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Abstract: This paper reviews the cooperative water model of Campbell and Mezei based

on the Maxwellian form of multipole interaction. The Maxwellian form is described, and the

algorithms and software for their implementation in both disordered and ordered phases are

presented, followed by the specifics of the model. The model has been used in a number of

calculations on various water clusters, liquid, and crystal models. The results of these calculations

are briefly summarized, and their implications, relevant to polarization model in general, are

discussed.

Introduction

Standard statistical mechanics offers a systematic treatment
of cooperative interactions by partitioning the total energy
into sums of two-body, three-body, etc. terms. This approach
is quite general and does not take advantage of the specific
nature of interactions. Terms beyond the two-body represent
the cooperativity of the interaction.

For interacting molecules, the cooperativity is due to the
deformability of the electron density upon interaction. For
water clusters, Del Bene and Pople1 demonstrated that such
cooperativity is indeed significant. This led to the idea of
representing the cooperativity of water-water interactions
with interactions of induced moments albeit at first in a
negative manner: the idea was first discarded out of hand
based on the fact that dipoles represent cylindrical symmetry
but that the charge distribution of water has only planar
symmetry.2 As the results reviewed here on Ice Ih calcula-
tions show, this skepticism is not unfounded in the sense
that the contributions beyond dipole polarizability are not
negligible. However, the use of dipole polarizability has
proven to be very useful in modeling the cooperativity of
water, as witnessed by subsequent work in the Stillinger
Laboratory3 as well as the model, contemporary to Still-
inger’s, reviewed here.

Background
The Maxwellian Form of Multipole Interaction. The
energy of the electrostatic interaction of two nonoverlapping
charge distributionsA and B can be expressed through a
double Taylor series of 1/|rB - rA| about the two originsOA

andOB

with

whereγ ) A or B

and

whereFγ is the charge density of systemγ.* Corresponding author e-mail: Mihaly.Mezei@mssm.edu.
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The Maxwellian formalism is based on the fact4 that
for each center and for eachN, there exists a unique set of
real pole vectors (called characteristic directions)s1

N, ..., sN
N

and scalar multipole momentsp(N), such that the sum
of directional derivatives in eq 2, involving only vectors
along the Cartesian axes, can be replaced by a single
directional derivative along a general direction:

Use of eq 5 not only reduces the number of directional
derivatives per charge distribution from (N + 1)(N + 2)/2
to N but also leads naturally to an extension where the
calculation of the electric field generated by the multipoles
(required for the calculation of induced dipoles), field
gradients, etc. involves the same computational procedure
as the calculation of the interaction between the multipoles:
adding unit vectors as additional characteristic directions.5

A formalism for the calculation of torques has been also
developed6 that includes higher order induced moments as
well.

Use of eq 5, however, requires first the determination of
the polesp(N) and characteristic directions{si

N}. For the
case ofN ) 2 an explicit formula has been developed.7 For
N > 2 it was shown that the characteristic directions can be
obtained from the roots of a polynomial of order 2N, and
the poles can be calculated based on calculating the
directional derivatives with the newly derived characteristic
directions at selected points.8

The calculation of the characteristic directions and of the
calculation of the scalar poles from the momentsI(n) is
implemented in the programchardir , that is part of the
packageMaxwell.9 The same package also includes the
programmomentsthat evaluatesI(n) for anyn from single-
determinant wave functions generated by the software
POLYATOM 10 or Gaussian.11 The calulated momentsI(n)
can be translated and/or rotated by the programmomtrnsf
of Maxwell.

