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Abstract: We present automated methods for determining the value of Adams’ B parameter
corresponding to a target solvent density in grand canonical ensemble Monte Carlo simulations.
The method found to work best employs a proportional-integral control equation commonly used
in industrial process control applications. We show here that simulations employing this method
rapidly converge to the desired target density. We further show that this method is robust over
a wide range of system sizes. This advance reduces the overall CPU time and user effort in
determining the equilibrium excess chemical potential in these systems.

Introduction deduced from it using, e.g., the generic site apprdalth.
Simulations in the grand canonical ensemble have two uniqueN@s @lso been demonstrated that potential of mean force
and attractive features: they can be used to identify the _calculat_|ons benefit from the GCE framework: the_ changes
chemical potential without additional costly free-energy |nth_e distance between bulky solutes that these_3|mul_at|ons
simulations, and the combination of insertions and deletions '€quire can be enabled through the removal or insertion of
results in large molecular displacements during the simulation INt€rvening solvents, rather than waiting for them to diffuse
that are not possible in any of the closed ensembles atout/into the region between the solutes.
condensed phase densities. These large displacements are A limitation of this simulation method is that insertions
particularly useful for solvating isolated pockets, as exist in and deletions are currently feasible only for small, neutral
most proteins. This simulation method can also be used tomolecules such as water. This is because the probability of
solvate lipid membranes, allowing penetration of water accepting a random insertion of a bulky or charged molecule
molecules deep into the interior of the lipid far more rapidly in a solvated system is very low. The insertion of water
than with molecular dynamics. molecules has only become practical with the introduction
Systems solvated this way can serve as an initial config- Of cavity biased sampling. A second limitation of this method

uration of a molecular dynamics rdnAlternatively, the IS that when simulating the solvation of a system, the
unknown. Therefore, prior to simulating at a target density,

. _ _ T a tuning phase is necessary to identify the chemical potential
CO"eSPO”d'”?_ aut_Eoulr phone: (212)241(;2186' fax: (212)860- harameter that yields the target density. In practice, this
. 3369; e-mall: Mif aly.Mezei@mssm.edu. . required several runs with the chemical potential parameter
Department of Physiology and Biophysics, Weill Cornell Medical : . .
College adjusted each time based on the results of previous run(s).
: Such manual interventions not only consume human time
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for Computational Biomedicine, Weill Cornell Medical Col-  Put also in general lengthen the overall time of the simulation.

lege. This article presents three procedures to perform this tuning
§ Department of Molecular Physiology and Biophysics, Mount Without user intervention and compares their performances
Sinai School of Medicine, NYU. for systems of varying sizes and compositions.
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Background _ Ske = (FNg" +i*Fig)l(i +1) ®)
Monte Carlo simulations in the Grand Canonic@|\{u)

Ensemble (GCE) are conveniently performed with the The change irB is determined by eq 6:

introduction of the paramet&which is related to the excess

chemical potential’ as AB = (Nigrger— N, U/(SiN,B) (6)

# =KTB—kTIniND @ The maximum|AB| value is limited by default to 1.0 to

where INOis the average number of partictes is the further dampen oscillations B. The current implementation
Boltzmann constant, anflis the absolute temperature. Note 9athers statistics for the fluctuation cumulatively over the
that B depends not only on the excess chemical potential whole simulation. The use of the fluctuationXcalculated
but also on the system size and composition as well. In Separately in each iteration is precluded by the slow
addition to the conventional translations and rotations, convergence of fluctuations, i.e., the simulation would not
simulations in the GCE require periodic insertions and converge in Xyc, steps unless it was very long.

deletions of molecules. The Cavity Biased variant (CB/ lterative Tuning with Empirical Estimates of the
GCEY* attempts insertion of a molecule only if a cavity of Sensitivity Coefficient. In this method the sensitivity coef-

an appropriate radius is found and accepts the insertion withficient is a scaling factor that incorporates the effect of a
probability change inB on the mean number of particles (eq 7).

