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Abstract: We present automated methods for determining the value of Adams’ B parameter

corresponding to a target solvent density in grand canonical ensemble Monte Carlo simulations.

The method found to work best employs a proportional-integral control equation commonly used

in industrial process control applications. We show here that simulations employing this method

rapidly converge to the desired target density. We further show that this method is robust over

a wide range of system sizes. This advance reduces the overall CPU time and user effort in

determining the equilibrium excess chemical potential in these systems.

Introduction
Simulations in the grand canonical ensemble have two unique
and attractive features: they can be used to identify the
chemical potential without additional costly free-energy
simulations, and the combination of insertions and deletions
results in large molecular displacements during the simulation
that are not possible in any of the closed ensembles at
condensed phase densities. These large displacements are
particularly useful for solvating isolated pockets, as exist in
most proteins. This simulation method can also be used to
solvate lipid membranes, allowing penetration of water
molecules deep into the interior of the lipid far more rapidly
than with molecular dynamics.1

Systems solvated this way can serve as an initial config-
uration of a molecular dynamics run.2 Alternatively, the
simulation can be extended, and solvation sites can be

deduced from it using, e.g., the generic site approach.3 It
has also been demonstrated that potential of mean force
calculations benefit from the GCE framework: the changes
in the distance between bulky solutes that these simulations
require can be enabled through the removal or insertion of
intervening solvents, rather than waiting for them to diffuse
out/into the region between the solutes.3

A limitation of this simulation method is that insertions
and deletions are currently feasible only for small, neutral
molecules such as water. This is because the probability of
accepting a random insertion of a bulky or charged molecule
in a solvated system is very low. The insertion of water
molecules has only become practical with the introduction
of cavity biased sampling. A second limitation of this method
is that when simulating the solvation of a system, the
chemical potential yielding the target density is initially
unknown. Therefore, prior to simulating at a target density,
a tuning phase is necessary to identify the chemical potential
parameter that yields the target density. In practice, this
required several runs with the chemical potential parameter
adjusted each time based on the results of previous run(s).
Such manual interventions not only consume human time
but also in general lengthen the overall time of the simulation.
This article presents three procedures to perform this tuning
without user intervention and compares their performances
for systems of varying sizes and compositions.
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Background
Monte Carlo simulations in the Grand Canonical (T,V,µ)
Ensemble (GCE) are conveniently performed with the
introduction of the parameterB which is related to the excess
chemical potentialµ′ as

where 〈N〉 is the average number of particles,4 k is the
Boltzmann constant, andT is the absolute temperature. Note
that B depends not only on the excess chemical potential
but also on the system size and composition as well. In
addition to the conventional translations and rotations,
simulations in the GCE require periodic insertions and
deletions of molecules. The Cavity Biased variant (CB/
GCE)5,6 attempts insertion of a molecule only if a cavity of
an appropriate radius is found and accepts the insertion with
probability

where E(rN) is the potential energy of the system ofN
particles at configurationrN, andPN

cav is the probability of
finding a cavity of a specific size. To maintain microscopic
reversibility, the probability of a deletion of a particle is given
by

The robustness of the CB/GCE technique was demon-
strated by its robustness in modeling solvent molecules in
crystal hydrates and protein active sites.3,5,7,8 In these
simulations, the value ofB directly affects the probability
of a successful insertion or deletion. An automated method
to identify B must correctly changeB when the calculated
density differs from the target density. At a given temper-
ature, there is a natural fluctuation of the density that will
occur for any given chemical potential. Therefore, we are
primarily concerned with identifying the correctB parameter
such that the mean density equals the target density over an
equilibrated portion of the simulation.

Methods
Iterative Tuning Based on Fluctuations.Fluctuation (F)
in the number of molecules is related to the mean number
of molecules and theB parameter through eq 4:9

B is tuned in an iterative process that assumes that the relation
of eq 4 is constant to a reasonable extent over a finite range
of 〈N〉’s. Initially, ∆〈N〉/∆B is either calculated or estimated
experimentally from the isothermal compressibility of the
pure liquid at the target density4 (FN,B

initial). Each iteration,i,
first simulates the CB/GCE system for Xe

MC steps to allow
equilibration with the newly chosenB value, followed by
Xs

MC steps to gather statistics for〈Ni〉. The sensitivity
coefficientSN,B

i is calculated as a linear combination of the
pure liquid value and the value calculated from〈N2〉 - 〈N〉2

at the end of iterationi, using the whole run:

The change inB is determined by eq 6:

The maximum|∆B| value is limited by default to 1.0 to
further dampen oscillations inB. The current implementation
gathers statistics for the fluctuation cumulatively over the
whole simulation. The use of the fluctuation in〈N〉 calculated
separately in each iteration is precluded by the slow
convergence of fluctuations, i.e., the simulation would not
converge in XsMC, steps unless it was very long.