Since eq 5 involves only derivatives its evaluation is, in
principle, simple. However, the number of terms increases
exponentially withN since derivation of each term in a
fraction results in two terms. Fortunately, the exponential
complexity can be reduced to polynomial order since eq 5
can also be evaluated recursively, resulting in an efficient
algoritm.12 This recursion has been implemented in the
programmultipol of the Maxwell package.9

Periodic Systems.Calculation of the electrostatic energy
of a crystal presents a nontrivial mathematical problem. Even
when the unit cell is neutral but has a finite dipole moment
(which is the case in most systems), the infinite sum of
dipole-dipole energies not only is slow to converge but also
is conditionally convergent, i.e., dependent on the order of
summation which can be interpreted as dependent on the
crystal’s shape. The classic solution to the problem is the
one presented by Ewald13 who represented the lattice sums

with two different, fast converging sums, one in real space
and the other in reciprocal space. A detailed analysis of the
question of which shape does the Ewald sum correspond to
has been presented by Campbell.14 Subsequently, Campbell
derived the Ewald summation formulas for multipoles of
arbitrarily high order, using the Maxwellian formalism of
multipole expansion.15 The general form of the electrostatic
energy of a crystal consisting of a set of simple translation
lattices{Ti} containing a set of charge distributions centered
at {Xc} is given as

EachU(Xc,Ti) is obtained from a multipole sum over the
multipole tensors of orderNX andNT that can be written in
the form15

where the summation is over the set of non-negative integer
triples ν ) 〈ν1, ν2, ν3〉 with ν1 + ν2 + ν3 ) NX + NT and
P(NX), S(Xc), andP(NT), S(XT) are the poles and characteristic
directions at the siteXc and the lattice siteTi, respectively.
The formulas for the so-called ‘crystal constants’K and the
directional derivativesσ are given in ref 15. Furthermore,
for the calculation of theσ’s a recursion, analogous to those
used to evaluate eq 5, has been developed.12

The salient feature of this expression is that all geometric
information about the crsytal is incorporated into the crystal
constantsK and that all information about the charge
distributions is separated into the factorσ. The lattice sums
(both direct and reciprocal space) contribute only to the
crystal constants. This means that once the crystal constants
are calculated for a given lattice, the calculation using
different charge distributions or just different orientations
of the same distribution can proceed without the need for
additional lattice summation. Calculation of the crystal
constantsK and the recursion calculating theσ’s have been
implemented into the programscryscon and crysten, re-
spectively.16 The calculation of the electrostatic energy of a
crystal can be supplemented by the direct summation ofr-k

(k g 4) terms with the programcryspot. These programs
are also part of theMaxwell package.

Density Partitioning. There are two important facts worth
remembering concerning the Taylor expansion represented
by eqs 1-4 or, equivalently, eq 5. First, the series is only
convergent if the charge distributionsFA and FB do not
overlap. Second, if a charge distributionFγ includes only
basis functions centered on the same point (usually a
nucleus), then the multipole expansion of order 2n is exact
where n is the highest order term in the wave function
representing the density.17 The nonoverlapping requirement
suggests that the convergence can be improved if the
molecular density is split up. This improvement comes,
however, at the expense of increasing the number of
interacting multipoles. The tradeoff between the two has been
examined for water-water interactions using different
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density partition schemes.17 The most efficient scheme took
advantage of the chance to get exact (partial) results with a
finite order: it assigned all overlap densities to the oxygen
atom of the water molecule and assigned to each hydrogen
only the density that comes from the basis functions centered
on itsa partition called ‘very extreme split’.

Campbell-Mezei (CM) Water Model. The combination
of the algorithms evaluating multipole interactions in the
Maxwellian formalism to arbitrary high order and the (at
that time) extensive data set of water dimer Hartree-Fock
(HF) energies published by the Clementi Laboratory18,19 led
to the development of a fully ab initio cooperative model
for water-water interactions.20 The energy of a system ofn
water molecules was assumed to be of the form

where Up(n) is the electrostatic energy of then charge
distributions representing the water molecules in their
respective orientation,Ui(n) is the additional electrostatic
energy due to the induced moments, andUr(n) and Ud(n)
are the repulsion and dispersion contributions, respectively.

Up(n) represents the electrostatic interaction as approxi-
mated by the multipole expansion of the static wave function
of Clement et al.18,19 The density was partitioned according
to the ‘very extreme split’17 technique described above,
resulting in second-order expansion of the density on the
hydrogens and 10th-order expansion on the oxygen.

