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Note

Efficient Construction of Directional Derivatives of a Function of
a Vector Magnitude and Maxwell’s Invariant Multipole Form∗

1. INTRODUCTION

Directional derivatives of functions of a vector magnitude are required, for example,
by multipole calculations in the invariant form developed by Maxwell [1]. Recently, an
algorithm has been developed to obtain the required n characteristic directions for a general
spherical harmonic of order n [2]. One of the advantages of the latter form is that the same
algorithm required for the calculation of permanent multipole energies can be coupled with
an additional simple step to calculate induced dipole moments and energies [3]. Furthermore,
the published work can be extended to higher-order moments in terms of the elements of
their polarizability tensors. The purpose of this paper is to present: (a) alternative recursive
constructions (Section 2) to previously published procedures [4], and (b) an analysis of the
efficiency of various procedures for different types of problems (Section 3).

2. EQUATIONS FOR NEW RECURSIONS

Let f(R) be any function of

R = |R|, R = 〈x1, x2, x3〉. (1)

In a paper on lattice sums [4a] it is shown that for any n for which f(R) is differen-
tiable, the nth directional derivative defined by

{Sk : Sk = 〈S1
k , S

2
k , S

3
k〉 a unit vector, 1 ≤ k ≤ n} (2a)

is given by
n∏

j=1
(Sj · ∇)f(R) =

n∑
j=q

an
j ({Sk},R)Fj [f(R)]; (2b)

∗ We express our appreciation to the National Institute of Health, which has sup-
ported this work under Grant 1 ROl GM 20436-01.
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q = {if n is even, (n/2); if n is odd, [(n+ 1)/2]}; (2c)

F1[fR)] ≡ R−1df(R)/dR; j ≥ 2 : Fj [f(R)] = R−1dFj−1[f(R)]/dR. (2d)

Each an
j is given as a sum of products over a set of partitions, {Dn

j }:

an
j ({Sk},R) =

∑
{Dn

j }
P (Dn

j , {Sk},R); (2e)

Dn
j : a partition of η(n) ≡ {1, . . . , n} into (n− j + 1) sets, Cg(D

n
j ); (2f)

j < n, 1 ≤ g ≤ n− j : Cg(D
n
j ) contains two elements, {α1(Cg), α2(Cg)},

no account is taken of the order of these first (n− j) subsets;
(2g.1)

j < n, g = n− j + 1 : Cg(D
n
j ) = η(n)−

n−j⋃
k=1

Ck(Dn
j ). (2g.2)

j = n/2 : C1(D
n
n) = η(n); (2g.3)

The products for each such partition are:

j = n/2 : P (Dn
n/2, {Sk},R) =

n/2∏
g=1

(Sα1(Cg) · Sα2(Cg)); (2h.1)

j 6= n, j 6= n/2 : P (Dn
j , {Sk},R) =


n−j∏
g=1

(Sα1(Cg) · Sα2(Cg))

 ∏
k∈Cn−j+1

(Sk ·R); (2h.2)

j = n : P (Dn
n, {Sk},R) =

n∏
k=1

(Sk ·R). (2h.3)

The above formulas are illustrated for both cases n even and odd in Appendix A.

It follows from Eqs. (2e-h) that each an
j ({Sk},R) is a homogeneous polynomial in

the Xi of degree (2j − n):

an
j ({Sk},R) =

∑
H(j,n)

b(j,h,Fn)
3∏

i=1
Xhi

i ; (3a)

H(j, n) ≡ {h : hi is a nonnegative integer, h1 + h2 + h3 = (2j − n)}; (3b)

Fn ≡ {S1, . . . ,Sn}. (3c)

Consider the recursive construction of the an
j . For n > 1, substitution of Eq. (3)

into Eq. (2b) and the use of Eq. (2d) defining the Fj gives:

(Sn · ∇)


n−1∏
k=1

(Sk · ∇)f(R)

 =
3∑

m=1

∑
H(j,n−1)

Sm
n b(j,h,Fn−1)

×


3∏

i=1
{[1 + δim(hi − 1)]Xhi−δim

i }Fj [f(R)] +
3∏

i=1
Xhi−δim

i }Fj+1[f(R)]

 .

