
Origin of the Sequence-Dependent Polyproline II Structure
in Unfolded Peptides
Alex Kentsis, Mihaly Mezei, and Roman Osman*
Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York, New York

ABSTRACT Recent studies have indicated that
the unfolded states of polypeptides contain a sub-
stantial amount of polyproline type II (PII) struc-
ture. This energetically and structurally preorga-
nized state may contribute to the reduction of the
folding search, as well as to the recognition of
intrinsically unstructured proteins and polyproline
ligands. Using Monte Carlo simulations of natively
unfolded peptides in the presence of explicit aque-
ous solvation, we observe that residue-specific PII

conformational propensity is the result of the modu-
lation of polypeptide backbone hydration by a proxi-
mal side-chain. Such a mechanism may be unique
among those that contribute to the modulation of
secondary structures in proteins. The calculated
conformational propensities should prove useful for
the development of a configurational PII scale neces-
sary for the prediction and design of natural-like
polypeptides. Proteins 2005;61:769–776.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Spontaneous folding and binding of biological macromol-
ecules in an aqueous environment originate from a nonran-
dom initial state. Under these conditions, prebound and
unfolded states of proteins may contain a substantial
amount of polyproline type II (PII) (�, �) � (�75°, �145°)
structure1–4; for an overview, see Rose.5 These observa-
tions have led to profound revisions of our understanding
of the mechanisms of protein folding and binding, diminish-
ing the importance of a combinatorial search of the confor-
mational space. For instance, prebound state structures
can reduce the combinatorial search during binding and
speed up recognition by 1.6 times.6 Similarly, in the case of
�-helix formation in polyalanine, the segmentally preorga-
nized PII helical unfolded state contributes as much as half
to the energetics of the folding search.7

Host–guest studies of PII in polyprolyl peptides exhibit
residue specific stabilities,8,9 and analyses of the conforma-
tional properties of amino acids found in PII structures in
the Protein Data Bank (PDB) reveal residue-specific pro-
pensities for the PII conformation.10–16 It has been sug-
gested that PII structure observed in the unfolded and
prebound states of nonprolyl proteins can preorganize
folding and binding in a sequence dependent manner,
consistent with hierarchical organization of proteins.17,18

In order to understand the origin of this configurational,
sequence-dependent phenomenon, we have undertaken to
characterize the PII conformational properties on a single-
residue level. Such a conformational, amino acid–depen-
dent representation is required for the development of a
configurational partition function that incorporates neigh-
bor effects.

Recently, Kallenbach and colleagues demonstrated that
alanine in a blocked GGAGG pentapeptide exists largely
in PII conformation.19,20 Here, we present results of Monte
Carlo simulations of blocked GGXGG pentapeptides under
the conditions of molecular solvation and near physiologi-
cal temperature and pressure. We find that residue-
specific PII propensities result from the modulation of
polypeptide backbone hydration by a proximal side-chain.

METHODS
Molecular Systems

Simulations were performed with the all-atom
CHARMM27 force field21 and the transferable intermolecu-
lar potential (TIP3P) water model.22 Calculations were
performed on the blocked pentapeptides Ac-GGXGG-NH2

[X � M, F, R, Q, K, A, Y, W, E, neutral H (H), protonated H
(H�), S, C, I, V, D, G, N, T], as studied experimentally by
Kallenbach and colleagues.19 Initial solute configurations
(see below) were generated manually in vacuum, solvated,
energy-minimized and equilibrated in periodic boundary
conditions (PBCs). The PBC systems were constructed by
randomly placing waters into a face-centered cubic cell
until appropriate density was reached, using partial spe-
cific molecular volume of water of 30 Å3, with the total
number of water molecules adjusted based on the partial
molar volume of component amino acids of the solute.
Primary hydration shells (PHSs) were constructed from
the PBC systems by deleting water molecules outside of
the PHS radius as measured from the nearest solute heavy
atom. The PHS systems contained on the order of 200
water molecules, corresponding to hydration shells of 6–8
Å or two to three molecular layers in thickness on average.
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Monte Carlo Simulations

