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Abstract. A wide variety of Monte Carlo techniques are described to argue that the method-

ology has a large untapped potential to solve sampling problems for complex systems.

1. Introduction

Computer simulations of assemblies of atoms and molecules [1,2] use almost exclusively one

of two well known techniques: Monte Carlo (MC), implemented by variants of the Metropolis

method [3] or molecular dynamics (MD), that involves the integration of Newton’s second

law of motion [4]. While in the pioneering years of simulations the MC technique was

prevalent, simulation work on biomolecular systems in the last decade was dominated by the

MD technique. The principal aim of this paper is to make a case for putting more work in

developing MC methodologies as there are several features of MC that make it well suited

for the resolution of a number of sampling problems.

The power of MD lies in the fact that it is driven by Newton’s laws of motion — a governing

principle that is guaranteed to work. Also, explicit introduction of time allows the simple

calculation of time-dependent properties. However, using the actual time evolution for the

sampling of the configuration space also imposes a limitation on the sampling rate. Also,

being governed by a physical principle, the trajectory in the configuration space also has

to be physical — in general this means that, first of all, the path has to be essentially

continuous.



MC, on the other hand, is free from the constraint of having to follow a physical path, thus

it can take shortcuts and jumps, thereby (potentially) significantly improve the sampling

efficiency. This potential, however, is balanced by the facts that a) it is not at all easy to find

the shortcuts; b) time-dependent properties can only indirectly modeled; c) MC methods

that change only a small part of the system each step (as is true for most realizations)

are inefficient to use with some of the more complex Hamiltonians: force fields where the

energy of the system includes an induction term [5,6] or with the so called Particle-Mesh

Ewald (PME) treatment [7] of long-range electrostatics. Note, however, that the formalism

introduced by Sperb [8] for the treatment of long-range electrostatics is pairwise additive

and thus it may be an efficient alternative to PME.

2. General formalism for the MC method

The MC technique used for simulation of atomic and molecular assemblies, usually referred

to as the Metropolis method [3], is based on the construction of a Markov chain whose

limiting distribution π is the Boltzmann distribution in the ensemble under consideration.

This requires the construction of a transition matrix such that

π = πP (1)

A general form of the elements of P was shown by Hastings [9] to be

pij = qij
sij

1 + (πiqij)/(πjqji)
(2)

where the pmn’s satisfy the reversibility condition

πipij = πjpji (3)

with

pii = 1−
∑
i6=j

pij , (4)

the qij ’s are the elements of the transition matrix of an arbitrary irreducible Markov chain,

usually referred to as the a priori transition probabilities, on the same states π is defined

and sij is a symmetric function of i and j satisfying

0 ≤
sij

1 + (πiqij)/(πjqji)
≤ 1 . (5)

This formulation highlights the many freedoms the MC methodology allows. The original

Metropolis method is recovered with the choice of
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qij = qji,

sij = 1 + (πiqij)/(πjqji) ((πiqij)/(πjqji) ≥ 1) (6)

sij = 1 + (πjqji)/(πiqij) ((πjqji)/(πiqij) ≤ 1)

while the choice

qij = qji and sij = 1 (7)

results in the prescription suggested by Barker [10], frequently uses in the simulation of spin

systems. Translated into words, in the Metropolis method moves with πj ≤ πi are always

accepted and moves with πj > πi are accepted with probability πj/πi while in the rarely used

Barker method each move is accepted with probability πj/(πi + πj). Peskun has shown [11]

that using the Metropolis method results in more precise estimates of expectation values

averaged over the chain than using the Barker method. A so far unexplored possibility

exists, however, that the Barker method may be better suited for problems requiring the

crossing of barriers since it does not force a ‘downward’ move any time a trial state with

lower π is selected. When the Metropolis prescription is combined with an asymmetric qij ,

the acceptance probability is given as [1]

min{1, (πiqij)/(πjqji)} (8)

The Hastings formalism was recently further generalized by Liu, Liang and Wong [12] to

provide a framework to methods that compare several trys before actually selecting a new

move.