P =min{1P{"expB + (E(ry.1) — E(ry))/KTI(N + 12}2) S = IZ([NJD_ N V(B, — B,_y) %)
=

where E(ry) is the potential energy of the system if
particles at configuratiomy, and Py is the probability of
finding a cavity of a specific size. To maintain microscopic
reversibility, the probability of a deletion of a particle is given

by As with the fluctuation method, thgAB| is limited to the

— mi cav default value of 1.0. Also, there is a filter whereby if in the
Po=min{1Nexp[= B+ (E(n) — E(v-)KTIPN= (3) previous iteration the change iis of opposite )gign of

The robustness of the CB/GCE technique was demon-the change irB, in the next iteratiorB is unchanged. Such
strated by its robustness in modeling solvent molecules in @ occurrence clearly indicates inadequate equilibration and/
crystal hydrates and protein active sités:® In these or statistics because by definition Bsncreases, so should
simulations, the value oB directly affects the probability ~ NLI This filter implicitly increases Xc in these instances
of a successful insertion or deletion. An automated method allowing the system more time to adjust to the new value of
to identify B must correctly changB when the calculated ~ B. This has the benefit of simplifying the choice ofw¢
density differs from the target density. At a given temper- and Xyc for iteration lengths that are providing adequate
ature, there is a natural fluctuation of the density that will Statistics forSy g but allow for frequent enough changes to
occur for any given chemical potential. Therefore, we are reach convergence as fast as possible.

The change irB is then determined according to eq 8:

AB= (Ntarget_ N, D‘/SiN,B 8)

primarily concerned with identifying the correBtparameter Tuning Using Process Control Principles.The canonical
such that the mean density equals the target density over arProportional-integral-derivative control equation (PID) com-
equilibrated portion of the simulation. monly used in engineering control applications is é¢ 9
K
Methods MV(t) = Keet) +~2 [0 ety + Kchd—i +co (9
|

Iterative Tuning Based on Fluctuations. Fluctuation F)
in the number of molecules is related to the mean number

of molecules and th8 parameter through eq%: where MV is the manipulated variabléc is the proportional
gain, 7, is the integral timegzp is the derivative timegs is
AINIAB ~ Fy g = INO- ING (4)  the controller bias, and is the current deviation of the

process variable from its target. It has been shown that the
Bis tuned in an iterative process that assumes that the relatiordynamic stability of a controlled system can be sensitive to
of eq 4 is constant to a reasonable extent over a finite rangethe selection of the derivative time. Therefore, the derivative
of INCs. Initially, AINIZAB is either calculated or estimated term is frequently omitted unless empirically shown to be
experimentally from the isothermal compressibility of the necessary* When applying this equation to our simulation
pure liquid at the target densttyF ',gjga'). Each iterationj, systems, the value we seek to control is the density of bulk
first simulates the CB/GCE system fofyg steps to allow  water. In eq 9¢ is the deviation away from the desired bulk
equilibration with the newly choseB value, followed by density. To achieve the target density, the manipulated
Xuc steps to gather statistics fdiNL] The sensitivity variable in our system iB, whose effect is described in the
coefficientS g is calculated as a linear combination of the  Introduction.
pure liquid value and the value calculated fraNf(— N3 We further implement the differential form of the control
at the end of iteratiom, using the whole run: equation:
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Ke

T

de
Cdt

dB _

ot +

€ (10)

This transformation solves the so-called ‘integral windup’
problem, whereby an historic period of large deviation
dominates the integral terti.lt has the added benefit of

eliminating the controller bias as another tuning parameter.
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The small water simulations were run for 5M steps. The
medium and large water simulations were run for 25M and
50M steps, respectively. The large protein simulation was
run for 50M steps.

Sensitivity Coefficient Based Tuning Simulations As
the system size increases, generally more time is needed to
average the properties of the system and to reach equilibrium

The process control equation has an implicit time depen- after a change in the control parameter. For these simulations,

dence that is not present in Monte Carlo simulations. To

the small water simulation used 10K steps of equilibration

emphasize this, we rewrite the control equation once more followed by 10K steps to gather statistics. The medium water

in finite difference form in terms of the simulation step
number,i:

Ke
B =B T K6 — -1 + Tlei (11)

Unlike the first two methods, this technique changes the
B parameter at every insertion/deletion attempt.

Calculations
All three methods were implemented into the Monte Carlo
program MMC??

Grand Canonical Ensemble Simulation SystemsEFor
each of the three tuning methods, four simulations of
differing size and components were monitored for their
ability to identify the value of AdamdsB parameter that yields
the target density.