Iterative Tuning with Empirical Estimates of the
Sensitivity Coefficient. In this method the sensitivity coef-
ficient is a scaling factor that incorporates the effect of a
change inB on the mean number of particles (eq 7).

The change inB is then determined according to eq 8:

As with the fluctuation method, the|∆B| is limited to the
default value of 1.0. Also, there is a filter whereby if in the
previous iteration the change in〈N〉 is of opposite sign of
the change inB, in the next iterationB is unchanged. Such
an occurrence clearly indicates inadequate equilibration and/
or statistics because by definition asB increases, so should
〈N〉. This filter implicitly increases XeMC in these instances
allowing the system more time to adjust to the new value of
B. This has the benefit of simplifying the choice of Xe

MC

and Xs
MC for iteration lengths that are providing adequate

statistics forSN,B
i but allow for frequent enough changes to

reach convergence as fast as possible.
Tuning Using Process Control Principles.The canonical

proportional-integral-derivative control equation (PID) com-
monly used in engineering control applications is eq 910

where MV is the manipulated variable,KC is the proportional
gain, τI is the integral time,τD is the derivative time,cs is
the controller bias, andε is the current deviation of the
process variable from its target. It has been shown that the
dynamic stability of a controlled system can be sensitive to
the selection of the derivative time. Therefore, the derivative
term is frequently omitted unless empirically shown to be
necessary.11 When applying this equation to our simulation
systems, the value we seek to control is the density of bulk
water. In eq 9,ε is the deviation away from the desired bulk
density. To achieve the target density, the manipulated
variable in our system isB, whose effect is described in the
Introduction.

We further implement the differential form of the control
equation:

µ′ ) kTB- kT ln〈N〉 (1)

Pi ) min {1,PN
cav exp[B + (E(rN+1) - E(rN))/kT]/(N + 1)}

(2)

Pd ) min {1,N exp[- B + (E(rN) - E(rN-1))/kT]/PN-1
cav } (3)

∆〈N〉/∆B ≈ FN,B ) 〈N2〉 - 〈N〉2 (4)

SN,B
i ) (FN,B

initial + i*FN,B
i )/(i + 1) (5)

∆B ) (Ntarget- 〈Ni〉)/(SN,B
i ) (6)

SN.B
i ) ∑

j)0

i

(〈Nj〉 - 〈Nj-1〉)/(Bj - Bj-1) (7)

∆B ) (Ntarget- 〈Ni〉)/SN,B
i (8)

MV( t) ) KCε(t) +
KC

τI
∫0

t
ε(t)dt + KcτD

dε

dt
+ cs (9)
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This transformation solves the so-called ‘integral windup’
problem, whereby an historic period of large deviation
dominates the integral term.11 It has the added benefit of
eliminating the controller bias as another tuning parameter.

The process control equation has an implicit time depen-
dence that is not present in Monte Carlo simulations. To
emphasize this, we rewrite the control equation once more
in finite difference form in terms of the simulation step
number,i:

Unlike the first two methods, this technique changes the
B parameter at every insertion/deletion attempt.

Calculations
All three methods were implemented into the Monte Carlo
program MMC.12

Grand Canonical Ensemble Simulation Systems.For
each of the three tuning methods, four simulations of
differing size and components were monitored for their
ability to identify the value of Adams’B parameter that yields
the target density.

All our systems targeted equilibrium with bulk water at
310 K, 0.997 g/mL. The first three simulations were small,
medium, and large pure TIP3P water simulations. With the
cubic edge length of the boxes equal to 16.48, 34.99, and
75.26 Å, respectively, the simulations targeted 142, 1420,
and 14 200 waters, respectively. To mimic systems with a
solute, one water was treated as the solute, and the density
was monitored in the region outside a cubic cell centered at
the center-of-mass of this water. The position of this water
molecule was kept fixed throughout the simulation. The edge
of the cube, enclosing the waters perturbed by the solute,
was set to 6 Å.