The choice of qij ’s offer a rich variety of possibilities. In practical terms, qij ’s control the

trial changes in the system. In particular, they control a) the subset of the system that

will be changed (e.g., the molecule to displace or the torsion angle to change); b) the size

of the change (e.g., the range of coordinate values from which the trial state is chosen

randomly); and c) the distribution from which the trial change is going to be selected (e.g.,

uniform or something more ‘informed’). Choices with qij 6= qji are usually referred to as

biased sampling. Note, that biased sampling is different from non-Boltzmann (often referred

to as ‘umbrella’) sampling [13,14]: in the latter the Markov chain is constructed based on

a modified distribution π′, and the Boltzmann averages corresponding to π are recovered
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using a modified formalism. Umbrella sampling was developed in the context of free energy

simulations, but the concept is of more general scope (see Sec. 3.6). Also, while biased

sampling is exclusive to MC non-Boltzmann sampling can be performed with both MD and

MC.

Applying the Markov chain approach to continuous systems introduces a subtle issue. The

usual argument states that in digital computers all states are actually discrete thus the

formalism derived based on discrete states carries over. This argument, however, ignores

the fact that for continuous systems nonzero Boltzmann probabilities can only result in a

finite volume, i.e., instead of stating P (XN ) = exp(−E(XN )/kT ) one should state P (xN ∈
[XN ,XN + dXN ]) = exp(−E(XN )/kT )dXN . While in most applications dXN is constant

and thus cancels when the ratio of probabilities is formed, for attempted changes where there

is a correlation among the degrees of freedom varied, dXN may also change. This requires

the inclusion of the Jacobian associated with such change — an example for this is discussed

in Sec. 3.4.

In addition to the selection of the appropriate transition probabilities qij and the function

sij the correctness of a MC technique is ensured only if the Markov chain generated by it

is ergodic, i.e., each state j can be reached from each state i in a finite number of steps

with non-zero probability. Lack of ergodicity can arise, e.g., if the scope of changes allowed

by qij is too limited or if the order of changes induces a cycle in the states sampled. On

the other hand, MD is considered inherently ergodic. While, in general, true ergodicity is

rarely a problem, the so-called quasi-ergodicity frequently is, affecting both MD and MC

methods. In practical terms, it means that it is often difficult to ensure adequate sampling

of the relevant parts of the configuration space within reasonable computing time.

To make the case for the possibilities inherent in the MC methodology, the rest of this paper

will present a collection of wide ranging realizations and analyze the issues involved in their

application. The emphasis will be on methods related to modeling continuous systems —

simulations of discrete models (e.g., lattice models) have always relied heavily on the MC

methodology. The selection is not meant to be anywhere near comprehensive — that would

be beyond the scope of this paper as even the 1984 review of Levesque et al. [15] already

contained 467 references. Other resources include a 1999 volume of Advances in Chemical
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Physics [16], an archive of papers on Markov Chain Monte Carlo methods [17] and a web

site dedicated to Molecular Monte Carlo [18].

3. The selection of the a priori transition matrix qij

The design of a MC method largely consists of the choice of qij ’s. The governing principle

of a good design is to make large changes in the system in each step while keeping the

corresponding (πiqij)/(πjqji) ratio away from zero, so that the acceptance of the trial change

should not become hopeless. This section present a systematic analysis of the choices involved

in selecting qij .

3.1. Selection of the subset of the system to be changed at each step.

The idea of changing only a subset of the system at each step follows from the nature of

most potential functions defining the Boltzmann distribution: due to the so-called hard core

of atoms (the result of exchange repulsion) the energy can increase very steeply as a function

of atomic coordinates. As a result, even small changes in the coordinates of several atoms

are very likely result in an overlap between at least one pair, giving rise to a steep increase

in the energy, with the concomitant steep drop in πj , resulting in near-certain rejection of

the trial. Thus, as long as the cost of energy calculation is (approximately) additive over

the subsets considered, it is generally advantageous to select as small a subset to change in

each step as possible, since this way the effect of the occasional sharp increase due to the

overlap of even one pair of atoms will not cause the near certain rejection of the rest of the

subsystem changes.

There is, however, an important caveat. For more complex systems, judiciously chosen

correlated changes of several degrees of freedom can result in smaller change in the Boltzmann

probability than any comparable change in the individual degrees of freedom considered.

Correlated changes, however, make the behavior of qij ’s more complex. One of the major

challenge in the development of efficient MC techniques is the design of such correlated

changes.