Our implementation of the PHS for Monte Carlo (MC)
simulations replaces bulk molecular solvation with a
restraining potential at the surface of a molecular solva-
tion layer that maintains proper water structure and
energetics by mimicking steric exclusion by the outlying
bulk water, and by accurately representing interfacial
water structure for waters that are outside of the PHS but
within the restraining potential.23 Usage of a size-
independent reference shell energy allows the primary
hydration shell to adopt arbitrary shape and size as
dictated by conformational sampling of the solute, while
capturing principal solvation effects such as density, solva-
tion energy, and molecular water structure.23 MC-PHS
appears to reproduce solvation structure and energetics of
both highly polar and nonpolar amino acid solutes, as well
as to correctly recapitulate experimental properties of
several polypeptide solutes, making it suitable for studies
of structure and thermodynamics of flexible polypeptides
in the context of explicit aqueous solvation.7,23 MC simula-
tions were performed using a force-biased Metropolis
procedure as implemented in the program MMC (http://
inka.mssm.edu/�mezei/mmc). Systems were thermalized
for 10,000 sweeps, as judged from energy equilibration,
and evolved for 2 million sweeps, saving configurations
every 100th sweep, where one sweep represents one step of
all the degrees of freedom, including those of the solute
and the solvent. Bond lengths and angles were kept
constant, and solute torsions were moved one at a time. We
utilized the shuffled cyclic procedure for solute torsional
moves.24 Both solute and solvent step sizes were tuned to
yield mean acceptance rates of 20–40%. The radius of the
primary hydration shell was updated every third sweep,
using the normalized reference shell energy of 0.15 kcal/
mol/molecule and the restraining force constant of 3.0
kcal/mol/Å2, as described previously.23 All nonbonded inter-
actions were included. Interaction energies, radial and
orientational distribution functions, and coordination num-
bers were calculated according to standard methods,25

referenced to the center of mass of the solute, as imple-
mented inMMCusingproximityanalysis (http://inka.mssm.
edu/�mezei/mmc).

For analysis of geometries of polypeptide conformations,
we utilized a self-consistent method for defining conforma-
tional basins, using an adaptive resonance theory algo-
rithm based on a self-organizing neural net, as imple-
mented in ART-2.26 Briefly, the cluster assignment of the
dihedral angles extracted from simulation trajectories are
optimized subject to a constraint on the cluster radius,
such that no member of a cluster is farther than a specified
distance from the cluster center. Because the convergence
of such minimizations is sensitive to initial conditions, we
tested the robustness of assignments to conformational
basins by recalculating the cluster assignments using
reshuffled simulation trajectories (data not shown). In this
manner, we use PII to refer to backbone geometries in the
PII conformational basin, and coil to all other conforma-
tions.7 To evaluate sampling efficiency, we calculate the
evolution of the apparent self-diffusion coefficient, 	a�b

(x) � [
fa(x)� � 
fb(x)�]2, as a function of simulation length x,
where fa and fb are phase space variables, such as protein
backbone dihedral angles, of two independent simulations
starting from different initial conditions a and b. If the
sampling of phase space is ergodic, 	a�b (x)/	a�b (0)
decays to zero at long x. This is a necessary but insufficient
condition of ergodicity, since it depends on the choice of
initial conditions a and b. To evaluate convergence and
ergodicity directly, we carried out two independent simula-
tions using different random number seeds for the initial
MC moves and their sizes, and two different initial solute
conformations: PII (�, � � �75°, �145°) and right-handed
PII (�, � � �145°, �75°). The right-handed PII conforma-
tion was selected because of its maximal displacement in
torsional space from PII. Interaction energies, radial and
orientational distribution functions, and coordination num-
bers were calculated according to standard methods,25

referenced to the center of mass of the solute, as imple-
mented in MMC using proximity analysis.27

