wave function
(which is the case in most systems), the infinite sum of representing the density The nonoverlapping requirement
dipole—dipole energies not only is slow to converge but also suggests that the convergence can be improved if the
is conditionally convergent, i.e., dependent on the order of molecular density is split up. This improvement comes,
summation which can be interpreted as dependent on thehowever, at the expense of increasing the number of
crystal’'s shape. The classic solution to the problem is the interacting multipoles. The tradeoff between the two has been
one presented by Ewadfdwho represented the lattice sums examined for waterwater interactions using different
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density partition schemégThe most efficient scheme took

Mezei

values—the best fit was obtained with the exponent &t

advantage of the chance to get exact (partial) results with al12}. As expected of repulsion contributions, they were indeed

finite order: it assigned all overlap densities to the oxygen

positive for all dimer conformations in the Clementi dataset.

atom of the water molecule and assigned to each hydrogen This left open the determination &fs(n). In subsequent
only the density that comes from the basis functions centeredwork (vide infra) several empirical expressions were tested

on it—a partition called ‘very extreme split’.
Campbell-Mezei (CM) Water Model. The combination
of the algorithms evaluating multipole interactions in the
Maxwellian formalism to arbitrary high order and the (at
that time) extensive data set of water dimer HartrEeck
(HF) energies published by the Clementi Laboratbtjied
to the development of a fully ab initio cooperative model
for water—water interactiond? The energy of a system of
water molecules was assumed to be of the form

U(n) = U,(n) + Ui(n) + U,(n) + Uy(n) (8)
where Uy(n) is the electrostatic energy of the charge
distributions representing the water molecules in their
respective orientationyJ;(n) is the additional electrostatic
energy due to the induced moments, dhgn) and Uy(n)

are the repulsion and dispersion contributions, respectively.
Up(n) represents the electrostatic interaction as approxi-

mated by the multipole expansion of the static wave function
of Clement et at®'° The density was partitioned according
to the ‘very extreme split” technique described above,

on ice lattice energies, and the one giving results closest to
the experimenta data was select&@ihe poles, characteristic
directions, elements of the polarizability tensor, the param-
eters of the terms representing(n), and the dispersion
function U4(n) found the best are also part of tMaxwell
package.

Figure 1 shows the CM potential and its individual terms
as a function of the ©0 distance for a water dimer in linear
hydrogen bonded orientation. It shows that the contribution
of both the induced moments and the nonelectrostatic terms
become negligible beyond ca. 3.5 A. Furthermore, these two
terms largely cancel in the 2:8.5 A range, resulting in a
remarkable good representation of the total energy with just
the permanent electrostatic energy alone in the 2-80A
range.

The computational effort required to evaluate the energy
of an assembly of waters is quite high when compared to
the widely used simple central-force models. While, in
principle, the model could be incorporated into molecular
dynamics simulations, this high cost excludes it from

resulting in second-order expansion of the density on the consideration. It is feasible, however, to evaluate the energy

hydrogens and 10th-order expansion on the oxygen.

of a limited set of configurations (under periodic boundary

Ui(n) represents the interaction energy due to the induced conditions, if required). Such calculations were performed

moments. The static contribution to electric field was

to show the feasibility of deriving a so-called ‘effective

calculated from the multipolar representation of the charge COOPerative’ potential approximating a cooperative one by

distribution by adding a unit vector to the characteristic
directions, allowing the use of the algorithm calculating the
interaction energy of multipoles to calulate the fields as well.
Ui(n) was calculated in the dipole approximation (i.e.,
induced moments of order higher than dipole were ne-
glected). The polarizibility tensax required for this calcula-
tion was obtained from the ab initio calculations of Liebmann
and Moskowit2! The induced dipoles were calculated using

fitting the parameters of the pairwise additive effective
cooperative potential to the cooperatively calculatetil
energy of a set of condensed-phase conformafibAs. for
incorporating the CM model into a Monte Carlo simulation,
an additional, more fundamental difficulty, common to all
cooperative models based on polarization, arises: the
calculation of the polarization energy is &fN?) — O(N3)
process, while the calculations at a usual Monte Carlo step

the method of Campbell.This calculation involves the without polarization requires onl@(N) effort. As a result,

solution of a system of linear equations instead of the the incorporation Qf poIarizab_iIity slows_ the caICl_JIation by

customarily employed iteration. The fact that the induced &n order of magnitude. Possible solutions to this problem

dipoles are obtained from such an unequivocal fashion &€ discussed by Mahoney and JorgeriSen.