Once the size of the subsystems to change is settled there is the choice of distribution from

which the subsets are selected from change. This choice sets the relative frequencies of
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various types of moves (e.g., relative frequencies of particle displacement and volume change

in the (T, P, N) ensemble) when there are more than one types and the order of choice or

distribution to sample from for the selection of the individual subsystems within each type

of change. In most applications the distribution is chosen to be uniform and the selection

is either generated randomly or in a cycle. A combination of these two approaches uses

a random permutation within each cycle [19]. There can be significant benefits, however,

from using non-uniform distributions to select subsystems to change. The best known such

technique is the preferential sampling of Owicki [20] where solvents near the solute are moved

more frequently than solvents far away. For complex systems, preferential sampling of any

degree of freedom can be implemented based on proximity to regions of interest, e.g., an

active site. For simulations in the grand-canonical ensemble (vide infra) the selection of

particles to be removed can also be chosen to occur more frequently near regions of interest

(with the concomitant increase in the frequency of insertion attempts in that region) [21].

This same principle was applied in Ref. 22 where torsion angles near the end of the chain

were changed less frequently than the ones farther from the chain’s end.

3.2. Selection of the size of the change

Initial MC work simulating largely homogeneous systems fixed the range within which each

degree of freedom can change and selected the actual values from the uniform distribution.

However, when the system has significant inhomogeneity (e.g., the density or the distribution

of energy is far from uniform), a single range has to be selected in such a way as to make

possible accepted moves even in the most inhomogeneous region (i.e., the stepsize has to be

small) and this will significantly lower the efficiency of move attempts elsewhere.

Goldman has suggested to modulate the stepsize as a function of the energy of the moved

molecule [23,24]: the lower the energy, the smaller are the moves that are likely to be ac-

cepted. This requires the use of Eq. (8), with the additional twist that a trial change resulting

in a lower energy may have to be rejected because the initial state can be outside the range of

the trial state. This technique was also found to accelerate barrier crossings [25]. The same

approach has also been applied to simulation of systems with density inhomogeneity [26].
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A recent application extended the idea to sampling in the torsion-angle space [22]. Here the

torsion angle stepsize range was modulated by the distance of the atom that is farthest from

the rotation axis (among the atoms affected by the torsion).

3.3. Biased selection of the change

While most MC applications select the trial changes from uniform distribution, improved

sampling can be achieved if additional information about the system can be incorporated

into the selection process. The prime example of such technique is the force-biased sampling

of displacement of Rao, Pangali, and Berne [27]. The change in each coordinate i is sampled

from the distribution

P (xi) = cNi exp(−λFi∆xi/kT ) (9)

where k is the Boltzmann constant, T is the absolute temperature the simulation is run

at, Fi is the force component along the coordinate xi, ∆xi is the range of changes in xi

cNi is the normalization factor calculated to make P (xi) integrate out to unity and λ is a

constant, usually taken to be 1/2. Analogous expression is used to sample the orientational

change using torque components instead of the force components. This technique was found

to improve the sampling efficiency for the simulation of liquid water by a factor of 2 to

4 [27,28] at the cost of only about 30% extra computing. A different variant introduced by

Cao end Berne, called “anti-force bias”, applies this scheme only in the convex regions of

the potential surface and reverses the direction of the bias in other places [25]. The purpose

of this change is to facilitate barrier crossing.

The idea of force-biasing has also been extended to the sampling of volume changes in the

(T, P,N) ensemble [29]. Here the role of force is played by the virial sum thus the added

computational burden is minimal if the displacement attempts use force biasing, since in

that case the force components (the computationally expensive contribution to the virial

sum) are already present.

Force biasing also provided an example to the always present danger that a perceived ‘short-

cut’ in the configuration space leads instead to ‘getting lost’: a simulation of an aqueous

system containing (monatomic) ions with force-biasing lead to a situation where some waters

were never moved during a reasonably long stretch. It turned out to be the result of the
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water always trying to move toward the ion, bumping into its repulsive wall. This conun-

drum can be resolved by making λ a function of the distance from the ionic species (in case

of more than one ion, of the distance from the nearest one) [30].