The fourth simulation included a trypsin protein with a
bound benzamidine.13 The protein simulation volume had
an edge length of 75.26 Å. The center of mass of the protein
was placed at the center of the simulation unit cell. The
density was monitored in the region outside a rectangular
volume centered at the origin with minimumx, y, z and
maximumx, y, z coordinates of-26, -24, -25, 24, 26,
and 24, respectively. At the target density, approximately
10 124 water molecules fill this monitored volume.

All simulations used scaled force biased sampling14 where
the level of biasing was scaled down in the vicinity of the
solute. The water potential used was TIP3P,15 and the solute-
solvent interactions were described by the CHARMM force
field.16 The solvent-solvent potential was cut off at 12 Å.
Fifty water molecules were randomly placed in the simulation
cell at the start of the simulation. The solute was kept fixed
in all simulations. At each MC step a randomly selected
solvent was translated with a maximum step size of 0.275
Å and rotated with a maximum angle of 60°. Initially the B
parameter was set to 1.0.

The small water simulations were run for 5M steps. The
medium and large water simulations were run for 25M and
50M steps, respectively. The large protein simulation was
run for 50M steps.

Sensitivity Coefficient Based Tuning Simulations. As
the system size increases, generally more time is needed to
average the properties of the system and to reach equilibrium
after a change in the control parameter. For these simulations,
the small water simulation used 10K steps of equilibration
followed by 10K steps to gather statistics. The medium water
simulation (1420 water molecule target) used 50K steps of
equilibration followed by 50K steps to gather statistics. The
large water and protein simulations used 100K steps for
equilibrium and 100K steps to gather statistics. The density
andB parameter were reported at 10 000 equally spaced steps
in each simulation, i.e., every 200 steps for the small water
simulation.

Fluctuation Based Tuning Simulations. These simula-
tions are the same as those of the sensitivity coefficient based
simulations, except that the initial configuration has a number
of waters approximately equal to the target number of waters.
This was done because the accumulated fluctuation generated
by starting with 50 water molecules was thought to prevent
theB parameter from correctly responding to changes in〈N〉.
In an attempt to minimize that influence, we therefore
performed an initial short CB/GCE simulation withB set to
10.0 until the desired number of waters was reached. The
system that resulted from that simulation was used as the
starting structure of the fluctuation based tuning simulations.

Proportional Integral Control Based Tuning Simula-
tions. Simulations were run for the same lengths as the
fluctuation and sensitivity coefficient based simulations. The
B parameter in these simulations is changed at each step of
the simulation. The two controller tuning parameters (KC and
τI) were determined to be-112 and 13,000 respectively, by
following the open loop protocol of Ziegler and Nichols for
the large protein-ligand system.17 This method of tuning
the control parameters is based on the response of the system
to a step change in the manipulated variable (B, in our case).
However, instead of considering the steady-state result (i.e.,
the equilibrated value of the density) in response to the step
change, it considers the delay of the response of the
controlled variable (the so-called ‘dead-time’ in the vernacu-
lar of control engineering) and the initial rate of the response.
This method has the advantage that it can be applied even
to nonself-regulating systems (i.e., those systems that have
an unbound response to the step change) because it only
depends on the dynamic character of theinitial response to
the perturbation.

Once the dead-time and initial response rate for a process
in known, the Ziegler-Nichols method provides rules for
determining the PID controller constants that appear in eq
9. Evaluation of the dead-time and initial response rate is
somewhat subjective as it involves an assessment of how
long the system took to ‘appreciably respond’ after the
perturbation was applied. However, as long as the dead-time/
initial response rate pairs are self-consistent, the Ziegler-
Nichols tuning method will yield acceptable (and usually
indistinguishable) empirical performance.

dB
dt

) KC
dε

dt
+

KC

τI
ε (10)