suggests that the so-called ‘polarization catastrophy’ where Test of the CM Model. The HF nonadditivity given by

the iteration diverges for centers too close is only an artifact Kistenmacher et df. for the optimal closed trimer;-1.13

of the iteration process and does not represent a physicmkcallmol, is reproduced very well with the polarization model

phenomenon. Indeed, it is known that the iterative solution that gave—1.12 kcal/mol. Comparisons were also made with

of a system of linear equations is not necessarily conver- the trimer data set of Hankins etZlhe results, given in

gent22 Table 1, show that the general trends are well represented
The termsU;(n) + Ug(n) represented the nonelectrostatic PY the polarization model. Since the basis set, hence the wave

contributions to the interaction, resulting from exchange and function, used in this trimer data set was different from the

dispersion effects. Since the HF energies do not include ©ne used to build the model, the lack of quantitative

dispersion effects, the difference between our calculated29reement is understandable.

electrostatic energyUp(n) + Ui(n), and the HF energy

calculated for the same conformation represents only the Results

exchange repulsion term,(n). In the CM model the  Water Clusters. With a near-exact representation of the

repulsion termU,(n) was represented blyg'g terms whose  electrostatic interactions in terms of multipole interaction as

coefficients were fitted to reproduce the difference between well as a reasonable representation of the cooperativity

the Uy(n) + Ui(n) terms and the corresponding HF energy. through the calculation of induced dipoles several important

The exponent set was arrived at by testing several differentquestions can be answered: convergence of the multipole
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Figure 1. The contributions to the CM potential (in kcal/mol) for a linear dimer (orientation VI decribed in ref 30) as the function
of the oxygen—oxygen distance {O—0) (in A). Full line: total energy; long-dashed line: permanent electrostatic energy (Up(n));
short-dashed line: induced electrostatic energy (U{(n)); dotted line: exchange and dispersion energy (U{n) + U4(n)).

Table 1. Comparison of the HF and CM Model 5.2% for the optimal dimer, trimer, and tetramer, respec-

Nonadditivities#¢ tively. This compares with 1520% for the different ice

R(O-0) type 023 E(H-F)  E(CM model) forms treated (vide infra).
2.76 sequential —54.7° —0.94 —0.77 Subsequently, clusters of 48 waters in Ice Ih configurations
3.15 sequential —54.7° —0.64 —0.44 were studied® Among the several results of this study was
2.76 double donor —54.7° 1.30 1.09 the partitioning of the calculated total energy into two-body,
3.15 double donor —54.7° 0.38 0.42 three-body, etc. contributions, allowing an estimate of the
2.76 double acceptor ~ —54.7° 0.77 1.26 convergence of the alternative approach to multibody effects.
3.00 double acceptor ~ —54.7° 0.37 0.68 Extrapolating the results to infinite lattice, the three- and four-
3.39  double acceptor  —54.7° 0.10 0.28 body terms were found to contribute to the total lattice energy
3.00  double acceptor —25.7° 049 0.29 21% and 3%, respectively. The contributions of five and
300  double acceptor —70.0° 0.36 0.85 higher order multibody terms were found to be 0.6% or less,
a Energies are in kcal/mol. © Distances are in A. ¢ 6,3 is the angle with the exception of two conformations where the three-

between the third water dipole and the O—O line between the second

and third waters. and four-body terms partially cancelled.

expansion, effect of neglecting cooperativity on the minimum . Still T}notr:er SItUdtV deterrtm_n(_ed a}d?umbfer of Io%al _mlnlr?a
energy geometries, and the estimate of the relative magnitudén small water clusters containing three, four, and six waters.

of three-body, four-body, etc., terms compared to the total A major ggal of trdat f\:‘vork r\]/vas (tjo fm? out 'f, mcl;;s;]onl of |
cooperative energy and to the total energy. In a series of 00Perativity would aftect the order of energies of the loca