Ui(n) represents the interaction energy due to the induced
moments. The static contribution to electric field was
calculated from the multipolar representation of the charge
distribution by adding a unit vector to the characteristic
directions, allowing the use of the algorithm calculating the
interaction energy of multipoles to calulate the fields as well.
Ui(n) was calculated in the dipole approximation (i.e.,
induced moments of order higher than dipole were ne-
glected). The polarizibility tensorR required for this calcula-
tion was obtained from the ab initio calculations of Liebmann
and Moskowitz.21 The induced dipoles were calculated using
the method of Campbell.5 This calculation involves the
solution of a system of linear equations instead of the
customarily employed iteration. The fact that the induced
dipoles are obtained from such an unequivocal fashion
suggests that the so-called ‘polarization catastrophy’ where
the iteration diverges for centers too close is only an artifact
of the iteration process and does not represent a physical
phenomenon. Indeed, it is known that the iterative solution
of a system of linear equations is not necessarily conver-
gent.22

The termsUr(n) + Ud(n) represented the nonelectrostatic
contributions to the interaction, resulting from exchange and
dispersion effects. Since the HF energies do not include
dispersion effects, the difference between our calculated
electrostatic energy,Up(n) + Ui(n), and the HF energy
calculated for the same conformation represents only the
exchange repulsion term,Ur(n). In the CM model the
repulsion termUr(n) was represented byrAB

-k terms whose
coefficients were fitted to reproduce the difference between
the Up(n) + Ui(n) terms and the corresponding HF energy.
The exponent set was arrived at by testing several different

valuessthe best fit was obtained with the exponent set{9,
12}. As expected of repulsion contributions, they were indeed
positive for all dimer conformations in the Clementi dataset.

This left open the determination ofUd(n). In subsequent
work (vide infra) several empirical expressions were tested
on ice lattice energies, and the one giving results closest to
the experimenta data was selected.23 The poles, characteristic
directions, elements of the polarizability tensor, the param-
eters of the terms representingUr(n), and the dispersion
function Ud(n) found the best are also part of theMaxwell
package.

Figure 1 shows the CM potential and its individual terms
as a function of the O-O distance for a water dimer in linear
hydrogen bonded orientation. It shows that the contribution
of both the induced moments and the nonelectrostatic terms
become negligible beyond ca. 3.5 Å. Furthermore, these two
terms largely cancel in the 2.8-3.5 Å range, resulting in a
remarkable good representation of the total energy with just
the permanent electrostatic energy alone in the 2.8 Å-∞
range.

The computational effort required to evaluate the energy
of an assembly of waters is quite high when compared to
the widely used simple central-force models. While, in
principle, the model could be incorporated into molecular
dynamics simulations, this high cost excludes it from
consideration. It is feasible, however, to evaluate the energy
of a limited set of configurations (under periodic boundary
conditions, if required). Such calculations were performed
to show the feasibility of deriving a so-called ‘effective
cooperative’ potential approximating a cooperative one by
fitting the parameters of the pairwise additive effective
cooperative potential to the cooperatively calculatedtotal
energy of a set of condensed-phase conformations.24 As for
incorporating the CM model into a Monte Carlo simulation,
an additional, more fundamental difficulty, common to all
cooperative models based on polarization, arises: the
calculation of the polarization energy is anO(N2) - O(N3)
process, while the calculations at a usual Monte Carlo step
without polarization requires onlyO(N) effort. As a result,
the incorporation of polarizability slows the calculation by
an order of magnitude. Possible solutions to this problem
are discussed by Mahoney and Jorgensen.25

Test of the CM Model. The HF nonadditivity given by
Kistenmacher et al.18 for the optimal closed trimer,-1.13
kcal/mol, is reproduced very well with the polarization model
that gave-1.12 kcal/mol. Comparisons were also made with
the trimer data set of Hankins et al.2 The results, given in
Table 1, show that the general trends are well represented
by the polarization model. Since the basis set, hence the wave
function, used in this trimer data set was different from the
one used to build the model, the lack of quantitative
agreement is understandable.