RESULTS

In order to ensure exhaustive sampling of solute configu-
rational space in the context of explicit aqueous solvation,
we employed an MC implementation of the primary hydra-
tion shell (MC-PHS) that maintains principal solvation
effects such as density, solvation energy, and fine water
structure, while efficiently coupling structural rearrange-
ments of the solvent to those of the solute.23 MC-PHS
simulation lengths exceed the apparent computational
time for the self-diffusion of the backbone dihedral angles
of 7- and 14-residue polyalanine peptides by more than
three orders of magnitude.7 They can be considered con-
verged as judged from the equivalence of results of indepen-
dent simulations using initial configurations maximally
distributed in torsional phase space.7 Similar sampling
efficiency is achieved for much smaller five-residue pep-
tides studied here (data not shown). Results of self-
consistent clustering of conformational ensembles of cen-
tral residues in GGXGG are presented in Figure 1, with
the error bars representing �1
 of the calculated probabili-
ties from independent simulations using canonical PII (�,
�) � (�75°, �145°) and right-handed PII (�, �) � (�145°,
�75°) as initial configurations. As such, they are a heuris-
tic measure of the convergence of the calculations (Fig. 1).
Nearly half of the ensemble of GGAGG is in PII conforma-
tion with a population-weighted average (�, �) � (�81°,
�158°), in excellent agreement with circular dichroism
(CD) and NMR spectroscopic studies of this peptide (�,
�) � (�80°, �170°),19,20 and previous calculations of PII

geometry in aqueous solution.7 Moreover, backbone geom-
etries of PII ensembles formed by various amino acids in
GGXGG are similar to each other (Table I).

More importantly, a distribution of PII propensities is
observed, with some amino acids predominantly in the coil
conformation, with geometries widely distributed in tor-
sional space, while others are predominantly localized in
the distinct PII conformation (Fig. 1). Such distribution of
residue specific PII propensities is in general agreement
with experimentally determined residue specific PII scales.
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For example, using P3XP3GY peptides, Creamer and col-
leagues observed relatively high PII content of A- and
Q-containing peptides, and relatively low PII content of N-
and V-containing peptides, although all peptides con-

tained some PII structure, possibly due to the flanking
polyprolines.9,28 Similarly, Schweitzer-Stenner and col-
leagues observed that K, A, and M had high PII content in
the context of AXA peptides, while V and S formed no
significant PII structure. However, F, W, and H failed to
form PII,

2,29 which differs from our observations (Fig. 1).
Discrepancies between PII conformational propensities
calculated from simulations of capped GGXGG and those
measured above may be due to unique features of PII in
polyprolyl peptides such as P3XP3GY or uncapped zwitteri-
ons such as AXA. More importantly, calculated residue
specific PII stabilities of blocked GGXGG (Fig. 1) are in
agreement with those measured spectroscopically by Kal-
lenbach and colleagues in the same systems (personal
communication).

The calculated conformational PII propensity scale exhib-
its two general classes: formers (M, F, R, Q, K, A, W, E, H),
and nonformers (L, S, C, I, V, D, G, N, T; Fig. 1). Insofar as
substitutions of alanine to other amino acids do not
significantly increase the apparent conformational PII

propensity (�G � kBT), ability to form PII appears to be an
inherent property of polypeptides, and residue-specific
modulation of this inherent polypeptide backbone prop-
erty is largely disruptive. In order to delineate the origin of
this modulation, we first examined the calculated en-
sembles of similar residues with opposite PII propensities,
such as the isoelectronic (PII former) Q and (PII nonformer)
N, which differ only by one methylene side-chain group
(Fig. 1). In order to explore whether the side-chain confor-
mation may contribute to the disruption of PII structure in
the backbone as a result of a direct side-chain–backbone
interaction, we analyzed side-chain orientations in PII and
coil ensembles of Q and the coil ensemble of N. As can be
seen in Figure 2, orientation of the Q side-chain does not
significantly differ between ensembles of PII and coil
conformers. Furthermore, the side-chain orientation of PII

conformers of Q does not significantly differ from that of
the PII nonformer N (Fig. 2). Moreover, clustering of
side-chain (�1, �2) with backbone (�, �) of PII and coil
ensembles of Q fails to identify any statistically significant
clusters that segregate with PII geometry of the backbone
(data not shown). A recent survey of the PDB also found no
relationship between side-chain conformation and propen-
sity to form backbone PII.