papers Campbell and Belford studied optimized water Minima found-the answer was affirmative for hexamers:
clusterd27with n = 4, 5, 6 and clusters in conformations the additive approximation favored a nearly planar ring, while
corresponding to the ones seen in Ic&flor n < 33. The the cooperative approximation favored an ice lh-like stag-
highlights of these papers are summarized below. gered ring. Also, the optimal oxygeroxygen distance was
The good performance of the CM model in reproducing four_1d to decrease W|t_h clqster size. For hexamers, it already
the HF trimer energy was repeated in a study of the optimal fell into the range of vibrationally averaged oxygeskygen
tetramer2s where the HF and CM energies agreed within distances seen in condensed phases.
3%. The magnitude of the induced dipole was found to be A Trifurcated Water Dimer. Ab initio calculations
0.25 D—this falls between the corresponding value for the identified a low-energy water dimer conformati®rthat
dimer (0.12 D) and the average value observed in Ice Ih involves three hydrogen bonds: the-8 bond of one water
(0.55 D). It is also observed that the relative contribution of is roughly antiparallel to the dipole vector of the other.
cooperativity (i.e., inluding the effects of the induced dipoles Subsequently, several pairwise additive potentials and the
to the electric field) increases with cluster size: 1.7%, 2.9%, CM model were used to compare the calculated dimer
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Table 2. Comparison of the Ab Initio, Empirical, and energy either, and it was shown that the two corrections work
Polarization Model Energies with Quantum-Mechanical in the opposite direction, thus reinforcing our conclusion
Energies about the potential significance of such trifurcated conforma-
configuration tions.
| I n VAR VAR Calculations on Disordered Ice Ih.The lattice energy

of Ice Ih was calculated by Campbell in the dipolar

32 3 22 12 qa  1a A ;
approximation as a tool to assess the electrostatic nature of

ab initio MCY3® 041 —3.33 —3.72 —550 —525 —5.24 !
models: hydrogen bond® The work was later extended to multipoles
YMD¥* 092 —3.59 —3.75 —534 —4.93 —5.16 of order six3°
empirical - ST2%  1.80 -3.05 ~2.07 ~6.44 ~566 ~5.99 With the development of the recursion algoritfinto
SPC®% 516 —3.10 —3.91 —559 —536 —5.11 evaluate eqs 4 and 5 t_he permanent muI_tlpoIe energies were
TIP3P¥  3.86 —3.45 —3.91 —548 —5.25 —5.10 calculated up to multipole order 14, using= 2.741 A. _
TIP4PY’ 5.07 —3.05 —4.29 —5.57 —5.60 —5.14 The calculations were performed on Ice Ih crystals with
polarizable cM —-3.70 —5.09 —-5.89 —6.03 —6.06 —5.76 disordered water orientations. The disorder was represented
model: , . by all the possible tetrahedral orientations of waters that still
LAy ~308 ~6.02 ~584 ~6.23 ~6.14 ~5.40 satisfy the BernatFowler rule (exactly one hydrogen
6-311G* between neighboring oxygens). All possible arrangements
2 Number of H bonds. of a 16-site unit cell were considered, resulting in 55 classes

of conformations with distinct permanent multipole energy;
10 of these had zero total dipdi&3®
From the convergence of the series it was estimated that

Table 3. Lattice Energy Contribution for Ice Forms?
fom U, U U+U U U5 U, U5 UV U U

lh —202 -7.0 —27.2 159 —3.8 —4.1 —6.6 —15.1 —15.5 —17.9 the truncation error is about 0.03 kcal/mol. The spread in

- -175-77 -252 126 —3.3 -39 —7.3 —15.9 —16.5 —19.9 the permanent multipole energy for the 55 classes was 0.14

X —183 —7.2 —-255 13.8 —3.2 —3.9 —7.1 —15.0 —15.7 —18.9 kcal/mol that was reduced to 0.1 kcal/mol for the zero-dipole
@ Up, Uy, Uy, Ud: see eq 6; U= Up+ Ui+ U+ Ug, dispersion term subclass. While this spread was steadily decreasing as the

parameters for U, Us, and U from refs 40-42, respectively. multipole order was increased toward 14, it remained higher

energies with the ab initio values at different conformations, than the estimated trunction error. This indicates that there
ranging from the trifurcated to the dimer in the ‘classical’ indeed is a residual energy difference among the different

linear hydrogen bond conformatiéh. water orientations-a question that was debated at that time.
Table 2 shows the results for six conformations. Confor- ~ The induced dipoles and the induced energies were also
mations | and Il are both trifurcated: conformations-VI calculatec®. This increased the spread in the electrostatic