Results
Water Clusters. With a near-exact representation of the
electrostatic interactions in terms of multipole interaction as
well as a reasonable representation of the cooperativity
through the calculation of induced dipoles several important
questions can be answered: convergence of the multipole

U(n) ) Up(n) + Ui(n) + Ur(n) + Ud(n) (8)
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expansion, effect of neglecting cooperativity on the minimum
energy geometries, and the estimate of the relative magnitude
of three-body, four-body, etc., terms compared to the total
cooperative energy and to the total energy. In a series of
papers Campbell and Belford studied optimized water
clusters26,27 with n ) 4, 5, 6 and clusters in conformations
corresponding to the ones seen in Ice Ih28 for n e 33. The
highlights of these papers are summarized below.

The good performance of the CM model in reproducing
the HF trimer energy was repeated in a study of the optimal
tetramer,26 where the HF and CM energies agreed within
3%. The magnitude of the induced dipole was found to be
0.25 Dsthis falls between the corresponding value for the
dimer (0.12 D) and the average value observed in Ice Ih
(0.55 D). It is also observed that the relative contribution of
cooperativity (i.e., inluding the effects of the induced dipoles
to the electric field) increases with cluster size: 1.7%, 2.9%,

5.2% for the optimal dimer, trimer, and tetramer, respec-
tively. This compares with 15-20% for the different ice
forms treated (vide infra).

Subsequently, clusters of 48 waters in Ice Ih configurations
were studied.28 Among the several results of this study was
the partitioning of the calculated total energy into two-body,
three-body, etc. contributions, allowing an estimate of the
convergence of the alternative approach to multibody effects.
Extrapolating the results to infinite lattice, the three- and four-
body terms were found to contribute to the total lattice energy
21% and 3%, respectively. The contributions of five and
higher order multibody terms were found to be 0.6% or less,
with the exception of two conformations where the three-
and four-body terms partially cancelled.

Still another study27 determined a number of local minima
in small water clusters containing three, four, and six waters.
A major goal of that work was to find out if inclusion of
cooperativity would affect the order of energies of the local
minima foundsthe answer was affirmative for hexamers:
the additive approximation favored a nearly planar ring, while
the cooperative approximation favored an ice Ih-like stag-
gered ring. Also, the optimal oxygen-oxygen distance was
found to decrease with cluster size. For hexamers, it already
fell into the range of vibrationally averaged oxygen-oxygen
distances seen in condensed phases.

A Trifurcated Water Dimer. Ab initio calculations
identified a low-energy water dimer conformation29 that
involves three hydrogen bonds: the O-H bond of one water
is roughly antiparallel to the dipole vector of the other.
Subsequently, several pairwise additive potentials and the
CM model were used to compare the calculated dimer

Figure 1. The contributions to the CM potential (in kcal/mol) for a linear dimer (orientation VI decribed in ref 30) as the function
of the oxygen-oxygen distance r(O-O) (in Å). Full line: total energy; long-dashed line: permanent electrostatic energy (Up(n));
short-dashed line: induced electrostatic energy (Ui(n)); dotted line: exchange and dispersion energy (Ur(n) + Ud(n)).

Table 1. Comparison of the HF and CM Model
Nonadditivitiesa-c

R(O-O) type θ23 E(H-F) E(CM model)

2.76 sequential -54.7° -0.94 -0.77
3.15 sequential -54.7° -0.64 -0.44
2.76 double donor -54.7° 1.30 1.09
3.15 double donor -54.7° 0.38 0.42
2.76 double acceptor -54.7° 0.77 1.26
3.00 double acceptor -54.7° 0.37 0.68
3.39 double acceptor -54.7° 0.10 0.28
3.00 double acceptor -25.7° 0.49 0.29
3.00 double acceptor -70.0° 0.36 0.85
a Energies are in kcal/mol. b Distances are in Å. c θ23 is the angle

between the third water dipole and the O-O line between the second
and third waters.