It is also possible to sample changes from a distribution that has been established from

prior knowledge of the system. For example, Hardy and Pastor [31] used the dominant

part of the energy function to generate an approximate Boltzmann factor for the sampling

of a lipid molecule in a mean field. Guarnieri and Weinstein [32] used successfully the

idea of ‘conformational memories’, i.e., a distribution of feasible conformations, determined

from several independent high-temperature runs, to efficiently sample the conformations of

a decapeptide.

3.4. Correlated changes

The major difficulty in applying the MC methodology to macromolecular systems lies in the

fact that, due to the very large force constant associated with a chemical bond, the energy

of the system varies very steeply when a single atom’s coordinate is changed, limiting the

practical changes to ranges too small to be of practical use. Thus, successful MC methods

have to move several atoms, leading to the problem of designing such moves with well defined

qij ’s.

A rather successful realization of this strategy is the idea of performing simulations in the

torsion angle space, as realized early in the ECEPP suite of programs and force field from

the Scheraga Laboratory [33 and references therein]. As this approach avoids changing bond

lengths and bond angles (the contributors to the steepest part of the potential) it is very

efficient for small molecules. In fact, Jorgensen and Tirado-Rives have shown [34] that the

conformational space of liquid hexane can be sampled significantly better with MC (even

when bond-angle changes are also allowed) than with MD.

Once the size of the molecule is increased, the efficiency of a move attempt changing a

single torsion angle drops precipitously, since the change in atomic coordinates is roughly a

linear function of the distance of the atom from the torsion bond. Thus, macromolecular

applications require additional ideas.
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The first such idea has been introduced by Noguti and Go [35] with their Scaled Collective

Variables (SCV) method. The SCV ηi are defined as

ηi = λ
1/2
i

∑
i

uijφj (10)

where uij and λi are the eigenvectors and eigenvalues of the second derivative matrix of the

energy (w.r.t. the torsion angles φi). Unlike the local moves discussed below, the volume

element involved in the coordinate transformation is constant, so detailed balance is satisfied

without additional corrections. On BPTI use of SCV led to about two orders of magnitude

better performance than use of simple torsion angle MC. Recent work tested the use of SCV

on a DNA oligomer [36] and concluded that its development “can lead to an interesting

alternative to MD”.

An other approach, mentioned already by Go and Scheraga [37], involves moving only the

minimal set of torsion angles in the middle of a chain in such a way that the rest of the chain

remains unmoved. This limits the atomic displacements resulting from the torsion angle

changes and thus greatly enhances the efficiency of moves. For systems on a lattice the so-

called pivot algorithm [38] implements such moves relatively easily. For off-lattice systems,

however — besides the non-trivial geometry problem (solved first by Go and Scheraga [37])

— the formulation of a correct MC algorithm is quite challenging. The solution developed

by Dodd et al. [39] has two salient points. First, the geometry problem of finding the torsion

angles that keep the chain intact after the change of the first torsion has a variable number

of solutions, thus the ratio qij/qji has to be proportional to the ratio of the number of

solutions (when one of these solutions is chosen randomly for the trial move). Second, due

to the constraints imposed on the set of torsion angles changed in each move, the volume

element dφ1dφ1 . . . dφ7 is not constant, thus — as discussed above in Sec. 2 — the Boltzmann

probability corresponding to each set of such torsion angles has to include the Jacobian of

the change of coordinates from torsion angles to the constraint variables [39].

Hoffmann and Knapp [40] have suggested to improve the sampling efficiency by selecting

a solution from the solution set with a probability that is proportional to the Jacobian.

Additional improvement can be obtained, however, if one always selects the solution that

is nearest to the previous state but, to maintain detailed balance, the change is rejected

outright if the previous state is not the solution nearest to the new state [41].
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3.5. Non-physical changes

Perhaps the strongest point of the MC methods is their ability to easily make discontinuous

or other ‘non-physical’ changes. Thus, for systems with discontinuous variables (e.g., lattice

models) MC is generally the method of choice. Non-physical changes, however, can be very

helpful in the sampling of the configuration space of continuous systems too. This section

will present a collection of such successful techniques.

