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Abstract

The inclusion of molecular flexibility into free energy simulations over creation/annihilation
paths has been analyzed. A new formalism is presented for such simulations with the in-
tramolecular degrees of freedom being active during the simulation and a recently introduced
path is reviewed that allows the inclusion of the flexibility using separate simulations.
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INTRODUCTION

Most free energy simulations are performed over a path defined by the so-called coupling
parameter, that smoothly transforms the initial state into the final state [1]. The shorter
this path, the less computational effort is required for the simulation. It has been argued
before [1-3] that a creation/annihilation path over a nearly linear [2] path is likely to be
a smooth one, allowing for reliable interpolation and, furthermore, polynomial [3] paths
provide an additional improvement in this respect (see, e.g., Ref. 4). While the term
‘creation/annihilation path’ has been deemed potentially misleading, e.g., by Gilson et al [5],
the same is true for ‘dual topology’, the frequently used alternative [6,7] while the latter has
the additional drawback of being less informative.

Creation/annihilation paths, however, raise the problem of the treatment of molecular flex-
ibility. It is clear that applying the creation/annihilation process to the molecular structures
would lead to unsurmountable complications: the molecule would fall apart into a mixture
of its contributing atoms in a practically irreversible way. With this problem in mind, the
following options present themselves:

1. Calculate the free energy difference based on fixed solute conformations and approximate
the intramolecular contribution to the free energy difference by the difference in the respective
intramolecular energies (i.e., assume that the intramolecular entropies cancel).

2. Include intramolecular degrees of freedom into the calculation of the free energy differ-
ence and perform additional simulations in the gas phase. A new formalism for this option
is presented below.

3. For the special case of conformational free energy difference, it is possible to calculate the
contribution of selected degrees of freedom to the free energy with simulations over a recently
introduced path that releases gradually the constraints of these degrees of freedom [8]. This
technique will also be reviewed below.

CREATION/ANNIHILATION SIMULATIONS WHILE INTRAMOLECULAR DEGREES
OF FREEDOM ARE ACTIVE

When the intramolecular degrees of freedom are active during the simulation, the terms
representing intramolecular interactions should not be affected directly by the coupling pa-
rameter λ. With this in mind, we define

Ei(solvated) = EiSLT−SLV + Eiintra, {i = 0, 1} (1)

and
E∗i =EiSLT−SLV + Eiintra + E1−i

intra, {i = 0, 1}
=Ei(solvated) + E1−i(vacuum)

. (2)

where the subscript ‘SLT-SLV’ refers to interactions between the solute (the species whose
solvation free energy is under consideration) and the solvent and the subscript ‘intra’ refers
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to intramolecular energies. Then we can define a path that creates/annihilates the solute
only in terms of its interaction with the solvent:

E(λ) = (1− λ)kE0
SLT−SLV + E0

intra + λkE1
SLT−SLV + E1

intra . (3)

At λ=0 and 1 (3) returns E∗0 and E∗1, respectively.

Thus, applying the standard formula for thermodynamic integration (see, e.g., Ref. 1) gives

∆A∗ =
∫ 1

0
〈∂E(λ)

∂λ
〉λ =∫ 1

0
k(1− λ)k−1〈E0

SLT−SLV〉λ + kλk−1〈E1
SLT−SLV〉λ −∆Avacuum =

∆Asolvated −∆Avacuum

. (4)

This means that the free energy difference between fully solvated, flexible solutes, ∆Asolvated

can be obtained from a free energy simulation following (4) if a separate, vacuum calcula-
tion yields the vacuum free energy difference ∆Avacuum. Note, that (4) includes implicitly

the coupling between the intra and intermolecular degrees of freedom since ∆Asolvated is
calculated with sampling the intramolecular degrees of freedom as well.

The significance of this formalism lies in the fact that ∆Avacuum is likely to be easier to
calculate (e.g., with normal mode analysis [9] or in the quasi-harmonic approximation [10]).
This will allow us to take advantage of the benefits of using a creation/annihilation path.

Note also that (4) highlights the rarely emphasized problem of carefully defining confor-
mational free energy differences (see, e.g., Refs 11,12). In principle, a fully flexible solute
has a single free energy (i.e., ∆Avacuum is meaningless in this case). Thus, in order to be
able to talk about conformational free energy one has to either freeze some of the conforma-
tional degrees of freedom (e.g., a backbone conformation) or delineate conformational basins
defined by (nonoverlapping) limits on some of the degrees of freedom.