Maxwell’s Invariant Multipole Form: A Water Model J. Chem. Theory Comput., Vol. 3, No. 6, 20072141



energies with the ab initio values at different conformations,
ranging from the trifurcated to the dimer in the ‘classical’
linear hydrogen bond conformation.30

Table 2 shows the results for six conformations. Confor-
mations I and II are both trifurcated; conformations IV-VI
are linear dimers optimized with different levels of theory;
and conformation III is an intermediate between linear and
trifurcated. For each conformation the CM model is the
closest to the ab initio values among the models tested. The
difference between the CM model and the rest is particularly
large for the trifurcated conformations. The poor performance
of the models fitted to ab initio energies is understandable
since trifurcated dimers were not in any of the data sets used
for the fit. The poor performance of the empirical models,
on the other hand, indicates that trifurcated dimers do not
occur with significant probability in normal aqueous systems.
This implies that this shortcoming is not affecting seriously
calculations on aqueous systems. However, it was pointed
out30 that in situations where interactions with individual
water molecules are important, these empirical potentials
should be used with caution. The good performance of the
CM model is particularly impressive since it was also derived
without using any trifurcated structure. This supports the
notion that the polarization approach can be effective in the
modeling of intermolecular interactions. At a more general
level, the comparison highlights the point that, in some
situations, explicit calculation of the cooperativity is neces-
sary.

It should be mentioned that a comment to this work
questioned its validity since no counterpoise correction was
applied to correct for the basis-set superposition error.31 In
answering this comment,32 it was pointed out that the no
correction was applied for the neglect of zero-point vibration

energy either, and it was shown that the two corrections work
in the opposite direction, thus reinforcing our conclusion
about the potential significance of such trifurcated conforma-
tions.

Calculations on Disordered Ice Ih.The lattice energy
of Ice Ih was calculated by Campbell in the dipolar
approximation as a tool to assess the electrostatic nature of
hydrogen bond.38 The work was later extended to multipoles
of order six.39

With the development of the recursion algorithm12 to
evaluate eqs 4 and 5 the permanent multipole energies were
calculated up to multipole order 14, usingro ) 2.741 Å.
The calculations were performed on Ice Ih crystals with
disordered water orientations. The disorder was represented
by all the possible tetrahedral orientations of waters that still
satisfy the Bernal-Fowler rule (exactly one hydrogen
between neighboring oxygens). All possible arrangements
of a 16-site unit cell were considered, resulting in 55 classes
of conformations with distinct permanent multipole energy;
10 of these had zero total dipole.23,39

From the convergence of the series it was estimated that
the truncation error is about 0.03 kcal/mol. The spread in
the permanent multipole energy for the 55 classes was 0.14
kcal/mol that was reduced to 0.1 kcal/mol for the zero-dipole
subclass. While this spread was steadily decreasing as the
multipole order was increased toward 14, it remained higher
than the estimated trunction error. This indicates that there
indeed is a residual energy difference among the different
water orientationssa question that was debated at that time.

The induced dipoles and the induced energies were also
calculated.5 This increased the spread in the electrostatic
energy to 1.1 kcal/mol and 0.6 kcal/mol for the whole and
nonpolar class, respectively. This increase in the spread
serves as an indicator of the fact that the truncation of the
induced multipoles at the dipole level introduced a non-
negligible error and points out the importance of considering
higher order polarizibilities.

Comparison of the Energies of Different Ice Forms.
The ice crystal energy calculations23 have been extended to
two additional ice forms with ordered hydrogen positions:
Ice II and Ice IX. The dispersion contribution was calculated
with three different approximations.40-42 The comparison
with experiment, however, is only valid if the zero-point
energy, that is neglected in these calculation, is known, and
the experimental value can be adjusted accordingly. This was
the case only for Ice Ih, giving-14.1 kcal/mol. Comparison
of the three different dispersion approximations shows that
that of Zeiss and Meath40 gave the best approximation.
Subsequent work with the CM model used this dispersion
contribution throughout.

Calculation of the Energies of Ice Ih Bjerrum Defects.
Hassan and Campbell performed a series of calculations43

to study the energetic penalty of a Bjerrum defect in an Ice
Ih crystal: either there are two hydrogens between neigboring
oxygens or there are none. They considered both ‘formal
defects’, i.e., the waters were not allowed to relax due to
the repulsion caused by the defect and allowed relaxation
of the waters in involve in the defect as well as their
neighbors. The system studied involved altogether 27 water

Table 2. Comparison of the Ab Initio, Empirical, and
Polarization Model Energies with Quantum-Mechanical
Energies

configuration

I II III IV V VI

3a 3a 2a 1a 1a 1a

ab initio
models:

MCY33 0.41 -3.33 -3.72 -5.50 -5.25 -5.24

YMD34 0.92 -3.59 -3.75 -5.34 -4.93 -5.16

empirical
models:

ST235 1.80 -3.05 -2.97 -6.44 -5.66 -5.99

SPC36 5.16 -3.10 -3.91 -5.59 -5.36 -5.11

TIP3P37 3.86 -3.45 -3.91 -5.48 -5.25 -5.10

TIP4P37 5.07 -3.05 -4.29 -5.57 -5.60 -5.14

polarizable
model:

CM -3.70 -5.09 -5.89 -6.03 -6.06 -5.76

ab initio energy
MP4SDQ/
6-311G**

-3.08 -6.02 -5.84 -6.23 -6.14 -5.40

a Number of H bonds.

Table 3. Lattice Energy Contribution for Ice Formsa

form Up Ui Up + Ui Ur Ud
a Ud

b Ud
c Ut

a Ut
b Ut

c

Ih -20.2 -7.0 -27.2 15.9 -3.8 -4.1 -6.6 -15.1 -15.5 -17.9

II -17.5 -7.7 -25.2 12.6 -3.3 -3.9 -7.3 -15.9 -16.5 -19.9

IX -18.3 -7.2 -25.5 13.8 -3.2 -3.9 -7.1 -15.0 -15.7 -18.9
a Up, Ui, Ur, Ud: see eq 6; Ut ) Up + Ui + Ur + Ud; dispersion term

parameters for Ud
a, Ud

b, and Ud
c from refs 40-42, respectively.
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molecules placed in an arrangement corresponding to the
Ice Ih lattice with all but the central water pair satisfying
the Bernal-Fowler rule. Energy calculations involved both
a pairwise additive potential fit to ab initio data18 and the
cooperative CM model.

Optimization of the molecular orientations and positions
using the additive model was found to reduce the defect
energy by∼40% The optimization involved the defect pair
and their neighbors, while the rest provided the boundary
effect. It was found that relaxing the orientational degrees
of freedom contributes significantly more to lowering the
defect energy than relaxing the positions.

The optimization with the additive potential was followed
by orientational optimization with the cooperative CM model.
This yielded an additional 10% lowering of the defect energy.

These calculations also brought into focus the lower quality
of the repulsive contributions in most analytical potentials.
There are two major reasons for this. The simpler and easier
to remedy source is the limited sampling of the repulsive
conformations in the database used to fit the potentials. More
difficult is the establishment of an adequate objective
function to the fit since the energy surface can vary by orders
of magnitude if strongly repulsive orientations are considered.

Charge Transfer. Molecular mechanics force fields that
are used in most large-scale computer simulations use fixed
charges on the interaction centers and thus are not equipped
to handle charge transfer. Thus, it is of interest to examine
the magnitude of this neglected contribution.

A set of free energy simulations was performed for
monovalent cations in water and chloroform using ab initio
derived parameters44 for the ions.45 The calculated solvation
free energies were strongly underestimated when compared
with experiment. This was expected, with the reasoning that
polarization is neglected in the calculations.44 To test if
polarization can indeed account for the shortfall, the CM
model was used to calculate the additional contribution to
the solvation free energy, by evaluating the induced dipole
energy of a selected set of conformations from the simulation.
For this application, the programmultipol has been extended
to handle periodic boundary conditions and to use a lower
order of expansion for more distant pairs of waters. The
calculation showed that including polarization can indeed
reduce the discrepancy between calculation and experiment,
but a significant gap still remained.

It was proposed that the source of the remaining discrep-
ancy between calculation and experiment is the neglect of
charge transfer. To support this claim, ab initio calculations
were performed on selected configurations containing the
ion and its first solvation shell. A Mulliken population
analysis showed that significant charge-transfer exists: Li+

lost 0.32 e and Na+ lost 0.27 e to the waters surrounding it.
Note, that the Mulliken population analysis is known to be
a rather simple approach to charge density partitioning.
However, it was used in the present work only to demonstrate
the presenceof charge transfer and not to quantitate it.