All our systems targeted equilibrium with bulk water at
310 K, 0.997 g/mL. The first three simulations were small,
medium, and large pure TIP3P water simulations. With the

simulation (1420 water molecule target) used 50K steps of
equilibration followed by 50K steps to gather statistics. The
large water and protein simulations used 100K steps for
equilibrium and 100K steps to gather statistics. The density
andB parameter were reported at 10 000 equally spaced steps
in each simulation, i.e., every 200 steps for the small water
simulation.

Fluctuation Based Tuning Simulations These simula-
tions are the same as those of the sensitivity coefficient based
simulations, except that the initial configuration has a number
of waters approximately equal to the target number of waters.
This was done because the accumulated fluctuation generated
by starting with 50 water molecules was thought to prevent
the B parameter from correctly responding to changdia
In an attempt to minimize that influence, we therefore
performed an initial short CB/GCE simulation wihset to
10.0 until the desired number of waters was reached. The
system that resulted from that simulation was used as the
starting structure of the fluctuation based tuning simulations.

Proportional Integral Control Based Tuning Simula-

cubic edge length of the boxes equal to 16.48, 34.99, andtions. Simulations were run for the same lengths as the

75.26 A, respectively, the simulations targeted 142, 1420,

fluctuation and sensitivity coefficient based simulations. The

and 14 200 waters, respectively. To mimic systems with a B parameter in these simulations is changed at each step of
solute, one water was treated as the solute, and the densityhe simulation. The two controller tuning parametéfs &nd
was monitored in the region outside a cubic cell centered at 7i) were determined to be112 and 13,000 respectively, by

the center-of-mass of this water. The position of this water

following the open loop protocol of Ziegler and Nichols for

molecule was kept fixed throughout the simulation. The edge the large proteirrligand systent” This method of tuning
of the cube, enclosing the waters perturbed by the solute,the control parameters is based on the response of the system

was set to 6 A.
The fourth simulation included a trypsin protein with a
bound benzamidin& The protein simulation volume had

to a step change in the manipulated variaBlgirt our case).
However, instead of considering the steady-state result (i.e.,
the equilibrated value of the density) in response to the step

an edge length of 75.26 A. The center of mass of the protein change, it considers the delay of the response of the

was placed at the center of the simulation unit cell. The

controlled variable (the so-called ‘dead-time’ in the vernacu-

density was monitored in the region outside a rectangular lar of control engineering) and the initial rate of the response.

volume centered at the origin with minimumy y, z and
maximumx, y, z coordinates of-26, —24, —25, 24, 26,
and 24, respectively. At the target density, approximately
10 124 water molecules fill this monitored volume.

All simulations used scaled force biased sampfimghere
the level of biasing was scaled down in the vicinity of the
solute. The water potential used was TIP3&nd the solute
solvent interactions were described by the CHARMM force
field.26 The solventsolvent potential was cut off at 12 A.
Fifty water molecules were randomly placed in the simulation
cell at the start of the simulation. The solute was kept fixed
in all simulations. At each MC step a randomly selected

This method has the advantage that it can be applied even
to nonself-regulating systems (i.e., those systems that have
an unbound response to the step change) because it only
depends on the dynamic character of ithigal response to

the perturbation.

Once the dead-time and initial response rate for a process
in known, the Ziegler-Nichols method provides rules for
determining the PID controller constants that appear in eq
9. Evaluation of the dead-time and initial response rate is
somewhat subjective as it involves an assessment of how
long the system took to ‘appreciably respond’ after the
perturbation was applied. However, as long as the dead-time/

solvent was translated with a maximum step size of 0.275 initial response rate pairs are self-consistent, the Ziegler-

A and rotated with a maximum angle of 60nitially the B
parameter was set to 1.0.

Nichols tuning method will yield acceptable (and usually
indistinguishable) empirical performance.
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Table 1. Testing Convergence

A. convergence to target density? B. convergence in BY
sensitivity sensitivity
fluctuation coefficient PIC fluctuation coefficient PIC
small water + + + / X —4.46 + 0.35
medium water - X + X X —2.42 +0.14
large water - + + X —0.23 £ 1.07 —0.18 + 0.08
protein water - X + X X —0.22 + 0.15

2 An ‘x’ indicates that the density was not normal for either the last 50 or 25% of the simulation. A ‘—’ indicates that the density was normal
but was not converged for the last 50 or 25% of the simulation. A ‘+’ indicates that the density converged to the target density by the criteria
described in the text. ? A */" indicates that B was not normally distributed in one of the block average segments analyzed. An ‘x’ indicates that
the simulation did not converge to the target density. A ‘—’ indicates that the simulation was converged to the target density but not converged
to a single B value. Simulations that converged to the target and a single B have the value of B + the standard deviation in the table.