12 Thornton and colleagues
reached similar conclusions earlier.16 An exact comparison
with rotamer libraries is not possible due to their binning
methods,30,31 as well as sampling limitations of structural
databases.32,33

In previous studies, the stability of PII helix in polyala-
nine was related to the molecular solvation of the back-
bone, which was entropically most favorable compared to
other conformations.7,34 Thus, we have examined the
structure and energetics of hydration of the polypeptide
backbone for conformers in the PII and coil ensembles of all
simulated GGXGG peptides (Fig. 3; Table II). Analysis of
the solute–solvent pair-binding energies of water mol-
ecules in proximity to the backbone NH of conformers in
PII and coil ensembles demonstrates the increased pres-
ence of weakly bound waters in the latter, as reflected by

Fig. 1. Fraction of PII sampled by the central residue in GGXGG as
assigned using self-consistent clustering. Error bars represent �1
 of the
calculated probabilities from independent simulations using canonical PII

(�, �) � (�75°, �145°) and right-handed PII (�, �) � (�145°, �75°) as
initial configurations, and are a heuristic measure of the convergence of
the calculations. The right-handed PII conformation serves as a test of
convergence of simulations due to its maximal displacement in the
torsional phase space from the left-handed PII geometry. Asterisk indi-
cates PII conformations that are continuous with the coil conformational
basin, as judged from the contiguity of their conformational basins.7

Enumeration of PII conformers using geometric binning (http://roselab.
jhu.edu/utils/pross.html) produces similar results, as does calculation of
PII propensities using molecular dynamics simulations under periodic
boundary conditions (data not shown).

TABLE I. Backbone Geometries of PII Clusters Formed by
Central Residues in GGXGG, as Expressed by the Centroid

(�, �) and Its Standard Deviation (�)

GGXGG � � 


M �84 167 8.9
F �84 142 13
R �93 164 14
Q �87 160 15
K �95 158 17
A �81 158 14
Y �96 135 16
W �87 153 13
E �91 155 11
H �82 159 10
H� �86 142 14
L �78 150 17
S �93 158 9.1
C �91 164 11
I �82 158 —
V �86 158 —

The calculated geometries are somewhat more extended than the
canonical polyprolyl PII geometry of (�75°, �145°), but are in agree-
ment with the measured geometry of the GGAGG of (�80°, �170°),19,20

highlighting the importance of self-consistent microscopic-state clus-
tering.
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the long tail of the binding energy distributions in the coil
ensembles of Q and N [Fig. 3(a)]. This is consistent with
our previous observations that PII conformers are best
suited to accommodate hydration of the polypeptide back-
bone with the least disruption of the bulk water struc-
ture.7,34 No significant differences between PII and coil
conformers were observed for solvent distribution func-
tions of water in proximity to the backbone CO and C�
groups (data not shown). Consistent with such preferential
PII backbone hydration, radial and orientational distribu-
tion functions of water molecules in proximity to the
backbone NH reveal a PII backbone hydration structure
that is more stable and preferentially oriented than water-
solvating backbone geometries in the coil ensemble [Fig.
3(b), Table II], in agreement with water binding energetics
[Fig. 3(a)]. This hydration structure is reflected in the
enhanced stability of the first water shell (r � 2.8 Å), as
reflected by its greater peak in the radial distribution
function, and enhanced organization of the second water
shell (r � 5.3 Å), as reflected by its more anisotropic mean
water dipole orientational distribution function [Fig. 3(b),
Table II]. This suggests that residue-specific backbone
solvation, and not side-chain orientation per se, is respon-
sible for the relative stabilization of observed PII structure
compared to the PII nonformers (Fig. 1). It follows from
these findings that the disruption of the water structure
around the backbone in the PII nonformers may be the
reason for their reduced propensity to form PII.