The method called configuration bias MC was developed from the work of Rosenbluth

and Rosenbluth [42] on a method to generate self-avoiding random walks by Livne and

Meirovitch [43] and, independently, by Siepman and Frenkel [44] for lattice simulations and

by de Pablo et al. [45] for continuous models. In this approach, (part of) a chain molecule

is rebuilt at each move segment by segment. To place a new segment, a decision about the

orientation of the new bond (i.e., the torsion angle around the last bond) is needed. This

decision is based on the distribution of the Boltzmann factors as a function of this torsion

angle, as estimated from the energies of a small sample of conformations. by biasing the

selection of torsion angles toward values with high Boltzmann factor, the likelihood of build-

ing a new conformation of the polymer without overlapping with the rest of the system (or

with itself) is greatly increased, even when the biasing factor is taken into account in the

acceptance probability, Eq. (8). While the probability of successful completion of a chain

growth decreases with the length of the chain the technique was successful even for lipid

bilayers [46].

An other family of chain growing methods, called ‘enrichment methods’ grew out of the work

of Wall and Erpenbeck [47]. These techniques involve multiple extension trys at promising

steps of chain growing. The ’breadth first’ strategy of Ref. 47 was replaced by a ‘depth

first’ strategy in the works of Grassberger [48] and Hegger and Grassberger [49] and further

enhancement by including a ‘pruning’ step (abandoning growing a chain when their weight

falls below a threshold) by Grassberger [50]. Note, that these methods have a memory of

the earlier steps of chain growing, thus the chain generated is non-Markovian.

A technique, similar in spirit to the chain growing with configurational bias, called slithering

snake has been developed by Wall and Mandel [51] for lattice models and extended for

continuum models by Kalos and coworkers (using the name ‘reptation’) [52,53]. The method

10



simulates polymer melts including a so-called reptation step: one polymer unit is deleted

from one end and an other is added (in random direction) at the other end. Note, that this

method is limited to homopolymers.

Simulation in the grand-canonical ensemble (GCE) presented an other challenge, since it

requires fluctuating density under constant volume, hence fluctuating number of atoms

or molecules. The formalism generally used for GCE simulations has been developed by

Adams [54]. Its application to dense fluids has been facilitated by the development of cavity-

biasing where insertion attempt are made only at sites that are centers of a cavity of suitable

radius [55,56]:

P acc
ins = min{1, exp(−∆E/kT + B)

P cav
N

N + 1
} (11)

P acc
del = min{1, exp(−∆E/kT −B)

N

P cav
N

} . (12)

Here N is the number of particles, ∆E is the energy change upon the insertion or deletion,

P cav
N is the probability of finding a cavity in the current configuration, and B is the parameter

introduced by Adams, related to the excess chemical potential µ′ as

B = µ′/kT + ln 〈N〉 . (13)

Note, that P cav
N is a byproduct of the cavity search, thus its incorporation into the qij ’s

incurs no additional computational cost.

GCE simulation of fluids is of particular interest as it yields the free energy without any

extra work that otherwise can be quite substantial (see, e.g., Ref. 57). For biomolecular

systems it provides the unique capability of adequately filling internal cavities with water

and eliminating waters improperly placed during the preparation of the system — see Ref. 58

for a costly example of such occurrence.

An analogue of the insertion/deletion employed in GCE simulations is the swapping of

selected molecules, groups, or atoms. However, the author is not aware of any systematic

exploration of this option.

A different generalization of the insertion/deletion process occurs in several variants of free-

energy simulations [57]. Such calculations strive for finding the shortest path in the config-

uration space between the two states involved and therefore often lead to nonphysical path,

usually best handled by MC.
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Elimination of the requirement that attempted changes have to represent a physically mean-

ingful process also greatly simplifies the treatment an arbitrary set of degrees of freedom

differently from the rest. The simplest example for this is the freezing of an arbitrary set of

degrees of freedom. Imposition of hard limits can be done also very simply. Other poten-

tially useful ‘non-physical’ processes can include a simulated annealing where some degrees

of freedom can be governed by a different temperature value.