(4)
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Let A = [b(j,h,Fn)] ≡ an accumulator for the calculation of

b(j,h,Fn), in the recursive construction.
(5)

Equation (4) yields the following recursion. n = j = 1 : H(1, 1) = a set of the three
basis vectors,

em = 〈δ1mδ2m, δ3m〉, (m = 1, 2, 3). (6a.1)

Moreover, the set F1 has just one element, S1. Therefore

b(1, em,F1) = Sm
1 , (m = 1, 2, 3). (6a.2)

For n > 1, each b(j,h,Fn−1) yields the following six additions to the accumulators for the
nth level, A[b(j,h,Fn−1)]:

A[b(j,h− em,Fn)] + hmS
m
n b(j,h,Fn−1), (m = 1, 2, 3); (6b.1)

A[b(j + 1,h + em,Fn)] + Sm
n b(j,h,Fn−1), (m = 1, 2, 3); (6b.2)

For the special case F (R) = R−1, which occurs, for example, in the multipole expansion for
the interaction energy of two charge distributions, an alternative recursion can be derived
using the fact that by Eq. (2d)

Fj+1(R
−1) = −(2j + 1)R−2Fj(R

−1) (7)

It follows from Eqs. (2b), (3), and (7) that

n−1∏
j−1

(Sj · ∇) = R−(2n−1) ∑
N(n−1)

d(ν,Fn−1)
3∏

i−1
xνi

i ; (8a)

N(n− 1) = {ν : νi is a nonnegative integer and ν1 + ν2 + ν3 = n− 1, n ≥ 2}. (8b)

As in Eq. (5), let A denote an accumulator. Application of (Sn · ∇) to Eq. (8.a) yields the
following recursion:

n = 1 : N(1) = a set of the three basis vectors, em = 〈δ1m, δ2m, δ3m〉, (m = 1, 2, 3); (9a.1)

F1 = {S1}; d(em,F1) = Sm
1 , (m = 1, 2, 3). (9a.2)

For n > 1 each d(ν,Fn−1) yields the following 12 additions to the accumulators for the
d(ν,Fn):

1 ≤ k ≤ 3 : A[d(ν + ek,Fn)]− (2n− 1)Sk
nd(ν,Fn−1); (9b.1)

1 ≤ k ≤ 3, 1 ≤ m ≤ 3 : A[d(ν + 2ek − em,Fn)] + νmS
m
n d(ν,Fn−1). (9b.2)

3. ANALYSIS OF THE EFFICIENCY OF PROCEDURES FOR DIFFERENT PROBLEMS

Practical problems can require the calculation of higher-order directional derivatives.
Consider, e.g., the electrostatic contribution to the intermolecular potential. Theoretically,
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the potential defined by a charge distribution possesses a multipole expansion about any
center, c, which converges outside any sphere centered at c containing all of the charge in the
distribution. Pack, Wang, and Rein [6a] have examined the practical question: When does a
truncated series give an adequate representation of the potential? For the case of pyridine,
they used both multicenter expansions, splitting the total distribution into distributions
assigned to the nuclear centers and a single center expansion for the total molecular density.
Their results were compared with a direct evaluation of the Coulomb integral

V (R) ∼
∫ ψ(r)ψ∗(r)

|R− r|
dr,

for an approximate wave function. Their results showed that an expansion including terms
of order ≤ 3: (a) is, of course, useless for a point 1 Å from the N nucleus (in a region
that contains significant charge density); (b) the discrepancy between the exact integral and
the multipole expansion has already decreased to ca. 10 % for (i) the distance of the van
der Waal’s radius, -1.5 Å from N , in the case of the multicenter expansion; (ii) about 3.6
Å from N , in the case of the single center expansion. Clearly, at such distances that are
involved in intermolecular interactions, it is more economical to use the a priori charge den-
sities from large basis set calculations to compute moments and then evaluate the multipole
series instead of evaluating integrals of the form

∫
{ρiρj/‖ri − rj‖}dridrj for the Coulomb

interaction between distributions i and j for each of an extended series of orientations and
positions. However, Mulliken [5] has emphasized, “it is definitely not adequate to compute
dipole-dipole or quadrupole-dipole interactions assuming plausibly located point dipoles with
moments equal to observed over-all moments.” Mulliken’s thesis is quantitatively supported
by the aformentioned work [6], which showed that the terms of order 3 make a very significant
contribution to the potential at distances corresponding to those for intermolecular interac-
tion [6]. This corresponds to terms of order 6 in the energy. In the practically important
case of H bonding, the shorter distance O . . . H ∼ 1.8 Å in ice coupled with the compara-
tively small energies of transition between different ice forms, makes it desirable to include
terms of order 10 in calculations on molecular orientations and positions [7a]. Whereas basis
sets do not employ functions of high enough harmonic types to give accurate higher-order
moments for actual molecules, answers to structural questions can be much more sensitive
to inconsistent treatment of a given model (viz. premature truncation of a multipole series),
than to “reasonable” variations in the model [7b].