In order to test this hypothesis directly, we performed
calculations of PII nonforming GGNGG peptide with the
backbone constrained in PII geometry. If backbone hydra-

tion is responsible for the stability of PII, then backbone
constraint in the context of a PII-disrupting side-chain
should disrupt its hydration. In agreement with this
mechanism, imposing a backbone constraint leads to a
profound disruption of backbone hydration, with marked
disruption of water binding energetics [Fig. 4(a)], and
destabilization of water structure in proximity to the
backbone NH [Fig. 4(b)]. Furthermore, the binding energy
distribution of waters in proximity to the side-chain NH2

Fig. 2. Histograms of �1 side-chain orientations of N and Q in PII and
coil ensembles. The observed major population of g� is in agreement with
backbone dependent rotamer geometries,30,31 although an exact compari-
son is not possible. We note that the calculated distributions deviate from
one expected based solely on steric considerations, where g� and t
conformers predominate, as expressed by the �1 torsional potential of the
force field.21 Nevertheless, the apparently flat distribution of central �1

(energy difference between favored and unfavored conformers is within
thermal range) may be due to the flanking glycines, as molecular
dynamics simulations of the same peptides under periodic boundary
conditions yield similarly flat distributions (data not shown).

Fig. 3. (a) Solute–solvent pair binding energy Uslt-slv probability
distributions in proximity to the backbone NH of N and Q in PII (solid) and
coil (dashed, dotted) ensembles. Asterisk indicates the increased popula-
tion of weakly bound waters in the ensembles of coil conformers. (b)
Solute–solvent radial g(r) (top) and mean water dipole orientational �(r)
(bottom) water distribution functions in proximity to the backbone NH of N
and Q in PII (solid line) and coil (dashed, dotted lines) ensembles. Asterisk
and double asterisk indicate the increased stability of the first water shell,
and increased orientation of the second water shell, respectively, in the
ensembles of the PII conformers.
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in PII-constrained GGNGG exhibits a strongly bound
population (Fig. 5), suggesting that disruption of backbone
hydration occurs as a result of proximal side-chain place-
ment, which competes with and/or disrupts PII-stabilizing
backbone hydration structure. Thus, insofar as alanine
reflects the inherent properties of the peptide backbone
and exhibits a significant PII propensity (Fig. 1), sequence-
dependent PII structure appears to be related to a pertur-
bation of backbone hydration by a proximally placed
side-chain.

Since all PII-forming amino acids exhibit similar hydra-
tion properties of the polypeptide backbone (Table II), we
have sought to ascertain the degree of similarity in the
mechanism of PII backbone disruption by the different
PII-forming amino acids studied here (M, F, R, Q, K, A, W,
E, H; Fig. 1). To that end, we calculated the difference in
excess binding potential for waters hydrating the back-
bone NH of PII and coil conformers, as expressed by the
difference in logarithms of their solute–solvent binding
energy probabilities, and averaged over all PII-forming
residues (Fig. 6). Strongly bound waters are found to
interact preferentially with PII conformers, and weakly

bound waters with coil conformers, consistent with the
preferential hydration of PII as compared to � backbone
conformations.34 Moreover, there exists an apparent gradi-
ent of binding potential for water molecules hydrating the
backbone PII and coil conformers, such that the hydrations
of PII and coil are structurally and energetically distinct
(Figs. 3 and 6). In contrast, a gradient and excess binding
potential difference of near zero is observed for waters
hydrating the backbone NH of the terminal glycine (Fig.
6), consistent with the independence of its hydration from
the conformation of the central residue, and the use of
GGXGG peptides to identify residue specific PII prefer-

TABLE II. Characteristics of Solute–Solvent Radial g(r)
and Mean Water Dipole Orientational �(r) Water

Distribution Functions in Proximity to the Backbone NH
of Central Residues in GGXGG Ensembles of PII and Coil

Conformers [Figs. 1, 3(b)]