are linear dimers optimized with different levels of theory; energy to 1.1 kcal/mol and 0.6 kcal/mol for the whole and
and conformation Il is an intermediate between linear and nonpolar class, respectively. This increase in the spread
trifurcated. For each conformation the CM model is the Serves as an indicator of the fact that the truncation of the
closest to the ab initio values among the models tested. Theinduced multipoles at the dipole level introduced a non-
difference between the CM model and the rest is particularly negligible error and points out the importance of considering
large for the trifurcated conformations. The poor performance higher order polarizibilities.
of the models fitted to ab initio energies is understandable Comparison of the Energies of Different Ice Forms.
since trifurcated dimers were not in any of the data sets usedThe ice crystal energy calculaticgisiave been extended to
for the fit. The poor performance of the empirical models, two additional ice forms with ordered hydrogen positions:
on the other hand, indicates that trifurcated dimers do not Ice Il and Ice IX. The dispersion contribution was calculated
occur with significant probability in normal aqueous systems. with three different approximatiorf8:-4> The comparison
This implies that this shortcoming is not affecting seriously Wwith experiment, however, is only valid if the zero-point
calculations on aqueous systems. However, it was pointedenergy, that is neglected in these calculation, is known, and
out® that in situations where interactions with individual the experimental value can be adjusted accordingly. This was
water molecules are important, these empirical potentials the case only for Ice Ih, giving-14.1 kcal/mol. Comparison
should be used with caution. The good performance of the of the three different dispersion approximations shows that
CM model is particularly impressive since it was also derived that of Zeiss and Meath gave the best approximation.
without using any trifurcated structure. This supports the Subsequent work with the CM model used this dispersion
notion that the polarization approach can be effective in the contribution throughout.
modeling of intermolecular interactions. At a more general  Calculation of the Energies of Ice Ih Bjerrum Defects.
level, the comparison highlights the point that, in some Hassan and Campbell performed a series of calculdfions
situations, explicit calculation of the cooperativity is neces- to study the energetic penalty of a Bjerrum defect in an Ice
sary. Ih crystal: either there are two hydrogens between neigboring
It should be mentioned that a comment to this work oxygens or there are none. They considered both ‘formal
questioned its validity since no counterpoise correction was defects’, i.e., the waters were not allowed to relax due to
applied to correct for the basis-set superposition éfrar. the repulsion caused by the defect and allowed relaxation
answering this commen#t,it was pointed out that the no  of the waters in involve in the defect as well as their
correction was applied for the neglect of zero-point vibration neighbors. The system studied involved altogether 27 water
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molecules placed in an arrangement corresponding to thescheme was us€@They also found that even for a hydrogen

Ice Ih lattice with all but the central water pair satisfying bond there is a measurable amount of charge trah&fer.

the Bernat-Fowler rule. Energy calculations involved both Representation of the Exchange RepulsionAnother

a pairwise additive potential fit to ab initio dataand the  ingrained property of the widely used molecular mechanics

cooperative CM model. force fields is the representation of the nonbonded interac-
Optimization of the molecular orientations and positions tions as the sum of eletrostatic and Lennard-Jones terms,

using the additive model was found to reduce the defecti.e., terms of the fornt™%, r™¢, andr~!2 Ther ® term is

energy by~40% The optimization involved the defect pair usually identified with the dispersion energy and thé?

and their neighbors, while the rest provided the boundary term with the repulsion. While the dispersion term has its

effect. It was found that relaxing the orientational degrees physical justification, the repulsive termtaison d'dre is

of freedom contributes significantly more to lowering the the fact thar =2 = (r~%)2 and thereby it is easy to compute.

defect energy than relaxing the positions. Also, as discussed above, the quality of these contributions

The optimization with the additive potential was followed 1S generally lower than that of.the rgst. _
by orientational optimization with the cooperative CM model. ~ There are two problems with this approach. First, the
This yielded an additional 10% lowering of the defect energy. functionsr~, r=¢, andr~*?are close to be linearlgependent

These calculations also brought into focus the lower quality 1S Was seen from least-square fit c‘alculations. aiming at
of the repulsive contributions in most analytical potentials. ©Pt@ining the best fitting coefficients: the matrix of the
There are two major reasons for this. The simpler and easier€SU!ting syftem of linear equation is usually very ill-
to remedy source is the limited sampling of the repulsive conditionec®* This is not just a technical problem that can

conformations in the database used to fit the potentials. MoreP€ SImply overcome with better numerical algorithms or
difficult is the establishment of an adequate objective N9her precision arithmetiesit means that a wide range of
function to the fit since the energy surface can vary by orders poeﬁ!glen_t SEIS can give a virtually "?'e”“ca' f.'t’ making _the
of magnitude if strongly repulsive orientations are considered. 'dentification of individual terms with physical meaning

Charae Transfer. Molecular mechanics force fields that unreliable. This, in turn, is not just a question of ‘esthetics’
a %e. a Sﬁ ' oecula ec ? cs Olcff' elds ? dsince the generally assumed transferability of atomic pa-
are used in most farge-scale computer simuiations use fxed, , ,oia5 from one molecule to another largely relies on the

charges on the interaction centers and thus are not equippeqact that these parameters have a physical interpretation.
to handle charge transfer. Thus, it is of interest to examine

the magnitude of this neglected contribution The other problem is the well-known fact that the exhange
‘1 imulati ' ; qf repulsion is an exponential function of(see, e.g., ref 48);