The feasibility of using terms of the order required to obtain the desired consistency
depends crucially on the efficiency of the algorithm for their evaluation. For this reason,
algebraic formulas have been derived for the operation count for constructing a representative
Nth-order derivative as functions of the order N , N even, for what we believe to be efficient
algorithms for four different procedures. These counts were verified by computer results for
one set of comparisons. Details are available on request, and only the conclusions will be
summarized here.

The procedures will be denoted as follows: I, an algorithm based on Eq. (2); II,
an algorithm based on Eq. (39) of [3] as modified in Appendix B to remove the assumed
application to a particular procedure for crystals; III, an algorithm based on the recursion
of Eq. (6); IV, for f(R) = 1/R, an algorithm based on the recursion of Eq. (9).
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A. Table I shows that from the standpoint of total operation count, Procedure I is
the most efficient for N ≤ 4. Whereas the previous paper assumed that I was in general
more efficient than II from this standpoint, II is clearly the best of all for 10 ≥ N ≥ 6 and
I becomes rapidly impossible. The facts that asymptotically the number of operations in
Method I increases more rapidly than (N/2)!, while those of Methods II, III, and IV increase
as N5, N4, and N3, respectively, show: (a) even N = 10 is far from the asymptotic range
for Methods II, III, and IV; (b) the use of the asymptotic estimates without check of the
approach to the limit would have led to false conclusions.

TABLE Ia

N (II/I) (III/I) (IV/I) (III/II) (IV/11)

4 2.2(0) 2.5(0) 3.1(0) 1.1(0) 1.4(0)
6 4.8(-1) 6.8(-1) 7.5(-1) 1.4(0) 1.6(0)
8 8.6(-2) 1.3(-1) 1.5(-1) 1.6(0) 1.7(0)
10 1.1(-2) 1.8(-2) 1.6(-1) 1.7(0) 1.4(0)

a The entries in the column headed by the Roman numeral ratio (α/β) give the
ratio of the total number of operations for procedure α to the total number for procedure β
respectively. The figure in parenthesis gives the power of 10. Thus 4.8(−1) = 4.8× 10−1.

B. The choice can be determined from A only if the calculation is to be repeated for
approximately the same number of sets of positions (R) as of orientations ({Sk}). Whenever
these numbers differ greatly, then Procedures II, III, IV have the advantage of decomposing
the calculation into a part that depends only on the {Sk}, and a part that depends only on
R. Table II gives the ratios of the number of operations involving only either the ({Sk}) or
R to the total number of operations for each procedure.

The column for Method II shows that its advantage in having the lowest total number
of operations for 10 ≥ N ≥ 6 is enhanced as the ratio of the number of orientations to the
number of positions increases. Conversely, this advantage can be outweighed by the greater
economy of III and especially IV in the R calculations as the ratio of the number of positions
to the number of orientations increases.

TABLE IIa

N II(S/T) III(R/T) IV(R/T)

4 1.7(-1) 1.4(-1) 8.4(-2)
6 2.0(-1) 9.9(-2) 5.5(-2)
8 2.0(-I) 7.6(-2) 3.6(-2)
10 1.9(-1) 6.1(-2) 3.3(-2)
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a A column designated by (α/T ) gives the ratios for the number of operations in-
volving α to the total number of operations. α = S signifies the {Sk} and α = R, R. The
figure in parenthesis gives the power of 10. Thus, 1.7(−1) = 1.7× 10−1.

APPENDIX A

Examples of the Formulas

The even and odd illustrations of the expression of the directional derivative for
n = 4, 5 are given. These show all the essential

features of the general formulas. The numbers at left identify the general equation
in the text.

(2c) n = 4 : q = 2; n = 5 : q = 3; (A1)
(2b) n = 4 : 2 = q ≤ j ≤ 4; n = 5 : 3 = q ≤ j ≤ 5; (A2)

n = 4, j = 2.

(2f) Each partition has n− j + 1 = 3 sets and there are 3 such partitions: (A3)

(2g.1, 2)

1 ≤ g ≤ n− j = 2 g = n− j + 1 = 3
(D4

2)1 : {C1 = {1, 2}, C2 = {3, 4}}, C3 =empty set;

(D4
2)2 : {C1 = {1, 3}, C2 = {2, 4}}, C3 =empty set; (A4)

(D4
2)3 : {C1 = {1, 4}, C2 = {2, 3}}, C3 =empty set;

n = 4, j = 3.