142 Target Waters 142 Target Waters 1420 Target Waters
" \ < l : : ~~ l O »ME‘-’W-’M.' ~ :
e 2
H i i i ?\00-5 : ;
% 20 40 60 80 100 g 5 ; 5
1420 Target Waters %‘0‘00 Block 1 5:Block2 : O.OJ" Block 1 2:.5Block2 |
P T T T g Number of Stepsx 10* Number of Steps x 10°
N R - - (14200 Target Waters 10124 Target Waters
g Lo DA " 5 With Protein
\°_9 0.8 H H N R 453' Block 1 : Block 2 Block 1 - Block 2
. 1.0 - 1.0 -
20 20 40 60 80 100 2 U ; B = i -
‘B 14200 Target Waters E ; E ;
8 . . . . 0.5 : ; 0.5 : 7
A 4 ___::_,‘____...:,...-:--:---_-_--; ------ .v"/ : /"I
5 1.0f= N , < 0.0 s T 0.0 s T0
= 0.8 H - i H Number of Steps x 10° Number of Steps x 10°
3 0 20 40 60 8 100 —— Process Control Algorithm
10124 Target Waters With Protein | ________. Fluctuation Based
IR ——————— Sensitivity Coefficient
’ JES S e ———————
LOfz==—"——% p A
0.8t Pt i ; Figure 2. Early system density. The instantaneous density
0 20 40 60 80 100 during the first 2% of each simulation is shown. The labels
Block Averages ‘Block 1’ and ‘Block 2’ indicate the portion of the plot that would
Process Control Algorithm b(_e averaged to produce the block average densities used in
-------- Fluctuation Based Figure 1.
——————— Sensitivity Coefficient )
80 A by 70 A9 with equal effect. In systems that are many
Figure 1. Density block average. The block average of the orders of magnitude larger (or otherwise different in their
density is plotted for each simulation. The solid line is the PIC dynamic character) a retuning of the parameters may give
method, the dashed line is the fluctuation based method, and enhanced performance. However, systems of such size are
the dash—dot line is the sensitivity coefficient method. Each outside of the purview of most GCE simulation methodolo-
simulation is divided into 100 equally sized blocks. The block gies at the present time.
averages for the small, medium, and large water simulation Grand Canonical Ensemble Simulations at FixedB.
were 50 000 steps, 250 000, and 500 000 steps per block The last configuration of the PIC protein-water tuning
average. Tt:e '?(rge protein and water simulation used 500 000 simulation was used as the starting point of these simulations.
steps per block average. The density initially was 0.997 g/mL in the region monitored

in the previous simulations. All parameters detailed for the

In engineering control scenarios, proportional-integral protein-water simulation above were used, with two excep-
controller (PIC) performance is typically robust over a wide tions, the tuning keyword was off, and tBeparameter was
range of operating conditiort$ By analogy, the parameters fixed throughout the simulations. Simulations were allowed
determined hereK, = —112 andr, = 13 000) are expected to evolve for 20M steps, and the density was reported every
to be effective in a variety of simulation systems without 2000 steps.
modification. Although the range of systems for which a
given set of parameters is effective is difficult to predict, Results and Discussion
we note that they perform quite well on all systems tested Achieving the Target Density.The effectiveness of the three
here (which vary over 2 orders of magnitude in size). tuning methods in approaching and maintaining the targeted
Additionally, these parameters produce the targeted densitydensity of water is shown in Figure 1.
within 1M steps when applied in other simulation systems  The densities of the steps corresponding to the first two
(1SDO, 80 A by 80 A by 80 A systed$;1TY6, 100 A by block averages are shown in Figure 2. The process control
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142 Target Waters distribution in the last 50 and 25% of the simulations. If the

_ _ _ _ distribution is normal, we then apply the Studerttest at

LN . S . 95% confidence with a mean of 0.997 and unknown variance.
TN RN T e S A simulation that passes all of these tests is considered
) AR converged to the target density. All methods converge to
I the target density in the small water simulation. Table 1A

0 10 20 30 40 50 60 70 80 90 100 indicates that only the PIC method converges to the target
1420 Target Waters density in all simulation systems.