A set o ree energy simu ations was periormed 101 hq -12 tarm results in too steep a repulsion. For simulations
monovalent cations in water and chloroform using ab initio .., room-temperature it is not a significant problem
derived parametet$for the ions® The calculated solvation 0 avar one of the main justifications of the explicit
frge energies were §trong|y underestlmated when Cc_)mpareqnclusion of cooperativity into computer simulations is that
with e_xp(_arlmgnt. This was 9xpected, with _the reasoning that such representation can remain valid over a wide range of
polarization is neglected in the calculatiofisTo test if  y,ormodynamic conditions as opposed to the force fields

polarization can indeed account for the shortfall, the CM \\hare the effect of cooperativity is mapped to pairwise
model was used to calculate the additional contribution to additive terms that are only valid in the thermodynamic

the solvation free energy, by evaluating the induced dipole \icinity of the state the functions were parametrized. This
energy of a selected set of conformations from the simulation. advantage, however, is only realized if the rest of the
For this application, the programultipol has been extended  qtential functions are parametrized well enough to represent

to handle periodic boundary conditions and to use a lower {ha i range of thermodynamic conditions under consid-
order of expansion for more distant pairs of waters. The g ation.

calculation showed that including polarization can indeed
reduce the discrepancy between calculation and experiment, highlighted by simulations at high temperature. A

but a significant gap still remained. comparison of T, V, N) and (T, P, N) ensemble simulations

It was proposed that the source of the remaining discrep- on three polarizable and two nonpolarizable water models
ancy between calculation and experiment is the neglect offound that the polarizable models underestimate the density
charge transfer. To support this claim, ab initio calculations py 10-50%, leading to the suggestion that the functional
were performed on selected configurations containing the form of the repulsive term has to be chand&8ubsequently,
ion and its first solvation shell. A Mulliken population the comparison was extended to more models and to
analysis showed that significant charge-transfer exists: Li sjmulation in the Gibbs ensemBldo determine the critical
lost 0.32 e and Nalost 0.27 e to the waters surrounding it. point of each modeit While in this test several of the
Note, that the Mulliken population analysis is known to be polarizable models gave critical densities close to the
a rather simple approach to charge density partitioning. experimental value, the overall comparison between the
However, it was used in the present work only to demonstrate pajrwise additive and polarizable models failed to show the
the presenceof charge transfer and not to quantitate it. expected superiority of the polarizable models. These

Subsequently, van der Vaart and Merz have published comparisons reinforce the suggestion that, for optimum
analogous calculations with similar results; the conclusion performance, the repulsion term has to be revised concur-
held even when a more sophisticated charge partitioning rently with the development of polarizable models.

The fact that the 12 repulsion is inadequate for this task
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Summary and Conclusions

Work in the Campbell Laboratory has showed that the
Maxwellian formalism is an elegant and efficient way to
treat electrostatic interactions in the multipole expansion
approximation. The necessary formudfaand algorithm'2

for their use to describe intermolecular interactions in clusters

Mezei
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application to the multipole expansion of electrostatic
interaction.J. Comput. Phys1976 20, 110-116.

as well as crystals have been developed and implemented (9) Campbell, E. S.; Mezei, M. Maxwell: multipole expansion

in the software packag®laxwell.®

The formalism was also used to derive an ab initio
cooperative water potential based on HartrEeck energies
and representing cooperativity with dipole polarizabifity.

for condensed phases. URL: http://inka.mssm.edwgzei/
maxwell (accessed 09/01/2007).

(10) Barnett, M. P. Mechanized molecular calculatiensthe
POLYATOM systemRev. Mod. Phys1963 35, 571-572.

Subsequently, the model was used in a variety of studies on (11) Gaussian. URL: http://www.gaussian.com/ (accessed 09/01/

water cluster&-26-28.3043 gnd ices® These calculations
showed that dipole polarizability can treat the cooperative
contribution to waterwater interactions reasonably well and
also quantitated the limitations inherent in this approximation.

Calculations on Ice Ih showed that the orientational
disorder results in a finite energy range even when the
orientations obey the BernaFowler rule and even when
the unit cell dipole is zero. The calculation of induced dipole
energies showed that the dipole approximation to the
cooperative contributions is not fully convergéd.

An important result from calculations with the CM
cooperative model is the recognition of the significance of
charge transfer. Other calculations led to the recognition of
the importance of adequate treatment of the repulsion
contribution.
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