(2c) Each partition has n− j + 1 = 2 sets and there are six such partitions: (A5)

(2g.1, 2)

1 ≤ g ≤ n− j = 1 g = n− j + 1 = 2
(D4

3)1 : {C1 = {1, 2}, C2 = {3, 4};
(D4

3)2 : {C1 = {1, 3}, C2 = {2, 4};
(D4

3)3 : {C1 = {1, 4}, C2 = {2, 3}; (A6)

(D4
3)4 : {C1 = {2, 3}, C2 = {1, 4};

(D4
3)5 : {C1 = {2, 4}, C2 = {1, 3};

(D4
3)6 : {C1 = {3, 4}, C2 = {1, 2};

n = 4, j = 4.
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(2g.3) (D4
4)1 : C1 = {1, 2, 3, 4}. (A7)

n = 5, j = 3.

(2f) Each partition has n− j + 1 = 3 sets and there are 15 such partitions: (A8)

(2g.1, 2)

1 ≤ g ≤ n− j = 2 g = n− j + 1 = 3
(D5

3)1 : {C1 = {1, 2}, C2 = {3, 4}}, C3 = {5};
(D5

3)2 : {C1 = {1, 3}, C2 = {2, 4}}, C3 = {5};
(D5

3)3 : {C1 = {2, 3}, C2 = {1, 4}}, C3 = {5};
(D5

3)4 : {C1 = {1, 2}, C2 = {3, 5}}, C3 = {4};
(D5

3)5 : {C1 = {1, 3}, C2 = {2, 5}}, C3 = {4};
(D5

3)6 : {C1 = {1, 5}, C2 = {2, 3}}, C3 = {4};
(D5

3)7 : {C1 = {1, 2}, C2 = {4, 5}}, C3 = {3}; (A9)

(D5
3)8 : {C1 = {1, 4}, C2 = {2, 5}}, C3 = {3};

(D5
3)9 : {C1 = {1, 5}, C2 = {2, 4}}, C3 = {3};

(D5
3)10 : {C1 = {1, 3}, C2 = {4, 5}}, C3 = {2};

(D5
3)11 : {C1 = {1, 4}, C2 = {3, 5}}, C3 = {2};

(D5
3)12 : {C1 = {1, 5}, C2 = {3, 4}}, C3 = {2};

(D5
3)13 : {C1 = {2, 3}, C2 = {4, 5}}, C3 = {1};

(D5
3)14 : {C1 = {2, 4}, C2 = {3, 5}}, C3 = {1};

(D5
3)15 : {C1 = {2, 5}, C2 = {3, 4}}, C3 = {1};

n = 5, j = 4.

(2f) Each partition has n− j + 1 = 2 sets and there are 10 such partitions: (A10)

(2g.1, 2)

(D5
4)1 : C1 = {1, 2}, C2 = {3, 4, 5};

(D5
4)2 : C1 = {1, 3}, C2 = {2, 4, 5};

(D5
4)3 : C1 = {1, 4}, C2 = {2, 3, 5};

(D5
4)4 : C1 = {1, 5}, C2 = {2, 3, 4};

(D5
4)5 : C1 = {2, 3}, C2 = {1, 4, 5}; (A11)

(D5
4)6 : C1 = {2, 4}, C2 = {1, 3, 5};

(D5
4)7 : C1 = {2, 5}, C2 = {1, 3, 4};

(D5
4)8 : C1 = {3, 4}, C2 = {1, 2, 5};

(D5
4)9 : C1 = {3, 5}, C2 = {1, 2, 4};

(D5
4)10 : C1 = {4, 5}, C2 = {1, 2, 3};

n = 5, j = 5.
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(2g.3) (D5
5)1 : C1 = {1, 2, 3, 4, 5}. (A12)

APPENDIX B

Although [4, Eq. (39)] (which summarizes the computational steps for Method II) is
stated in terms of the specifics of a generalization of the Ewald method for lattice sums, for
other applications, the equation need only be modified as follows. The g(R) of [4, Eq. (15)]
is any function of R with the required number of derivatives instead of g(R) = G(εR)/R.
The remaining reference to lattice sums can be removed when the definition of [4, Eq. (31)]
is noted.
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