A drawback common to MC and MD is the fact that the correlations between successive

states die off too slowly. Simply abandoning a walk to start from a new random start is

generally inefficient, however, since the equilibration time is usually longer than the cor-

relation time. An intermediate solution to starting a different walk, called J-walking, has

been introduced by Franz et al. [59]. In the simplest case, J-walking performs simulations

at two temperatures simultaneously. Periodically, the simulation at the lower temperature

attempts a ‘move’ that consist of switching from the lower temperature configuration to

the one at higher temperature. The difference between the two temperatures are chosen

to result in an overlap between the energy space of the two runs, resulting in ‘reasonable’

acceptance rates of such moves. However, the higher temperature run is expected to evolve

much quicker than the lower temperature run, thus there is a reasonable probability that

after an accepted switch the low temperature run is in a different basin of the configuration

space. Further, J-walking does not have to be restricted to two temperatures. The higher

temperature run can also be enhanced by a parallel run at an even higher temperature, and

so on. The number of temperatures required is determined by the heights of the barriers

between the conformational basins that the simulation is required to cross.

3.6. Generalized ensembles

In the last decade a family of simulation techniques emerged that perform simulations in

so-called generalized or multicanonical ensembles. These methods have two conceptual pre-

cursors, simulated annealing and umbrella sampling. Simulated annealing was introduced

as a method of finding the global minimum of a potential surface by Kirkpatrick et al. [60],

performing Metropolis walks in the search space by progressively lower temperatures, while

umbrella sampling was developed as a sampling enhancer for free energy simulations [13,14].
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Note also that while they have been implemented in conjunction with the MC methodology,

most of them could be implemented using MD.

The statistical mechanical foundation of the generalized ensembles follow from writing the

configurational part of the (canonical) partition function as

Z =
∫ +∞

−∞
n(E) exp(−E/kT )dE (14)

where n(E) dE is the volume of the configuration space with energy E. This implies that the

probability that a random sample drawn from the Boltzmann distribution at temperature

T Kelvin is proportional to n(E) exp(−E/kT ). The exponential factor is ‘responsible’ for

limiting the energies visited by a simulation at a given temperature. Simulated annealing

simply drives the temperature from a high value toward zero, resulting in the sampling of

a wide range. In the generalized ensembles, the simulation includes an additional weighing

function to result in uniform sampling of a thermodynamic variable.

The method of expanded ensembles of Lyubartsev et al. [61] and the simulated tempering of

Marinari and Parisi [62] includes the additional weight exp(−g(T )) where uniform sampling

in the temperature space results when g(T ) = F (T )/kT , F (T ) being the Helmholtz free

energy at temperature T . The multicanonical approach of Berg [63] includes the additional

weight w(E) where uniform sampling in the energy space results when w(E) = 1/n(E).

The additional weight w(E) in the 1/k ensemble proposed by Hesselbo and Stinchombe [64]

produces uniform sampling in the entropy space when w1/k(E) =∝ 1/
∫ E
−∞ n(E′)dE′.

Hansmann and Okamoto gave a theoretical [65] and numerical comparison of these methods

on the well-studied pentapetide met-enkephalin[66]. They found that these methods perform

about equally well — a result understandable from the close relation between these techniques

— and are superior to the traditional MC (or MD) techniques.

A common feature of these methods is that the ideal weight function is, while unknown,

also the quantity targeted by the simulation (i.e., the free energy), giving rise to an iterative

scheme where trial calculations produce approximate forms to them, to be further improved

by the successive simulations in an iterative fashion.

Such self-consistent algorithms have also their precursors in the umbrella sampling field

(as noted in Ref. 64). While most free energy applications of umbrella sampling used a
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predetermined weighing scheme (e.g., a harmonic function to concentrate sampling to a

particular range of the free energy variable) adaptive methodology has also been used in

umbrella sampling application for free energy simulations [67-69].

Andricioaei and Straub [70] showed the way to take advantage of the more delocalized

character of the probability distribution in a different generalization of statistical mechanical

ensembles [71]. This ensemble is derived from a generalized entropy, defined as a function

of a parameter q, where the limit q = 1 gives the Boltzmann entropy. Note that this

formalism can be also considered an application of umbrella sampling, but with the added

advantage that the umbrella weight function is also defined in advance. They also combined

the J-walking idea with this ensemble into a method called q-jumping: instead of trying a

jump to a configuration reached at at different temperature, the jump attempt is made at a

configuration generated with a different (higher) q value [72]. Further, Pak and Wang have

implemented q-jumping with MD [73].