X

PII Coil

gmax
1 �max

2 gmax
1 �max

2

M 12.1 129 6.1 93
F 11.8 124 5.6 96
R 11.4 120 5.3 91
Q 8.7 121 5.7 94
K 12.2 133 6.3 96
A 10.1 126 5.9 95
Y 12.5 128 6.6 98
W 12.1 125 6.1 94
E 9.1 129 5.0 91
H 10.9 124 6.1 97
H� 11.2 125 6.4 92
L 11.8 120 5.8 98
S 9.8 124 6.4 94
C 9.5 124 5.9 97
I — — 5.8 93
V — — 6.9 98
D — — 6.4 95
G — — 6.2 92
N — — 5.6 93
T — — 6.8 97

For clarity, only the maximum values of the radial gmax
1 and mean

water dipole orientational �max
2 distribution functions of the first and

second water shells, respectively, are listed. Regardless of the chemi-
cal properties of sidechains of PII-forming residues, hydration struc-
tures around their polypeptide backbones exhibit enhanced stabilities
of the first water shells (mean gmax

1 � 10.9 vs 5.9 for PII versus coil
conformers, respectively) and enhanced organization of the second
water shell (mean �max

2 � 125 vs 95 for PII vs coil conformers,
respectively). Backbone hydration structures of coil conformers of
PII-forming residues are similar to the hydration structures of PII-
nonforming residues in coil conformation (mean gmax

1 and �max
2 � 6.3

and 95, respectively).

Fig. 4. (a) Solute–solvent pair-binding energy distributions in proxim-
ity to the backbone NH of coil (dotted line) and PII-constrained (solid line)
N. (b) Solute-solvent radial g(r) (top) and mean water dipole orientational
�(r) (bottom) water distribution functions distributions in proximity to the
backbone NH of coil (dotted) and PII-constrained (solid) N.
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ences.19,20,35,36 Most importantly, insofar as the different
PII-forming amino acids (M, F, R, Q, K, A, E, H; Fig. 1)
exhibit small differences in the excess binding potentials of
waters hydrating the backbone NH of their PII and coil
conformers, as reflected by their relatively small standard
deviations (Fig. 6), the mechanism of their PII backbone
disruption is relatively similar.

DISCUSSION

Surveys of PII helices in folded proteins noted that PII

residues are more surface exposed than those in other

regular secondary structure elements.10,12,37 The stability
of PII in unfolded peptides is due to a combination of
increased backbone entropy, as probed by geometry sam-
pling using a soft-sphere repulsion potential in vacuum,38

and increased hydration entropy and reduced enthalpy, as
studied using thermodynamic integration in explicit wa-
ter34 and energy decomposition analysis.7 Hydration of the
unfolded PII polypeptide backbone approximates the hydra-
tion of water itself, whereby hydrating waters form a
channel and a collection of sites surrounding the backbone
of a PII helix whose interaction with the bulk phase is
minimally disrupted.14,34,39,40 Unique features of PII hydra-
tion have been noted,41–43 but their contribution to the
energetic origin of PII and its sequence dependence have
remained unclear.

Here, we have shown that conformational PII propensity
of amino acids in the context of an otherwise unstructured
GGXGG pentapeptide can be divided into two groups and
is distinguished by backbone hydration. Among PII-
forming amino acids, the hydration of the backbone is
characterized by a well-defined radial organization of the
first shell and an orientational organization of the second
shell (Figs. 1 and 6, Table II). In contrast, residues that do
not appreciably form PII fail to do so due to a disruption of
this backbone hydration structure by a proximally placed
side-chain (Figs. 1 and 6, Table II). Although most of the
enthalpy of solvation of alanine is due to the backbone
CO:water interaction, the enthalpic preference for PII

conformations in aqueous solution is due to backbone NH
hydration,44 as demonstrated in this work as well (Figs. 3
and 6). Waters hydrating backbone NH of residues in PII

conformation exhibit higher interaction energy and excess
binding potential (Figs. 3 and 6). This enthalpic contribu-
tion is concomitant with the enhanced free energy of
hydration and conformational entropy of PII.