SEPARATE CALCULATION OF CONTRIBUTION OF THE INTRAMOLECULAR DE-
GREES OF FREEDOM TO CONFORMATIONAL FREE ENERGY DIFFERENCES

Recently a new formalism was introduced for the calculation of the contribution of molecular
flexibility to conformational free energy differences, called the Scaled Constraint Method. The
coupling parameter was defined as a scaling factor to the limits of the internal degrees of
freedom. For a system with a single internal degree of freedom x limited to a finite interval
[0, X] with x = 0 being the rigid state and e(x) the intramolecular Hamiltonian with e(0) = 0,
the (Helmholtz) free energy at coupling parameter value λ is

A(λ) = −kT ln
∫ λX

0
exp[−e(x)/kT ]dx . (5)
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Applying the fundamental law of calculus — the standard technique of the thermodynamic
integration (TI) formalism — leads to

∆A =
∫ 1

0

∂

∂λ
{−kT ln

∫ λX
0

exp[−e(x)/kT ]dx }dλ . (6)

Application of the chain rule and recognizing that the derivative of an integral with respect
to its upper limit is just the integrand we obtain

∆A = −kT
∫ 1

0

∂
∂λ

∫ λX
0 exp[−e(x)/kT ]dx∫ λX

0 exp[−e(x)/kT ]dx
dλ

= −kT
∫ 1

0

X exp[−e(λX)/kT ]∫ λX
0 exp[−e(x)/kT ]dx

dλ

= −kT X
∫ 1

0
〈δ(x− λX)〉λ dλ .

(7)

Here δ denotes the Dirac δ function (whose integral is just its argument) and the integrand
〈δ(x− λX)〉λ is simply the probability density for the system hitting the limit:

P (λX) = lim
∆x→0

P (x ∈ [λX −∆x, λX])

∆x
. (8)

Note, however, that (8) shows a divergent integrand. This divergence reflects the fact that
the entropy cost of fully immobilizing a degree of freedom is infinite. Fortunately, it can be
shown [8] that the TI integrand for the difference between two ∆A’s is finite and is obtained
as the difference between the P ’s in the two systems.

Generalizing the problem to N dimensions and to general ranges (x ∈ [X′,X]) leads to TI
integrands containing term of the type

∂
∂λ

∫ λX1

λX ′1
. . .
∫ λXn
λX ′n

exp[−e(x)/kT ] dx∫ λX1

λX ′1
. . .
∫ λXn
λX ′n

exp[−e(x)/kT ] dx
. (9)

By evaluating the limit expression of the partial derivative and following the transformations
in (7) it can be shown that this leads to the expression

n∑
i=1

X ′iP (λX ′i ) +XiP (λXi) . (10)

An attractive feature of (10) is the fact that the increase in the dimensionality only adds
additive terms to the TI integrand (i.e., there are no terms directly involving more than one
degree of freedom).

In Ref. 8 the Scaled Constraint Method was successfully tested on the harmonic oscillator.
Methods for approximating P (λXi), as well as strategies for variable runlength selection and
choice of quadrature are also discussed there.
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Note, however, that for (10) to be of practical use it has to be also generalized to internal
coordinates. In Ref. 5 it has been argued that the formalism remains valid after a transfor-
mation to internal coordinates but it has not been tested in actual calculations. Further, its
use requires simulations with hard limits on internal coordinates. This would either require
the development of molecular dynamics with such hard limits or the use of Monte Carlo
methods. While the Monte Carlo methodology is generally thought as inefficient for large
solutes, the recently developed techniques moving a limited chain segment only [13] may
change this.

CONCLUSION

Two alternatives were presented for the inclusion of intramolecular flexibility into free energy
simulations performed over creation/annihilation paths. The potential smoothness of such
paths provides a powerful edge over other option for large changes — in one example a 5-point
quadrature was found adequate for the calculation of the solvation free-energy difference
between extended and turn conformations of a decapeptide.

The formalism described in (1 − 4) will allow the exploitation of such path with the solute
being flexible during the simulation. The recently introduced path [8], while requiring more
development, is particularly promising in that it allows the free energy simulations involving
the conformational change to be performed with rigid solute. Freezing out intramolecular
degrees of freedom during the transformation not only reduces the computational cost of
each simulation step but, more importantly, significantly reduces the dimensions of the
configuration space that is to be explored by a properly converged simulation.
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