The generalized ensemble methods have been further extended by Wong and Liang [74] by

introducing and importance weight associated with each state of the system (where the state

may be in a generalized ensemble, like the ones discussed above). This weight is used to

facilitate the crossing of barriers. The transition rules and the correct weighing of the states

visited are also given in Ref. 74.

4. Optimization of move parameters

Besides the choice of the functional form of qij discussed above, the actual values of the

parameters involved in qij can strongly effect the capabilities of a simulation to sample the

configuration space. Foremost among the parameters is the so-called stepsize, the range

within which the change in each coordinate should lie. Given that very small changes are

almost always accepted but hardly move the system and very large steps are hardly ever

accepted, early work suggested to tune the stepsize for 50% acceptance rate.

Optimization of stepsize parameters is a conceptually difficult proposition since it requires

to estimate the efficiency of the walk generated by the simulation from the local properties

of the walk. In other words, optimizations should be based on short runs to be of use.

Typical such local properties are the mean square displacement and, for molecular liquids,
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orientational correlation. On this basis, Kincaid and Scheraga have demonstrated [75] that

for liquid water acceptance rate of 30% results in significantly better sampling than the 50%

rule. It should be pointed out that the sampling efficiency over long runs is more closely

related to the limiting slope of the mean square displacement as a function of time [27] as

well as to the ‘time’ scale of long-range correlations experienced in such systems [28] and it is

an open question to see whether these latter quantities are proportional or even monotonic

functions of the local convergence characteristics.

Depending on the implementation of the energy calculation, there may be an additional

advantage to lower acceptance rates. Unless the program stores all pair interaction energies

and related terms, the computational cost of a rejected move attempt is about half of the

accepted moves. This follows from the need of updating the sum of the energies of all possible

subsets that can be moved during the simulation only after accepted moves.

A detailed study on the optimal selection of the MC stepsize has been presented by Ko-

lafa [76], again showing the virtues of acceptance rates significantly lower than 50%. Bouzida,

Kumar and Swendsen [77] presented a systematic study of the relation between the accep-

tance rate and the stepsize and used it to devise a technique where the stepsize is periodically

adjusted during the simulation. They note that this makes the whole chain a collection of

different Markov chains (they call it almost Markov chain) but this fact does not appear to

invalidate the method if the stepsize adjustment is not done very frequently.

5. Error estimates

The correlated nature of the configurations generated by the the Markov chain excludes the

simple use of the standard deviation from being used for the determination of confidence

intervals of the calculated averages. In a detailed review of the MC methodology, with plenty

of attention to technical issues [78], Wood introduced to the simulation community the use of

block averages. In this approach, the simulation is partitioned into blocks of sufficient length

so that the averages over these blocks are already independent. In this case the standard

deviation SDX (corresponding to 68% confidence interval) of a property X is estimated as

SDX =
N∑
i

〈X〉i/
√

N − 1 (15)
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where 〈 〉i denotes the average of the quantity X over the i-th block and N is the number of

blocks. The statistical independence of the 〈X〉i’s has to be checked, however to ascertain

the validity of Eq. (15). Also, the test can be repeated with increasing blocksizes and the

convergence of the estimate can give an additional indication as to its reliability.

It is also possible to derive en estimate of the errors in the calculated averages by taking

into account the correlated nature of the random walk. In this approach, the autocorrelation

functions of the calculated quantities are also calculated. The autocorrelation approach can

also be extended to the block-average approach — see, e.g., Kolafa [79] for a detailed analysis

of the problem and further references. The reliability of such estimates, however, hinges on

the reliability of the estimated autocorrelations, creating a potential vicious circle.

6. Combining MC and MD

Given the complementary nature of the two techniques, it is natural to expect that combining

the two can result in a method that is better than either alone. Such combination can be

done either in the framework of MD or in that of MC.

Forrest and Suter [80] compared two versions of a MC method where each attempted change

is generated by a short MD run, with initial velocities assigned from the Maxwell distribution.

This combination was not found to perform better than MD for chains longer than 24 atoms.