Bi+1 ) Bi + Kc(εi - εi-1) +
KC

τI
εi (11)
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In engineering control scenarios, proportional-integral
controller (PIC) performance is typically robust over a wide
range of operating conditions.11 By analogy, the parameters
determined here (Kc ) -112 andτI ) 13 000) are expected
to be effective in a variety of simulation systems without
modification. Although the range of systems for which a
given set of parameters is effective is difficult to predict,
we note that they perform quite well on all systems tested
here (which vary over 2 orders of magnitude in size).
Additionally, these parameters produce the targeted density
within 1M steps when applied in other simulation systems
(1SDO, 80 Å by 80 Å by 80 Å system;18 1TY6, 100 Å by

80 Å by 70 Å19) with equal effect. In systems that are many
orders of magnitude larger (or otherwise different in their
dynamic character) a retuning of the parameters may give
enhanced performance. However, systems of such size are
outside of the purview of most GCE simulation methodolo-
gies at the present time.

Grand Canonical Ensemble Simulations at FixedB.
The last configuration of the PIC protein-water tuning
simulation was used as the starting point of these simulations.
The density initially was 0.997 g/mL in the region monitored
in the previous simulations. All parameters detailed for the
protein-water simulation above were used, with two excep-
tions, the tuning keyword was off, and theB parameter was
fixed throughout the simulations. Simulations were allowed
to evolve for 20M steps, and the density was reported every
2000 steps.

Results and Discussion
Achieving the Target Density.The effectiveness of the three
tuning methods in approaching and maintaining the targeted
density of water is shown in Figure 1.

The densities of the steps corresponding to the first two
block averages are shown in Figure 2. The process control

Table 1. Testing Convergence

A. convergence to target densitya B. convergence in Bb

fluctuation
sensitivity
coefficient PIC fluctuation

sensitivity
coefficient PIC

small water + + + / × -4.46 ( 0.35
medium water - × + × × -2.42 ( 0.14
large water - + + × -0.23 ( 1.07 -0.18 ( 0.08
protein water - × + × × -0.22 ( 0.15

a An ‘×’ indicates that the density was not normal for either the last 50 or 25% of the simulation. A ‘-’ indicates that the density was normal
but was not converged for the last 50 or 25% of the simulation. A ‘+’ indicates that the density converged to the target density by the criteria
described in the text. b A ‘/’ indicates that B was not normally distributed in one of the block average segments analyzed. An ‘×’ indicates that
the simulation did not converge to the target density. A ‘-’ indicates that the simulation was converged to the target density but not converged
to a single B value. Simulations that converged to the target and a single B have the value of B ( the standard deviation in the table.

Figure 1. Density block average. The block average of the
density is plotted for each simulation. The solid line is the PIC
method, the dashed line is the fluctuation based method, and
the dash-dot line is the sensitivity coefficient method. Each
simulation is divided into 100 equally sized blocks. The block
averages for the small, medium, and large water simulation
were 50 000 steps, 250 000, and 500 000 steps per block
average. The large protein and water simulation used 500 000
steps per block average.

Figure 2. Early system density. The instantaneous density
during the first 2% of each simulation is shown. The labels
‘Block 1’ and ‘Block 2’ indicate the portion of the plot that would
be averaged to produce the block average densities used in
Figure 1.
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algorithm approaches the target density within these two
blocks and maintains it throughout the simulation. In the
small water simulation, the sensitivity coefficient algorithm
and the fluctuation based algorithm have the exact same
densities for the first 20K steps of the simulation due to the
10K of equilibration and 10K of statistical gathering time
that they require. After that, they independently modify the
B parameter and their densities diverge. Also, in the medium
water, large water, and large water-protein simulations, the
fluctuation based algorithm starts with a density near the
target as noted in the computational methods section.

Generally, the standard deviation of the density in the PIC
simulations decreases with increased targetedN. This is due
to the discrete method of adding and subtracting water
molecules. For example, in a simulation targeting 142 water
molecules, a single water molecule addition increases the
density by 0.007 g/mL, while for simulations with targetN
equal to 1420, a single water molecule addition increases
the density by 0.002 g/mL.

Testing for Convergence. In equilibrated systems, the
distribution of the density is expected to be close to normal.
First, we apply the Lilliefors test for normality of the density

distribution in the last 50 and 25% of the simulations. If the
distribution is normal, we then apply the Student’st-test at
95% confidence with a mean of 0.997 and unknown variance.
A simulation that passes all of these tests is considered
converged to the target density. All methods converge to
the target density in the small water simulation. Table 1A
indicates that only the PIC method converges to the target
density in all simulation systems.