Inspection of Figure 1 shows that the sensitivity coefficient
method appears to be converging to the correct density in
many of the simulations but has not achieved convergence
by our criteria in the medium water and protein/water
simulations. Figure 1 also shows that the fluctuation method
uses the most steps to approach the target density in the small
and medium simulations. In the large simulation with and
without protein, the fluctuation method does not even reach
the target density. This is possibly due to an overestimation
of the fluctuation. As the target system gets larger, changes
Lo : . in INClproduce an increasing error of this estimate.

010 30 30 40 30 60 70 80 90 100 In all four simulation conditions, the PIC algorithm
identifies and maintains the target density the soonest. This

ER-N ISR WIS
L

EXR-N NECR-NCIFS
>

0 10 20 30 40 30 60 70 80 90 100
14200 Target Waters

B parameter

ER-N NECR-NCIES

10124 Target Waters With Protein

T T may be due to the method with which the PIC method adjusts
2 l:;:i‘---“‘---‘-‘;/;‘-‘-‘é----,--—;--_ ...... - the B parameter at each step with no inherent lag time for
2 Vi D -7 averaging or equilibration. The PIC algorithm in all four
N B T e A simulations reliably identifies the target density and maintains
:g """ i 1 L that state. Figure 2 shows the evolution Bf for all

| | | | I | | I l
0 10 20 30 40 50 60 70 80 90 100 simulations.
Block Average Identifying B. The ultimate goal of the protocol is to

Process Control Algorithm identify the correctB parameter. The convergence of the
-------- Fluctuation Based simulation to the target density is a necessary, but not
"""" Sensitivity Coefficient sufficient, condition for correct determination of this param-

eter. We consideB converged when the simulation has
passed two criteria for block averages5b and 76-100.
The first criteria is a Lilliefors test for normality in these
sections individually. While normality is not an absolute
requirement for convergence iB, this test determines
whether the paired Student'$est between the two segments
algorithm approaches the target density within these two of the simulations will be reliable. A 5% significance level
blocks and maintains it throughout the simulation. In the is used in the Studentistest. Cases where the target density
small water simulation, the sensitivity coefficient algorithm S not converged are not considered. Table 1B shows that
and the fluctuation based algorithm have the exact sameOnly the PIC method produces a converdgedalue for all
densities for the first 20K steps of the simulation due to the Simulation systems.
10K of equilibration and 10K of statistical gathering time  In all cases, the PIC simulations converged to the target
that they require. After that, they independently modify the density within 500K steps, while th@ parameter required
B parameter and their densities diverge. Also, in the medium more steps to reach equilibrium. In all PIC simulations, the
water, large water, and large watggrotein simulations, the B parameter appears steady by the midpoint of the simula-
fluctuation based algorithm starts with a density near the tions. The targeN of the simulation has some effect on this
target as noted in the computational methods section. convergence, with larger target numbers requiring more steps
Generally, the standard deviation of the density in the PIC to converge to a value iB. Further tests for convergence
simulations decreases with increased targblethis is due ~ used the mean value & from the block averages of the
to the discrete method of adding and subtracting water last 50% of the PIC simulation for the protein-water
molecules. For example, in a simulation targeting 142 water simulation system where the mean density was 0.9870
molecules, a single water molecule addition increases the8.6 x 107°.

Figure 3. B parameter block average. The block average of
the B parameter is plotted for each simulation. The solid line
is the PIC method, the fluctuation based method is indicated
by the dashed line, and the dash—dot line is the sensitivity
coefficient method.

density by 0.007 g/mL, while for simulations with tardet Testing the Identified B. To determine if we had
equal to 1420, a single water molecule addition increasesidentified the correct value oB in the large protein
the density by 0.002 g/mL. simulation, and that the fluctuations Bfaround its mean

Testing for Convergence In equilibrated systems, the did not introduce a bias, we ran a series of simulations each
distribution of the density is expected to be close to normal. with constanB. The starting system from these simulations
First, we apply the Lilliefors test for normality of the density used the final system from the PIC simulations and varied
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