Subsequently, van der Vaart and Merz have published
analogous calculations with similar results; the conclusion
held even when a more sophisticated charge partitioning

scheme was used.46 They also found that even for a hydrogen
bond there is a measurable amount of charge transfer.47

Representation of the Exchange Repulsion.Another
ingrained property of the widely used molecular mechanics
force fields is the representation of the nonbonded interac-
tions as the sum of eletrostatic and Lennard-Jones terms,
i.e., terms of the formr-1, r-6, and r-12. The r-6 term is
usually identified with the dispersion energy and ther-12

term with the repulsion. While the dispersion term has its
physical justification, the repulsive term’sraison d’être is
the fact thatr-12 ) (r-6)2 and thereby it is easy to compute.
Also, as discussed above, the quality of these contributions
is generally lower than that of the rest.

There are two problems with this approach. First, the
functionsr-1, r-6, andr-12 are close to be linearlydependent.
This was seen from least-square fit calculations aiming at
obtaining the best fitting coefficients: the matrix of the
resulting system of linear equation is usually very ill-
conditioned.24 This is not just a technical problem that can
be simply overcome with better numerical algorithms or
higher precision arithmeticssit means that a wide range of
coefficient sets can give a virtually identical fit, making the
identification of individual terms with physical meaning
unreliable. This, in turn, is not just a question of ‘esthetics’
since the generally assumed transferability of atomic pa-
rameters from one molecule to another largely relies on the
fact that these parameters have a physical interpretation.

The other problem is the well-known fact that the exhange
repulsion is an exponential function ofr (see, e.g., ref 48);
ther-12 term results in too steep a repulsion. For simulations
around room-temperature it is not a significant problem.
However, one of the main justifications of the explicit
inclusion of cooperativity into computer simulations is that
such representation can remain valid over a wide range of
thermodynamic conditions as opposed to the force fields
where the effect of cooperativity is mapped to pairwise
additive terms that are only valid in the thermodynamic
vicinity of the state the functions were parametrized. This
advantage, however, is only realized if the rest of the
potential functions are parametrized well enough to represent
the full range of thermodynamic conditions under consid-
eration.

The fact that ther-12 repulsion is inadequate for this task
was highlighted by simulations at high temperature. A
comparison of (T, V, N) and (T, P, N) ensemble simulations
on three polarizable and two nonpolarizable water models
found that the polarizable models underestimate the density
by 10-50%, leading to the suggestion that the functional
form of the repulsive term has to be changed.49 Subsequently,
the comparison was extended to more models and to
simulation in the Gibbs ensemble50 to determine the critical
point of each model.51 While in this test several of the
polarizable models gave critical densities close to the
experimental value, the overall comparison between the
pairwise additive and polarizable models failed to show the
expected superiority of the polarizable models. These
comparisons reinforce the suggestion that, for optimum
performance, the repulsion term has to be revised concur-
rently with the development of polarizable models.
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Summary and Conclusions
Work in the Campbell Laboratory has showed that the
Maxwellian formalism4 is an elegant and efficient way to
treat electrostatic interactions in the multipole expansion
approximation. The necessary formulas15 and algorithms8,12

for their use to describe intermolecular interactions in clusters
as well as crystals have been developed and implemented
in the software packageMaxwell.9

The formalism was also used to derive an ab initio
cooperative water potential based on Hartree-Fock energies
and representing cooperativity with dipole polarizability.20

Subsequently, the model was used in a variety of studies on
water clusters24,26-28,30,43 and ices.23 These calculations
showed that dipole polarizability can treat the cooperative
contribution to water-water interactions reasonably well and
also quantitated the limitations inherent in this approximation.

Calculations on Ice Ih showed that the orientational
disorder results in a finite energy range even when the
orientations obey the Bernal-Fowler rule and even when
the unit cell dipole is zero. The calculation of induced dipole
energies showed that the dipole approximation to the
cooperative contributions is not fully converged.23

An important result from calculations with the CM
cooperative model is the recognition of the significance of
charge transfer. Other calculations led to the recognition of
the importance of adequate treatment of the repulsion
contribution.
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