The reverse approach, implementing MC steps into an MD calculation, appears to me more

difficult, albeit likely to be of more use. The best results so far in this direction have been

obtained by the method of Guarnieri [81] who introduced MC moves into a Brownian dynam-

ics simulation. The success of the mixing hinges on the use of the so-called velocity-Verlet

scheme to integrate the equations of motion since in that scheme dos not use the velocities

of the previous steps. While formally not proven to be exact, the calculated distributions

agreed well in every detail considered with results obtained with exact algorithms, but dis-

played significantly faster convergence. An other instance of MC steps mixed into and MD

calculations is found in the work of Scott [82] who intersperses CBMC steps into an MD

simulation. This solution is not an exact procedure either since the MC step is followed by

a short minimization.
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7. Implementation issues

While the implementation of the basic Metropolis method for atomic fluids is a rather simple

matter, the more complex the system and the choice of the transition probabilities qij , the

more involved the computer code becomes. Verifying the correctness of such algorithm and

code is an important issue. Such verification is made difficult by the stochastic nature of

the algorithm — there is no simple equation into which the result can be substituted to see

if it is satisfied. However, novel algorithms and codes can be tested on systems where the

answer is known. For example, Hofmann and Knapp tested their correlated torsion moves

(called ‘window moves’ there) by simulating a system with no interaction thus the results

of the simulation could be compared with the behavior established theoretically from the

properties of uniform distribution.

The general lack of exact tests calls for consistency checks. Since the majority of MC

methods involve changing small subsystems at a time, most calculated quantities are updated

at each step instead of calculated from scratch. Already Wood suggested [78] the periodic

comparison of the energy with the value recalculated from scratch. This idea has been further

extended [83] and implemented with additional consistency checks on structural parameters

in the program MMC [84]. This battery of consistency checks proved to be an invaluable

help in detecting subtle errors in the code (some manifesting itself only after several millions

of MC steps).

The idea of consistency checks can be generalized to compare properties calculated in differ-

ent ways. Free energy simulation calculations are frequently checked by using twi different

formalism or by repeating the calculation using a different path. A sensitive consistency test

has been introduced by Butler et al. [85] who suggested the comparison of configurational

termeprature with the temperature used in the acceptance probability. The calculation of

configurational temperature requires the calculation of forces on the atoms, normally not

required for MC simulation. Note, however, that if force biased displacements are used then

using this test incurs no significant additional comutational burden.

The particularities of MC algorithms also give rise to novel opportunities for implementation

using multiple processors. For example, in systems large enough to contain non-intersecting

cutoff regions, moves of such far apart subsystems can be performed in parallel since the
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calculated ∆E will not be affected by the other change(s). Even for smaller systems where

the independence of the ∆E’s can not be ensured, the parallel calculation of several moves

can still be an efficient coarse-grained paralellization, as follows.

1. Calculate ∆Ei for i = 1, . . . , n different attempted changes in parallel.

2. For each i, decide on acceptance in the usual way. If the move i is accepted, then for all

j, i < j ≤ n update ∆Ej with the change in the energy between subsystems i and j. This

step, however, can not be done in parallel.

Clearly, with small n, step 2 will be still fast, especially as low acceptance rates were found

to be in general most efficient.

The implementation of fine-grained parallelism can also benefit from the fact that only a

small part of the system is changed since that reduces the amount of data changed, lessening

the communication load. Actual implementations, however, are strongly dependent on the

actual hardware and software environment and their discussion is beyond the scope of this

paper.

8. Concluding remarks

It is hoped that the various MC methodologies discussed briefly above gave a flavor for the

many possibilities the MC methodology has. It is also clear that there are many possibilities

for further enhancements, calling for additional development effort.

It is also important to emphasize that several techniques can be applied simultaneously for

best effect. For example, reptation and concerted torsion angle moves were found to be a

powerful combination [39]. It is also possible that the combination of enhanced sampling

techniques results in synergy — this was found to be the case when force biasing [27] and

preferential sampling [20] was combined [86].

Finally, it is important to stress that while the discussion above pointed out the aspects

of MC that hold an advantage over MD, the final goal should be the development of such

a modeling environment where the two techniques coexist, each is employed for tasks it is

best suited. To reach such a state, however, the relative merits of the two approaches would
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have to be better defined — a difficult problem since the answer is system dependent — and

methods have to be developed for the seamless integration of MD and MC.
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