Inspection of Figure 1 shows that the sensitivity coefficient
method appears to be converging to the correct density in
many of the simulations but has not achieved convergence
by our criteria in the medium water and protein/water
simulations. Figure 1 also shows that the fluctuation method
uses the most steps to approach the target density in the small
and medium simulations. In the large simulation with and
without protein, the fluctuation method does not even reach
the target density. This is possibly due to an overestimation
of the fluctuation. As the target system gets larger, changes
in 〈N〉 produce an increasing error of this estimate.

In all four simulation conditions, the PIC algorithm
identifies and maintains the target density the soonest. This
may be due to the method with which the PIC method adjusts
the B parameter at each step with no inherent lag time for
averaging or equilibration. The PIC algorithm in all four
simulations reliably identifies the target density and maintains
that state. Figure 2 shows the evolution ofB for all
simulations.

Identifying B. The ultimate goal of the protocol is to
identify the correctB parameter. The convergence of the
simulation to the target density is a necessary, but not
sufficient, condition for correct determination of this param-
eter. We considerB converged when the simulation has
passed two criteria for block averages 51-75 and 76-100.
The first criteria is a Lilliefors test for normality in these
sections individually. While normality is not an absolute
requirement for convergence inB, this test determines
whether the paired Student’st-test between the two segments
of the simulations will be reliable. A 5% significance level
is used in the Student’st-test. Cases where the target density
is not converged are not considered. Table 1B shows that
only the PIC method produces a convergedB value for all
simulation systems.

In all cases, the PIC simulations converged to the target
density within 500K steps, while theB parameter required
more steps to reach equilibrium. In all PIC simulations, the
B parameter appears steady by the midpoint of the simula-
tions. The targetN of the simulation has some effect on this
convergence, with larger target numbers requiring more steps
to converge to a value inB. Further tests for convergence
used the mean value ofB from the block averages of the
last 50% of the PIC simulation for the protein-water
simulation system where the mean density was 0.9970(
8.6 × 10-5.

Testing the Identified B. To determine if we had
identified the correct value ofB in the large protein
simulation, and that the fluctuations ofB around its mean
did not introduce a bias, we ran a series of simulations each
with constantB. The starting system from these simulations
used the final system from the PIC simulations and varied

Figure 3. B parameter block average. The block average of
the B parameter is plotted for each simulation. The solid line
is the PIC method, the fluctuation based method is indicated
by the dashed line, and the dash-dot line is the sensitivity
coefficient method.

Grand Canonical Ensemble Monte Carlo Simulations J. Chem. Theory Comput., Vol. 2, No. 5, 20061433



B around the mean of the last 50% of the simulation. Each
simulation ran for 20M steps, and data analysis was
performed on 100 equally sized block averages. In Figure
4, these block averages are plotted againstB for the last 10M
steps (50 block averages). The larger black dot marks the
mean of those block averages. The linear regression through
those mean values yields a line producing an idealized value
of B for this system. The value ofB from the PIC simulations
deviated from this ideal by 0.0046 and was well within the
standard deviation ofB ((0.1470) for the last 50% of the
PIC simulation.

The R2 correlation of the line though the means of the
fixed B simulations indicates that there is a fair amount of
uncertainty in the density at a constantB. This effect can be
minimized through longer simulation times, increasing the
statistical sampling of the ensemble of densities andB
parameters.

Conclusions
We show that it is possible to tune theB parameter of the
CB/GCE simulations efficiently and without user intervention
to a good approximation of the actual value. Of the three
methods tested, the PIC method performed best by far, and
it is the recommended method. Also, the parameters of the
PIC method established in this work are robust enough to
be applicable to many diverse system sizes.

Tuning the B parameter without user intervention stream-
lines the simulation process and allows completion of a
project in significantly shorter time. The time saving comes
both in terms of CPU time used and elapsed time because
tuning can be completed in fewer simulation steps than with
manual tuning, and there is no need to interrupt the runs to
manually adjust theB parameter.
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Figure 4. Fixed B parameter simulation results. The small
black points show the block averages plotted for the last 50%
(1 × 107 steps) of the simulations. Each block is the average
of 200 000 steps. The larger black dots mark the mean of
those block averages. The line shows the linear regression
through those means.
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