34,38 Consis-
tent with this inherently molecular basis of PII stability, ab
initio and semiempirical calculations of alanine peptides
recapitulate experimentally observed PII conformations
only when explicit molecular hydration is included.45,46

Inasmuch as properties of polyalanine reflect the phys-
ics of the polypeptide backbone, the preference for PII

observed in this work and in previous studies of polyala-
nine7,34,38 suggests that the ability to form PII is an
inherent property of peptides and its origin is in the
hydration of the peptide backbone. Indeed, substitutions
in GGXGG tend not to cause significant increases in
conformational PII propensity relative to alanine (�G �
kBT; Fig. 1). Moreover, the sequence specific modulation of
PII propensity on a single-residue level is largely deter-
mined by the disruptive effects on the backbone solvation
by the proximal side-chain (Figs. 3 and 6, Table II).

For example, methyl to hydroxymethyl conversion of
alanine to serine, and shortening of butyl-carboxamide to
propyl-carboxamide in glutamine versus asparagine lead
to disruption of PII in GGXGG as a result of disruption of
backbone hydration by a proximally placed side-chain
(Figs. 3 and 6, Table II). On the other hand, amino acids
that are sufficiently long to separate their side-chain
functional groups from the backbone, such as lysine and

Fig. 5. Solute-solvent pair binding energy Uslt-slv probability distribu-
tions in proximity to the side-chain NH2 of coil (dotted) and PII-constrained
(solid) N. Asterisk indicates the increased population of strongly bound
waters in the ensemble of PII-constrained conformers.

Fig. 6. Excess potential �� of solute–solvent pair-binding Uslt-slv in
proximity to the backbone NH of central X (�) and terminal G (●) in PII

conformation of GGXGG as referenced to that in the coil conformation for
PII forming amino acids (X � M, F, R, Q, K, A, E, H). Error bars represent
�1
 of the calculated excess pair binding potentials, and reflect the
dissimilarity of conformational backbone hydration effects exerted by
different PII forming amino acids in GGXGG.
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arginine, exhibit conformational PII propensities similar
to that of alanine (Fig. 1, Tables I and II). In spite of
chemical differences among the side-chains of examined
residues (amide, carboxylate, hydroxyl, alkyl, phenyl, etc.),
the physical mechanism of their PII disruption is appar-
ently similar and stems from disruption of peptide back-
bone hydration by a proximal side-chain (Fig. 6, Table II).
Such a water-mediated mechanism of residue-specific PII

stability is not necessarily exclusive of other contributions,
such as amphipathic hydration of the polypeptide back-
bone with its differential polar and apolar hydration,14

electronic hyperconjugation,47 and steric hindrance.38

Inherent PII propensity and its modulation by amino
acid side-chains distinguish PII from other secondary
structures of polypeptides. For example, �-helical propen-
sity of amino acids is due largely to the effect of side-chain
on the conformational entropy of the backbone,13,48,49

whereas propensity to form �-sheet conformations is due
to solvent shielding of the backbone by the side-chain.50–52

On the other hand, amino acid propensity to form PII

conformations appears to be linked directly to the hydra-
tion properties of the polypeptide backbone, and to be
modulated by the disruption of this hydration by a proxi-
mal side-chain (Figs. 1 and 6; Table II).

Such a mechanism of sequence-dependent PII structure
emphasizes the role of dehydration in the folding and
binding of PII-containing proteins. Insofar as unfolded
proteins contain significant amounts of PII structure,
hydration-mediated, sequence-dependent PII stability im-
plies that the hydrophobic effect can act early in the
folding process to preorganize unfolded state structure in a
sequence-dependent manner. Similarly, specific recogni-
tion of PII ligands such as binding of short peptides by SH3
and WW domains, antigenic peptides by class II major
histocompatibility complexes, as well as binding of numer-
ous intrinsically unstructured proteins, may rely on hydra-
tion properties of these molecules. In all, both the conforma-
tional preferences of polypeptides and their sequence
dependence appear to be intimately linked to their aque-
ous hydration under physiological conditions.
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